JPS6256765B2 - - Google Patents

Info

Publication number
JPS6256765B2
JPS6256765B2 JP57039387A JP3938782A JPS6256765B2 JP S6256765 B2 JPS6256765 B2 JP S6256765B2 JP 57039387 A JP57039387 A JP 57039387A JP 3938782 A JP3938782 A JP 3938782A JP S6256765 B2 JPS6256765 B2 JP S6256765B2
Authority
JP
Japan
Prior art keywords
polymer
cellulose
molecular weight
methacrylate
permeable membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57039387A
Other languages
Japanese (ja)
Other versions
JPS5910308A (en
Inventor
Shigeo Aoyanagi
Kazuhiko Suzuki
Kazuaki Takahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP57039387A priority Critical patent/JPS5910308A/en
Publication of JPS5910308A publication Critical patent/JPS5910308A/en
Publication of JPS6256765B2 publication Critical patent/JPS6256765B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、平膜型透過膜の製造方法に関するも
のである。詳しく述べると、血液、腹水、胸水等
の体液を濾過するのに好適な平膜型透過膜の製造
方法に関するものである。 (従来の技術) 最近、浸透作用、限外濾過作用等を利用する人
工腎臓装置、血漿分離装置等の発展はめざまし
く、医療界において広く使用されている。このよ
うな装置のうち、ある種の装置においては平膜状
の透過膜が最も重要な部材となつている。 これらの平膜状の透過膜の代表的なものとして
は、アクリロニトリル―メタアクリルスルホン酸
ナトリウム共重合体膜、ポリエーテル―カーボネ
ート膜、酢酸セルロース膜、エチレン―酢酸ビニ
ル共重合体膜、銅アンモニア法再生セルロース膜
等がある。 (発明が解決しようとする問題点) しかしながら、このような透過膜は、すべて尿
素、ビタミンB12等のごとき小分子量のものの透
過が主であり、中分子量のものは透過がほとんど
少ないため、例えば人工腎臓装置に使用した場
合、透析を繰返えしていると、次第にメラニン色
素が蓄積してくるという欠点があつた。 したがつて、本発明の目的は、新規な平膜型透
過膜の製造方法を提供することにある。本発明の
他の目的は、中分子量以上の物質をも透過し得る
平膜型透過膜の製造方法を提供することにある。 (問題点を解決するための手段) これらの諸目的は、10〜70当量%のカルボキシ
ル基を含有する数平均分子量500〜200000の重合
体のアンモニウムまたはアルカリ金属塩と銅アン
モニアセルロースとの反応生成物を含有してなる
原液組成物をスリツト状押出孔から平膜状に吐出
させ、さらに平膜状に吐出させた該原液組成物を
少なくとも二つのローラー間を通過させて厚みを
規制し、ついで希硫酸中に浸漬して凝固再生し、
さらに強アルカリ水溶液に浸漬して前記重合体の
アンモニウム又はアルカリ金属塩を除去すること
を特徴とする平膜型透過膜の製造方法により達成
される。 (作用) 本発明において銅アンモニアセルロースと反応
させるための重合体は、その構成単量体単位中に
10〜70当量%、好ましくは15〜50当量%のカルボ
キシル基を含有する数平均分子量500〜200000、
好ましくは1000〜100000を有する重合体ないし共
重合体である。この重合体は、アンモニウム塩ま
たはリチウム、ナトリウム、カリウム等のアルカ
リ金属塩、好ましくはアンモニウム塩として使用
される。該重合体が前記のごとき塩として使用さ
れるのは、銅アンモニアセルロース原液中に良く
溶解させて反応させやすいようにするためであ
る。また、前記重合体が10〜70当量%のカルボキ
シル基を含有する必要があるのは、前記原液中で
銅アンモニアセルロースの銅と配位結合させるた
めである。すなわち、カルボキシル基含有量が10
当量%未満では前記銅との配位量が不充分とな
り、一方、カルボキシル基含有量が70当量%を超
えると、前記銅との配位量が大きくなりすぎてゲ
ル化を起すからである。しかして、カルボキシル
基を有する重合体の数平均分子量が前記範囲内で
ある理由は、後述するように、成形膜を再生凝固
したのちに、さらに該重合体を除去することによ
り透過膜に前記分子量および化学構造に相当する
大きさの多数の微細孔を形成させるからであり、
この範囲の分子量の重合体を使用することにより
所定の分子量のものを透析し得る透過膜を得るこ
とができるからである。 カルボキシル基を含有する重合体としては種々
あるが、一例を挙げると、例えばアクリル酸、メ
タクリル酸等のカルボキシル基含有不飽和単量体
と他の共重合性単量体との共重合体がある。しか
して、共重合性単量体としては、メチルアクリレ
ート、エチルアクリレート、イソプロピルアクリ
レート、ブチルアクリレート、ヘキシルアクリレ
ート、ラウリルアクリレート等のアルキルアクリ
レート、メチルメタクリレート、エチルメタクリ
レート、ブチルメタクリレート等のアルキルメタ
クリレート、アクリルアミド、メタクリルアミ
ド、アクリロニトリル、メタクリロニトリル、ヒ
ドロキシアルキルアクリレート(またはメタクリ
レート)、ジアルキルアミノアクリレート(また
はメタクリレート)、酢酸ビニル、スチレン、塩
化ビニル、エチレン等があり、特にアルキルアク
リレートおよびアルキルメタクリレートが好まし
い。したがつて、最も好ましい共重合体はアクリ
ル酸―アルキルアクリレート(またはメタクリレ
ート)共重合体、メタクリル酸―アルキルアクリ
レート(またはメタクリレート)共重合体、アル
キルアクリレート(またはメタクリレート)の部
分加水分解生成物である。 これらのカルボキシル基含有共重合体の塩は、
セルロース100重量部に対し、通常1〜40重量
部、好ましくは2〜30重量部、最も好ましくは3
〜15重量部使用される。該塩の使用量がこの範囲
で使用されるのは、後述するようにその使用量に
より形成される微細孔の量が決まるからである。
すなわち、1重量部未満では少なすぎて所定の分
子量のものを透過する能力が低く、一方、40重量
部を超えると得られる透過膜の強度が低下するか
らである。 セルロースとしては平均重合度500〜2500のも
のが好ましく、特に平均重合度1000±100のもの
が最も好ましい。しかして銅アンモニアセルロー
ス溶液は、常法により調製される。例えば、まず
アンモニア水、塩基性硫酸銅水溶液および水を混
合して銅アンモニア水溶液を調製し、これに酸化
防止剤(例えば亜硫酸ナトリウム)を加え、つい
で原料セルロースを投入して撹拌溶解を行ない、
さらに水酸化ナトリウム水溶液を添加して未溶解
セルロースを完全に溶解させる。このようにして
得られる銅アンモニアセルロース溶液に、所定量
の前記重合体の塩を透過性能制御剤として混合溶
解させ、8〜30℃、好ましくは14〜25℃の温度で
20〜120分間、好ましくは60〜100分間撹拌して前
記銅アンモニアセルロースのに配位結合させ、さ
らに熟成することにより防止原液を得る。したが
つて、該原液の代表的な組成は、つぎのとおりで
ある(重量部)。 セルロース 100 カルボキシル基含有重合体塩 3〜 15 塩基性硫酸銅 50〜200 亜硫酸ナトリウム 25〜 50 水酸化ナトリウム 10〜 50 アンモニア 100〜300 水 1000〜2000 つぎに、透過膜の製造方法について述べる。す
なわち、所定量のカルボキシル基含有重合体塩を
配位結合させた銅アンモニアセルロース原液をス
リツト状押出孔から吐出させ、さらに平膜状に吐
出させた該原液組成物を少なくとも二つのローラ
ー間を通過させて厚みを規制し、ついで、これを
希硫酸中に浸漬して凝固再生を行なう。原液を平
膜状に成形する方法としては種々の方法がある
が、一例を挙げると、例えば第1図に示すよう
に、押出装置1に設けられたスリツト状押出孔2
により平膜状に吐出させた原液3は、ローラ4,
4により厚みを規制されて凝固槽5内の凝固液6
に浸漬され、変向棒7を通過して、その間に凝固
してローラ8により引上げられる。別の方法とし
ては、第2図に示すように、押出装置21のスリ
ツト状押出孔22より平膜状に吐出させた原液2
3を、回転ドラム26aの表面に付着させ、ロー
ラ24で押圧して厚みを規制したのち、前記回転
ドラム26aに接触して回転するドラム26b、
さらに回転ドラム26c,26dと転着させなが
ら凝固させ、ついでローラ28a,28bを経て
引上げられる。 使用する希硫酸溶液の濃度は5〜50%であり、
好ましく15〜30%である。ついで、水洗を行なつ
て付着している硫酸を除去する。 つぎに、このような凝固再生により形成された
膜状物は、必要により該膜状物に残存している銅
を除去するために脱銅処理を施したのち水洗され
る。脱銅処理は通常濃度3〜30%の希硫酸溶液あ
るいは硝酸溶液中に浸漬して行なわれる。つぎ
に、この膜状物は強アルカリ水溶液中に浸漬して
前記カルボキシル基含有重合体を除去し、これに
より使用した重合体の分子量に相当する微細孔が
膜状物の膜壁に形成される5〜100℃、好ましく
は50〜80℃の温水で処理するかまたは1〜10重量
%、好ましくは2〜5重量%濃度のグリセリン水
溶液を用いて可塑化して、なお残存している銅、
硫酸第二銅、硫酸水素銅、中低分子量セルロース
等を除去し、ついで乾燥したのち巻取りを行なつ
て所望の透過膜を得る。このようにして形成され
る透過膜の膜厚は、5〜30ミクロン、好ましくは
8〜20ミクロンである。 強アルカリとしては、水酸化ナトリウム、水酸
化カリウム、水酸化リチウム、水酸化アンモニウ
ム等があり、濃度0.1〜20%、好ましくは1〜15
%の水溶液として用いられる。 本発明によれば、透過性能制御剤(孔径制御
剤)の添加効果は、その分子量に相当する孔径の
細孔(空隙)を透過膜に形成させることであるか
ら、該透過膜に空隙が多くなれば膜の見掛け密度
は小さくなる。例えば、密度1.50の銅アンモニア
セルロースに、本発明による透過性能制御剤(数
平均分子量約50000のアクリル酸―メチルメタク
リレート共重合体のアンモニウム塩)を添加して
透過膜を得たときの見掛け密度は、次表のとおり
である。 添加量(重量部/100重量部) 見掛け密度 0 1.50 2 1.47 10 1.35 15 1.28 20 1.20 25 1.13 30 1.05 35 0.98 40 0.90 (実施例) つぎに、実施例を挙げて本発明による原液を用
いて透過膜を製造する場合について詳細に説明す
る。なお、下記実施例においてパーセントは、特
にことわらない限りすべて重量による。 実施例 1 28%アンモニア水溶液4132gおよび44%塩基性
硫酸銅懸濁水溶液1870gを混合して銅アンモニア
水溶液を調製し、これに10%亜硫酸ナトリウム水
溶液2730gを添加した。この溶液に重合度約1000
のコツトンリンターパルプ860gを投入して撹拌
溶液を行ない、ついで10%水酸化ナトリウム水溶
液1600gを添加して銅アンモニアセルロース水溶
液を調製した。この水溶液に、18.0当量%のカル
ボキシル基を含有する数平均分子量約50000のア
クリル酸―メチルメタクリレート共重合体のアン
モニウム塩160gを添加して冷却しながら約25℃
の温度で60分間撹拌下に反応させ、さらに熟成を
行なつて原液を得た。 このようにして得られた原液を、第2図に示す
ようにスリツト状押出孔22を備えた押出装置2
1に導き、3.5±0.5Kg/cm2の窒素圧でスリツト状
押出孔22より吐出させた。押出孔の幅は100
mm、長さ50mmであり、原液の吐出量は6.45ml/分
であつた。吐出した膜状物は回転ドラム26aの
表面上に付着させ、ローラ24により押圧して厚
みを規制しながら、互いに接触しながら回転する
ドラム26b,26c,26dの表面に順次転着
させながら凝固槽25内の浴温20℃の20%希硫酸
水溶液で凝固させ、ついで該回転ドラム26dよ
り剥離させてローラ28a,28bを経て引上げ
た。このときの速度は50m/分であつた。つい
で、浴温20℃の浴槽に導き、浴長約4mで水洗を
行ない、さらにこのようにして形成された膜状物
を5%硫酸水溶液を満たした脱銅浴に浴長12mで
走行させたのち水洗し、さらに、5.5%水酸化ナ
トリウムを満たしたアルカリ浴に浴長8mで走行
させることにより、前記共重合体塩を除去したの
ち、水洗し、巻取つた。このときの処理速度は8
m/分であつた。カセに巻き取つた透過膜はタン
クに入れ、これに温水を注入したのち70℃に加温
して45mmHg下で1時間撹拌し、排水する。この
操作を3回行なつて膜中の低分子化合物を除去し
た。このように温水処理した膜を、120℃±10℃
に保たれたトンネル式乾燥炉(長さ3.45m)を
4.8m/分の走行速度で走行させて乾燥して平均
膜厚1.5ミクロンの平膜型透過膜を得た。 このようにして得られた透過膜を用いて(膜面
積1.0m2)、分子量既知の指標物質[尿素
(BUN):分子量60、リン酸イオン:分子量95、
クレアチニン:分子量113、ビタミンB12:分子量
1355、およびイヌリン:分子量5200)についてダ
イヤリザンス試験を行なつたところ、第3図のグ
ラフ(曲線A)が得られた。なお、このときの透
析液は水道水であり、その流量(QD)は500ml/
分である。またイヌリン、ビタミンB12、クレア
チニン、尿素、PO4 --等の指標物質を含む代用血
液の流量(QB)は200ml/分である。それぞれの
透析能は、第3図のグラフ(曲線A)に示した。
UFRは10.6ml/mmHg・hrであつた。 比較例 1 実施例1の方法においてアクリル酸―メチルメ
タクリレート共重合体のアンモニウム塩を使用し
なかつた以外は実施例1と同様の方法を行なつて
平膜型透過膜を得た。このようにして得られた透
過膜について実施例1と同じダイヤリザンス試験
を行なつたところ第3図のグラフ(曲線B)が得
られた。なお、このときのUFRは3.9ml/mmHg・
hrであつた。 実施例 2 実施例1の方法において、セルロース100重量
部に対する共重合体塩の添加量を第1表に示すよ
うに種々変えて同様な方法で平膜型透過膜を製造
した。この透過膜について、分子量既知の指標物
質(ビタミンB12:分子量1255、イヌリン:分子
量5200チトクロムC:分子量13400、牛血清アル
ブミン:分子量68000)を用いて求められたデー
タを正規確率紙にプロツトし、阻止率50%を示す
分子量を求め、この値から次式により算出した。
ただし、式中、-dは平均分子径(平均孔径)で
あり、MWは数平均分子量である。 -d=1.32(MW)〓 試験結果は第1表のとおりであつた。
(Industrial Application Field) The present invention relates to a method for manufacturing a flat membrane type permeable membrane. More specifically, the present invention relates to a method for manufacturing a flat membrane type permeable membrane suitable for filtering body fluids such as blood, ascites, and pleural fluid. (Prior Art) Artificial kidney devices, plasma separation devices, etc. that utilize osmosis, ultrafiltration, etc. have recently made remarkable progress and are widely used in the medical world. Among such devices, a flat membrane-like permeable membrane is the most important component in certain types of devices. Typical examples of these flat membrane-like permeable membranes include acrylonitrile-sodium methacrylsulfonate copolymer membranes, polyether-carbonate membranes, cellulose acetate membranes, ethylene-vinyl acetate copolymer membranes, and copper ammonia membranes. There are regenerated cellulose membranes, etc. (Problems to be Solved by the Invention) However, all such permeable membranes mainly allow the permeation of substances with small molecular weights such as urea and vitamin B12 , and have very little permeation of substances with medium molecular weights. When used in an artificial kidney device, the drawback was that melanin pigment gradually accumulates as dialysis is repeated. Therefore, an object of the present invention is to provide a novel method for manufacturing a flat membrane type permeable membrane. Another object of the present invention is to provide a method for producing a flat membrane-type permeable membrane that is capable of permeating substances with medium molecular weight or higher. (Means for Solving the Problems) These objects are produced by the reaction between ammonium or alkali metal salt of a polymer having a number average molecular weight of 500 to 200,000 and containing 10 to 70 equivalent % of carboxyl groups and cuprammonium cellulose. A stock solution composition containing a substance is discharged in the form of a flat film from a slit-like extrusion hole, and the stock solution composition discharged in the form of a flat film is further passed between at least two rollers to regulate the thickness. It is immersed in dilute sulfuric acid to solidify and regenerate.
This is achieved by a method for producing a flat membrane type permeable membrane, which further comprises immersing the polymer in a strong alkaline aqueous solution to remove ammonium or alkali metal salts of the polymer. (Function) In the present invention, the polymer to be reacted with cuprammonium cellulose contains in its constituent monomer units
number average molecular weight 500 to 200000, containing 10 to 70 equivalent %, preferably 15 to 50 equivalent % of carboxyl groups,
Preferably, it is a polymer or copolymer having a molecular weight of 1,000 to 100,000. This polymer is used as an ammonium salt or an alkali metal salt such as lithium, sodium, potassium, etc., preferably as an ammonium salt. The reason why the polymer is used as the above-mentioned salt is to dissolve it well in the copper ammonia cellulose stock solution and facilitate the reaction. The reason why the polymer needs to contain 10 to 70 equivalents of carboxyl groups is to form a coordination bond with the copper of cuprammonium cellulose in the stock solution. That is, the carboxyl group content is 10
If the content is less than equivalent %, the amount of coordination with the copper will be insufficient, while if the carboxyl group content exceeds 70 equivalent %, the amount of coordination with the copper will be too large, causing gelation. The reason why the number average molecular weight of the polymer having a carboxyl group is within the above range is that, as will be described later, after regenerating and coagulating the formed membrane, by further removing the polymer, the permeable membrane has the molecular weight within the above range. This is because a large number of micropores with a size corresponding to the chemical structure are formed.
This is because by using a polymer having a molecular weight within this range, a permeable membrane capable of dialyzing a substance having a predetermined molecular weight can be obtained. There are various polymers containing carboxyl groups, but one example is a copolymer of a carboxyl group-containing unsaturated monomer such as acrylic acid or methacrylic acid and another copolymerizable monomer. . Therefore, as copolymerizable monomers, alkyl acrylates such as methyl acrylate, ethyl acrylate, isopropyl acrylate, butyl acrylate, hexyl acrylate, lauryl acrylate, alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, acrylamide, methacrylate, etc. Examples include amide, acrylonitrile, methacrylonitrile, hydroxyalkyl acrylate (or methacrylate), dialkylaminoacrylate (or methacrylate), vinyl acetate, styrene, vinyl chloride, ethylene, etc., with alkyl acrylate and alkyl methacrylate being particularly preferred. Therefore, the most preferred copolymers are acrylic acid-alkyl acrylate (or methacrylate) copolymers, methacrylic acid-alkyl acrylate (or methacrylate) copolymers, and partial hydrolysis products of alkyl acrylates (or methacrylates). . Salts of these carboxyl group-containing copolymers are
Usually 1 to 40 parts by weight, preferably 2 to 30 parts by weight, most preferably 3 parts by weight, per 100 parts by weight of cellulose.
~15 parts by weight are used. The reason why the amount of the salt used is within this range is that the amount of the salt used determines the amount of micropores to be formed, as will be described later.
That is, if it is less than 1 part by weight, it is too small and the ability to permeate a substance with a predetermined molecular weight is low, while if it exceeds 40 parts by weight, the strength of the resulting permeable membrane will be reduced. The cellulose preferably has an average degree of polymerization of 500 to 2,500, and most preferably has an average degree of polymerization of 1000±100. The cuprammonium cellulose solution is prepared by a conventional method. For example, first, aqueous ammonia, a basic aqueous copper sulfate solution, and water are mixed to prepare an aqueous cupric ammonia solution, an antioxidant (e.g., sodium sulfite) is added thereto, and then raw material cellulose is added and dissolved with stirring.
Further, an aqueous sodium hydroxide solution is added to completely dissolve undissolved cellulose. A predetermined amount of the salt of the polymer as a permeability control agent is mixed and dissolved in the cuprammonium cellulose solution obtained in this manner, and the mixture is heated at a temperature of 8 to 30°C, preferably 14 to 25°C.
The solution is stirred for 20 to 120 minutes, preferably 60 to 100 minutes to coordinate the copper ammonia cellulose, and further aged to obtain an inhibitor stock solution. Therefore, a typical composition of the stock solution is as follows (parts by weight). Cellulose 100 Carboxyl group-containing polymer salt 3-15 Basic copper sulfate 50-200 Sodium sulfite 25-50 Sodium hydroxide 10-50 Ammonia 100-300 Water 1000-2000 Next, a method for manufacturing the permeable membrane will be described. That is, a copper ammonia cellulose stock solution to which a predetermined amount of a carboxyl group-containing polymer salt has been coordinately bonded is discharged from a slit-shaped extrusion hole, and the stock solution composition discharged in the form of a flat film is passed between at least two rollers. This is then immersed in dilute sulfuric acid to regenerate solidification. There are various methods for forming the stock solution into a flat film shape, but one example is as shown in FIG.
The stock solution 3 discharged in the form of a flat film is transferred to rollers 4,
The coagulating liquid 6 in the coagulating tank 5 has its thickness regulated by 4.
The material is immersed in water, passes through the deflection rod 7, solidifies during that time, and is pulled up by rollers 8. As another method, as shown in FIG.
3 is adhered to the surface of the rotating drum 26a, and the thickness is regulated by pressing with the roller 24, and then the drum 26b rotates in contact with the rotating drum 26a,
Further, it is solidified while being transferred to the rotating drums 26c and 26d, and then pulled up via rollers 28a and 28b. The concentration of the dilute sulfuric acid solution used is 5-50%,
It is preferably 15 to 30%. Then, the attached sulfuric acid is removed by washing with water. Next, the film-like material formed by such solidification and regeneration is subjected to decopper treatment to remove copper remaining in the film-like material, if necessary, and then washed with water. Copper removal treatment is usually carried out by immersion in a dilute sulfuric acid solution or nitric acid solution with a concentration of 3 to 30%. Next, this film-like material is immersed in a strong alkaline aqueous solution to remove the carboxyl group-containing polymer, thereby forming micropores in the membrane wall of the film-like material corresponding to the molecular weight of the polymer used. Copper still remaining after treatment with hot water at 5 to 100 °C, preferably from 50 to 80 °C, or plasticized with an aqueous glycerin solution with a concentration of 1 to 10% by weight, preferably 2 to 5% by weight,
Cupric sulfate, copper hydrogen sulfate, medium-low molecular weight cellulose, etc. are removed, then dried and wound up to obtain the desired permeable membrane. The thickness of the permeable membrane thus formed is 5 to 30 microns, preferably 8 to 20 microns. Examples of strong alkalis include sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonium hydroxide, etc., with a concentration of 0.1 to 20%, preferably 1 to 15%.
% aqueous solution. According to the present invention, the effect of adding the permeability control agent (pore size control agent) is to form in the permeable membrane pores (voids) with a pore diameter corresponding to the molecular weight of the permeability control agent, so the permeation membrane has many pores. If this happens, the apparent density of the film will become smaller. For example, when a permeable membrane is obtained by adding the permeation performance controlling agent (ammonium salt of acrylic acid-methyl methacrylate copolymer with a number average molecular weight of about 50,000) according to the present invention to cuprammonium cellulose having a density of 1.50, the apparent density is , as shown in the following table. Addition amount (parts by weight/100 parts by weight) Apparent density 0 1.50 2 1.47 10 1.35 15 1.28 20 1.20 25 1.13 30 1.05 35 0.98 40 0.90 (Example) Next, examples will be given and permeation using the stock solution according to the present invention will be explained. The case of manufacturing a membrane will be explained in detail. In addition, in the following examples, all percentages are by weight unless otherwise specified. Example 1 A copper ammonia aqueous solution was prepared by mixing 4132 g of a 28% ammonia aqueous solution and 1870 g of a 44% basic copper sulfate suspension aqueous solution, and 2730 g of a 10% sodium sulfite aqueous solution was added thereto. This solution has a degree of polymerization of approximately 1000.
860 g of cotton linter pulp was added to stir the solution, and then 1600 g of a 10% aqueous sodium hydroxide solution was added to prepare an aqueous cuprammonium cellulose solution. To this aqueous solution, 160 g of an ammonium salt of an acrylic acid-methyl methacrylate copolymer having a number average molecular weight of about 50,000 and containing 18.0 equivalent % of carboxyl groups was added, and the mixture was cooled to about 25°C.
The mixture was reacted with stirring for 60 minutes at a temperature of 100 mL, and further aged to obtain a stock solution. As shown in FIG.
1 and discharged from the slit-shaped extrusion hole 22 at a nitrogen pressure of 3.5±0.5 Kg/cm 2 . The width of the extrusion hole is 100
mm, the length was 50 mm, and the discharge rate of the stock solution was 6.45 ml/min. The discharged film-like material is deposited on the surface of the rotating drum 26a, and while the thickness is controlled by pressing with the roller 24, it is sequentially transferred onto the surfaces of the drums 26b, 26c, and 26d, which rotate while in contact with each other, while being transferred to the coagulation tank. It was coagulated with a 20% dilute aqueous sulfuric acid solution in a bath temperature of 20° C. in the drum 25, and then peeled off from the rotating drum 26d and pulled up through rollers 28a and 28b. The speed at this time was 50 m/min. Next, it was introduced into a bathtub with a bath temperature of 20°C, and washed with water at a bath length of about 4 m, and the film-like material thus formed was run in a copper removal bath filled with a 5% sulfuric acid aqueous solution at a bath length of 12 m. Thereafter, the copolymer salt was removed by washing with water and running in an alkaline bath filled with 5.5% sodium hydroxide at a bath length of 8 m, followed by washing with water and winding. The processing speed at this time is 8
m/min. The permeable membrane wound up in a skein is placed in a tank, and hot water is poured into it, heated to 70°C, stirred for 1 hour under 45mmHg, and then drained. This operation was repeated three times to remove low molecular weight compounds in the membrane. The membrane treated with hot water in this way was heated to 120℃±10℃.
A tunnel type drying oven (3.45 m long) maintained at
It was run at a running speed of 4.8 m/min and dried to obtain a flat membrane type permeable membrane with an average thickness of 1.5 microns. Using the permeable membrane thus obtained (membrane area 1.0 m 2 ), an indicator substance with a known molecular weight [urea (BUN): molecular weight 60, phosphate ion: molecular weight 95,
Creatinine: molecular weight 113, vitamin B 12 : molecular weight
1355 and inulin (molecular weight 5200), the graph shown in Figure 3 (curve A) was obtained. The dialysate at this time was tap water, and its flow rate (Q D ) was 500ml/
It's a minute. The flow rate (Q B ) of the blood substitute containing indicator substances such as inulin, vitamin B 12 , creatinine, urea, and PO 4 -- is 200 ml/min. The respective dialysis capacities are shown in the graph (curve A) in FIG.
UFR was 10.6 ml/mmHg·hr. Comparative Example 1 A flat membrane type permeable membrane was obtained in the same manner as in Example 1 except that the ammonium salt of the acrylic acid-methyl methacrylate copolymer was not used. When the thus obtained permeable membrane was subjected to the same dialysance test as in Example 1, the graph shown in FIG. 3 (curve B) was obtained. In addition, the UFR at this time is 3.9ml/mmHg・
It was hot at hr. Example 2 Flat membrane type permeable membranes were produced in the same manner as in Example 1 except that the amount of copolymer salt added to 100 parts by weight of cellulose was varied as shown in Table 1. For this permeable membrane, data obtained using indicator substances with known molecular weights (vitamin B 12 : molecular weight 1255, inulin: molecular weight 5200, cytochrome C: molecular weight 13400, bovine serum albumin: molecular weight 68000) was plotted on normal probability paper. The molecular weight showing the inhibition rate of 50% was determined, and the calculation was made from this value using the following formula.
However, in the formula, - d is the average molecular diameter (average pore diameter), and MW is the number average molecular weight. - d=1.32 (MW) The test results are as shown in Table 1.

【表】 第1表の結果を正規確率紙にプロツトして得ら
れた平均孔径を制御剤添加量について示すと、第
2表のとおりであつた。 第 2 表 添加量(重量部/100重量部) 平均孔径(Å) 0 19.2 15 20.0 30 20.4 また、実施例1と同様の方法で行なつたダイヤ
リザンス試験の結果は、第3表のとおりであつ
た。
[Table] Table 2 shows the average pore diameters obtained by plotting the results in Table 1 on normal probability paper with respect to the amount of control agent added. Table 2 Addition amount (parts by weight/100 parts by weight) Average pore diameter (Å) 0 19.2 15 20.0 30 20.4 Furthermore, the results of the dialysance test conducted in the same manner as in Example 1 are as shown in Table 3. Ta.

【表】 実施例 3 実施例1の方法において15当量%のカルボキシ
ル基を有する数平均分子量10000のアクリル酸―
エチルアクリレート共重合体のアンモニウム塩
155gを使用した以外は実施例1と同様な方法を
行なつて平膜型透過膜を得た。この透過膜につい
て実施例1と同様なダイヤリザンス試験を行なつ
たところ、第4表の透過能が得られた。 実施例 4 実施例1の方法において、温水処理の代りに5
%グリセリン水溶液を用いて液温30℃で60分間処
理した以外は実施例1と同様な方法を行なつて平
膜型透過膜を得た。この透過膜について実施例1
と同様なダイヤリザンス試験を行なつたところ、
第4表の透過能が得られた。 比較例 2 比較例1の方法において、温水処理の代りに5
%グリセリン水溶液を用いて液温30℃で60分間処
理した以外は実施例1と同様な方法を行なつて平
膜型透過膜を得た。この透過膜について実施例1
と同様なダイヤリザンス試験を行なつたところ、
第4表の透過能が得られた。
[Table] Example 3 Acrylic acid with a number average molecular weight of 10,000 having 15 equivalent % of carboxyl groups in the method of Example 1.
Ammonium salt of ethyl acrylate copolymer
A flat membrane type permeable membrane was obtained in the same manner as in Example 1 except that 155 g was used. When this permeable membrane was subjected to the same dialysance test as in Example 1, the permeability shown in Table 4 was obtained. Example 4 In the method of Example 1, instead of hot water treatment, 5
A flat membrane type permeable membrane was obtained in the same manner as in Example 1, except that the solution was treated with a % glycerin aqueous solution at a liquid temperature of 30° C. for 60 minutes. Example 1 about this permeable membrane
When we conducted a dialysance test similar to
The permeability shown in Table 4 was obtained. Comparative Example 2 In the method of Comparative Example 1, instead of hot water treatment,
A flat membrane type permeable membrane was obtained in the same manner as in Example 1, except that the solution was treated with a % glycerin aqueous solution at a liquid temperature of 30° C. for 60 minutes. Example 1 about this permeable membrane
When we conducted a dialysance test similar to
The permeability shown in Table 4 was obtained.

【表】 (発明の効果) 以上述べたように、本発明による透過膜の製造
方法は、10〜70当量%のカルボキシル基を含有す
る数平均分子量500〜200000の重合体のアンモニ
ウムまたはアルカリ金属塩と銅アンモニアセルロ
ースとの反応生成物を含有してなる幻影組成物を
スリツト状押出孔から平膜状に吐出させ、さらに
平膜状に吐出させた該原液組成物を少なくとも二
つのローラー間を通過させて厚みを規制し、つい
で希硫酸中に浸漬して凝固再生し、さらに強アル
カリ水溶液に浸漬して前記重合体のアンモニウム
またはアルカリ金属塩を除去することにより行な
われるものであるから、透過性能として使用され
る重合体塩の分子量の選定および使用量の変更に
より形成される孔径および透過能力を任意に制御
できるので、所望の分子量の物質を選択的に透過
し得る平膜型透過膜を得ることができる。また、
少なくとも二つのローラー間を通過させて厚みを
規制しているので、任意の厚みの平膜型透過膜が
得られ、これによつてその用途に応じた透過性
能、透水性能、機械的強度等を任意に付与するこ
とができる。
[Table] (Effects of the Invention) As described above, the method for producing a permeable membrane according to the present invention is based on an ammonium or alkali metal salt of a polymer having a number average molecular weight of 500 to 200,000 and containing 10 to 70 equivalent % of carboxyl groups. A phantom composition containing a reaction product of copper ammonia cellulose and cuprammonium cellulose is discharged in the form of a flat film from a slit-like extrusion hole, and the stock solution composition discharged in the form of a flat film is further passed between at least two rollers. This is done by immersing the polymer in dilute sulfuric acid to control the thickness, then immersing it in dilute sulfuric acid to solidify and regenerate it, and then immersing it in a strong alkaline aqueous solution to remove ammonium or alkali metal salts from the polymer. The diameter of the pores formed and the permeation ability can be controlled arbitrarily by selecting the molecular weight of the polymer salt used as a polymer salt and changing the amount used, thereby obtaining a flat membrane type permeable membrane that can selectively permeate substances with a desired molecular weight. be able to. Also,
Since the thickness is regulated by passing between at least two rollers, a flat membrane type permeable membrane of any thickness can be obtained, and this allows the permeation performance, water permeability, mechanical strength, etc. Can be assigned arbitrarily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1および2図は本発明における成膜工程の各
実施例を示す概略図であり、また第3図は本発明
により製造された透過膜のダイヤリザンス試験の
結果を示すグラフである。 1,11,21…押出装置、2,12,22…
スリツト状押出孔、3,13,23…膜状物、
5,15,25…凝固槽、6,16,26…凝固
液。
1 and 2 are schematic diagrams showing each example of the film forming process of the present invention, and FIG. 3 is a graph showing the results of a dialysance test of a permeable membrane manufactured according to the present invention. 1, 11, 21...extrusion device, 2, 12, 22...
Slit-shaped extrusion hole, 3, 13, 23...membrane-like material,
5, 15, 25... coagulation tank, 6, 16, 26... coagulation liquid.

Claims (1)

【特許請求の範囲】 1 10〜70当量%のカルボキシル基を含有する数
平均分子量500〜200000の重合体のアンモニウム
またはアルカリ金属塩と銅アンモニアセルロース
との反応生成物を含有してなる原液組成物をスリ
ツト状押出孔から平膜状に吐出させ、さらに平膜
状に吐出させた該原液組成物を少なくとも二つの
ローラー間を通過させて厚みを規制し、ついで希
硫酸中に浸漬して凝固再生し、さらに強アルカリ
水溶液に浸漬して前記重合体のアンモニウムまた
はアルカリ金属塩を除去することを特徴とする平
膜型透過膜の製造方法。 2 前記重合体塩はセルロース100重量部に対し
て1〜40重量部使用されてなる特許請求の範囲第
1項に記載の方法。 3 前記重合体塩と銅アンモニアセルロースとの
反応は8〜30℃の温度で行なわれてなる特許請求
の範囲第1項または第2項に記載の方法。 4 前記重合体の数平均分子量は1000〜100000で
ある特許請求の範囲第1項に記載の方法。 5 セルロースの平均重合度は500〜2500である
特許請求の範囲第1項ないし第4項のいずれか一
つに記載の方法。 6 カルボキシル基を有する重合体はアクリル酸
―アルキルアクリレート(またはメタクリレー
ト)、メタクリル酸―アルキルアクリレート(ま
たはメタクリレート)およびポリアルキルアクリ
レート(またはメタクリレート)の部分加水分解
生成物よりなる群から選ばれた少なくとも1種の
共重合体である特許請求の範囲第1項ないし第5
項のいずれか一つに記載の方法。
[Claims] 1. A stock solution composition containing a reaction product of ammonium or alkali metal salt of a polymer having a number average molecular weight of 500 to 200,000 and containing 10 to 70 equivalent % of carboxyl groups and cuprammonium cellulose. is discharged in the form of a flat film from a slit-shaped extrusion hole, and the stock solution composition discharged in the form of a flat film is further passed between at least two rollers to regulate the thickness, and then immersed in dilute sulfuric acid for solidification and regeneration. A method for producing a flat membrane type permeable membrane, which comprises further immersing the polymer in a strong alkaline aqueous solution to remove ammonium or alkali metal salts from the polymer. 2. The method according to claim 1, wherein the polymer salt is used in an amount of 1 to 40 parts by weight based on 100 parts by weight of cellulose. 3. The method according to claim 1 or 2, wherein the reaction between the polymer salt and cuprammonium cellulose is carried out at a temperature of 8 to 30°C. 4. The method according to claim 1, wherein the number average molecular weight of the polymer is 1,000 to 100,000. 5. The method according to any one of claims 1 to 4, wherein the average degree of polymerization of cellulose is 500 to 2,500. 6. The carboxyl group-containing polymer is at least one selected from the group consisting of acrylic acid-alkyl acrylate (or methacrylate), methacrylic acid-alkyl acrylate (or methacrylate), and a partial hydrolysis product of polyalkyl acrylate (or methacrylate). Claims 1 to 5 which are copolymers of species
The method described in any one of the paragraphs.
JP57039387A 1982-03-15 1982-03-15 Manufacture of semipermeable film Granted JPS5910308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57039387A JPS5910308A (en) 1982-03-15 1982-03-15 Manufacture of semipermeable film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57039387A JPS5910308A (en) 1982-03-15 1982-03-15 Manufacture of semipermeable film

Publications (2)

Publication Number Publication Date
JPS5910308A JPS5910308A (en) 1984-01-19
JPS6256765B2 true JPS6256765B2 (en) 1987-11-27

Family

ID=12551588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57039387A Granted JPS5910308A (en) 1982-03-15 1982-03-15 Manufacture of semipermeable film

Country Status (1)

Country Link
JP (1) JPS5910308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119477U (en) * 1986-01-22 1987-07-29

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611316B2 (en) * 1984-08-13 1994-02-16 旭化成工業株式会社 Improved blood purification membrane and method for producing the same
JPH0611317B2 (en) * 1984-08-13 1994-02-16 旭化成工業株式会社 Improved blood purification membrane and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028925A (en) * 1983-07-28 1985-02-14 Shiseido Co Ltd External preparation for skin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028925A (en) * 1983-07-28 1985-02-14 Shiseido Co Ltd External preparation for skin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119477U (en) * 1986-01-22 1987-07-29

Also Published As

Publication number Publication date
JPS5910308A (en) 1984-01-19

Similar Documents

Publication Publication Date Title
WO1986002575A1 (en) Permselective hollow yarn membrane, method of producing the same, method of separating plasma components, and plasma component separator
CN105521715B (en) A kind of blending polyvinylidene fluoride hollow fiber membrane and preparation method thereof
JPS5891732A (en) Porous polyvinylidene fluoride resin membrane and preparation thereof
AU5613700A (en) Polyvinylidene difluoride membranes and methods for making such membranes
US4444663A (en) Membrane and method for manufacture thereof
JPS5812028B2 (en) Polycarbonate membrane for blood dialysis
JPS6256765B2 (en)
EP4061519A1 (en) Porous membranes comprising sorbent particles for improved urea capture
US4983293A (en) Semipermeable membrane and process for preparing same
JPH05317664A (en) Porous hollow fiber membrane
JPH0451216B2 (en)
JPS6028925B2 (en) Hollow fiber manufacturing method
JPH0929078A (en) Production of hollow yarn membrane
JPS6256764B2 (en)
JPS6028924B2 (en) Spinning dope composition for hollow fiber production
JPH0825886B2 (en) Leukocyte capturing filter material and method for producing the same
JPS609460B2 (en) hemodialyzer
JP3020016B2 (en) Hollow fiber membrane
JPS6132041B2 (en)
JPS6132043B2 (en)
JPS607854A (en) Anionic bodyfluid filtering membrane
WO1998034719A1 (en) Hollow fiber membrane and method of manufacturing same
JPS6411322B2 (en)
JP2000210544A (en) Production of semipermeable membrane
JPS6350041B2 (en)