JPS6256572A - Formation of film - Google Patents

Formation of film

Info

Publication number
JPS6256572A
JPS6256572A JP19518785A JP19518785A JPS6256572A JP S6256572 A JPS6256572 A JP S6256572A JP 19518785 A JP19518785 A JP 19518785A JP 19518785 A JP19518785 A JP 19518785A JP S6256572 A JPS6256572 A JP S6256572A
Authority
JP
Japan
Prior art keywords
gas
deposition
film
raw material
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19518785A
Other languages
Japanese (ja)
Inventor
Akimasa Kuramoto
倉本 晋匡
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19518785A priority Critical patent/JPS6256572A/en
Publication of JPS6256572A publication Critical patent/JPS6256572A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Abstract

PURPOSE:To raise the utilization factor of a raw gas for deposition and to form a film at a low cost by cooling and liquefying the unutilized and unreacted raw gas for film deposition in a reaction vessel, then heating and vaporizing the liq. and meantime removing other gases by utilizing the b.p. difference. CONSTITUTION:A raw gas SiH4 for deposition is introduced into a reaction vessel 1 from a cylinder 10 and a gaseous dopant B2H6 is introduced from a cylinder 11. Glow discharge is generated by an ordinary method and a film is formed on a substrate 12. At this time, the waste gas is sucked into a tank 14 by a pump 2 and cooled by a cooler 16 to about -110--180 deg.C to liquefy SiH4. H2, N2, O2, etc., having lower b.p. than SiH4 are discharged. After a film is formed, the temp. is adjusted to about -110--93 deg.C by regulating the cooler 16 to vaporize SiH4 which is stored in a tank 15 and the SiH4 is separated from the gases having higher b.p. than SiH4. Consequently, SiH4 is efficiently recovered and the utilization factor is raised.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、プラズマCVD装置を用いた、電子写真感光
体や太陽電池等の膜の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of forming films for electrophotographic photoreceptors, solar cells, etc. using a plasma CVD apparatus.

従来の技術 基板にアモルファスのシリコン膜を形成する方法の1つ
であるグロー放電分解法は、高真空に維持する反応容器
としての真空チャンバ内に堆積用原料ガスのSiH,を
導入し、真空チャンバ内でグロー放電を行なうことによ
りプラズマを発生させ、このプラズマを基板に接触させ
て、基板上にアモルファスのシリコン膜を形成する。こ
の時の未反応のSiH,ガスは、排気系を通して、排ガ
ス処理されて外部に棄てられている。なおアモルファス
のシリコン膜を形成する時、堆積用原料ガスのS iH
4以外に、HよあるいはB、H,がドープガスとして用
いられている。
Conventional technology The glow discharge decomposition method, which is one of the methods for forming an amorphous silicon film on a substrate, introduces SiH, a raw material gas for deposition, into a vacuum chamber that serves as a reaction vessel maintained at a high vacuum. Plasma is generated by glow discharge inside the chamber, and this plasma is brought into contact with the substrate to form an amorphous silicon film on the substrate. At this time, unreacted SiH and gas are treated as exhaust gases and disposed of outside through the exhaust system. Note that when forming an amorphous silicon film, the deposition source gas SiH
In addition to 4, H, B, and H are used as doping gases.

発明が解決しようとする問題点 従来のグロー放電分解法では、膜の形成に利用される堆
積用原料ガスは、6〜10%であり、大部分が利用され
ずに、排気系を通して、外部に棄てられている。電子写
真感光体では、光導電膜の厚さは20〜30μmであり
、高価な堆積用原料ガスの利用率が低い事により、コス
トを高くしている。
Problems to be Solved by the Invention In the conventional glow discharge decomposition method, 6 to 10% of the deposition material gas is used to form a film, and most of it is not used and is discharged to the outside through the exhaust system. Abandoned. In electrophotographic photoreceptors, the thickness of the photoconductive film is 20 to 30 μm, and the cost is high due to the low utilization rate of expensive deposition material gas.

本発明は上記従来の問題点を解消するもので、堆積用原
料ガスの利用率を上げ、電子写真感光体や太陽電池等の
光導電膜を安価に量産できる膜の形成方法を提供するこ
とを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide a method for forming a film that can increase the utilization rate of raw material gas for deposition and mass-produce photoconductive films for electrophotographic photoreceptors, solar cells, etc. at low cost. purpose.

問題点を解決するための手段 上記問題点を解決するため、本発明の膜の形成方法は、
反応容器内の膜の形成に利用されなかった未反応の堆積
用原料ガスとその他のガスとを含むガスを排気し、−こ
の排気ガスを前記堆積用原料ガスの沸点以下の温度に冷
却してこの堆積用原料ガスを含むガスを液化させ、前記
堆積用原料ガスの沸点以下の沸点のその他のガスを排気
し、次に前記液化ガスを前記堆積用原料ガスの沸点以上
でかつ残留しているその他のガスの沸点以下の温度に加
熱して堆積用原料ガスを気化させ、こ右、を回収して膜
の形成に再利用するものである。
Means for Solving the Problems In order to solve the above problems, the film forming method of the present invention is as follows:
exhausting the gas containing the unreacted deposition raw material gas and other gases that were not used to form the film in the reaction vessel; - cooling the exhaust gas to a temperature below the boiling point of the deposition raw material gas; The gas containing the deposition raw material gas is liquefied, other gases having a boiling point lower than the boiling point of the deposition raw material gas are exhausted, and then the liquefied gas has a boiling point higher than the boiling point of the deposition raw material gas and remains. The material gas for deposition is vaporized by heating to a temperature below the boiling point of other gases, and this is recovered and reused for film formation.

作用 膜形成のための反応容器内の未反応のガス中には、堆積
用原料ガス以外に、不純物ガスが含まれている。不純物
ガスの中には、堆積用原料ガスの沸点以上のものも以下
のものも含まれている。反応容器内の未反応のガスを排
気し、この排気ガスをタンクに一旦貯める。このタンク
を堆積用原料ガスの沸点以下の温度に冷却して、堆積用
原料ガスを含むガスを液化させる。堆積用原料ガスの沸
点以下の沸点を有するガスは、液化されない温度に設定
されるので、タンクの外へ気化して排気される6次に、
このタンクを堆積用原料ガスの沸点以上の温度に加熱し
て、堆積用原料ガスをタンクの外へ排気して、別のタン
クに貯める。このとき、堆積用原料ガスの沸点以上の沸
点を有するガスは、気化されない温度に設定するので、
タンクの中に液化したまま残る。別のタンクに貯められ
た堆積用原料ガスは、不純物ガスが上記のようにして除
かれ、膜の形成に再利用される。このように未反応の堆
積用原料ガスは、大部分回収され、再利用されるため、
利用率が大幅に上昇し、安価に、電子写真感光体や太陽
電池などを量産できる。
The unreacted gas in the reaction vessel for forming the active film contains impurity gas in addition to the deposition source gas. The impurity gases include those whose boiling point is above or below the boiling point of the deposition source gas. Unreacted gas in the reaction vessel is exhausted, and this exhaust gas is temporarily stored in a tank. This tank is cooled to a temperature below the boiling point of the deposition raw material gas, and the gas containing the deposition raw material gas is liquefied. Gas having a boiling point lower than the boiling point of the deposition raw material gas is set at a temperature at which it is not liquefied, so it is vaporized and exhausted outside the tank.
This tank is heated to a temperature higher than the boiling point of the deposition raw material gas, and the deposition raw material gas is exhausted from the tank and stored in another tank. At this time, the temperature is set so that the gas having a boiling point higher than the boiling point of the deposition raw material gas is not vaporized.
It remains liquefied in the tank. Impurity gases are removed from the deposition raw material gas stored in another tank as described above, and the material gas is reused for film formation. In this way, most of the unreacted deposition material gas is recovered and reused, so
The utilization rate will increase significantly, and electrophotographic photoreceptors and solar cells can be mass-produced at low cost.

実施例 以下、本発明の実施例を図面に基づいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

図面は本発明の実施例における膜の形成方法に用いる膜
形成装置の構成図で、1は反応容器、2はポンプ、3〜
9はバルブ、10はS i H4ボンベ、11はB、H
,ボンベ、12は基板、13は電極、14.15はタン
ク、16は冷却器、17はボンベである。
The drawing is a block diagram of a membrane forming apparatus used in the membrane forming method in an embodiment of the present invention, in which 1 is a reaction vessel, 2 is a pump, and 3 to
9 is a valve, 10 is S i H4 cylinder, 11 is B, H
, a cylinder, 12 a substrate, 13 an electrode, 14.15 a tank, 16 a cooler, and 17 a cylinder.

膜の形成に際しては、先ずバルブ3,4を開け、ポンプ
2により5反応容器1内を10” −10’Torrの
圧力に排気する。この時、バルブ5,6は閉じられてい
る。次に、バルブ9を開け、反応容器1内に堆積用原料
ガスの入ったSiH4ボンベ10と不純物ガスの入った
B2H,ボンベ11とからB 2I(、の流量比が5ρ
ρmになるように調整してガスを導入する。この時のガ
ス圧はI Torrであり、バルブ7゜8は閉じられて
いる。基板12と電極との間に高周波電圧を印加して、
反応容器1内にグロー放電を生成させる。放電が開始さ
れると、バルブ4を閉じ、バルブ5,6を開けて、排気
ガスをタンクト1に導入する。なお、タンク14.15
は予め真空に引かれている。タンク14ば冷却器16に
より−110〜−180℃に冷却されている。残留ガス
のH2、N、。
When forming a film, first, valves 3 and 4 are opened, and the inside of reaction vessel 1 is evacuated to a pressure of 10''-10'Torr using pump 2. At this time, valves 5 and 6 are closed.Next, , the valve 9 is opened, and the flow rate ratio between the SiH4 cylinder 10 containing the deposition raw material gas and the B2H cylinder 11 containing the impurity gas in the reaction vessel 1 is 5ρ.
The gas is introduced by adjusting it so that the value is ρm. The gas pressure at this time is I Torr, and the valve 7.8 is closed. Applying a high frequency voltage between the substrate 12 and the electrode,
A glow discharge is generated within the reaction vessel 1. When discharge starts, valve 4 is closed, valves 5 and 6 are opened, and exhaust gas is introduced into tank 1. In addition, tank 14.15
has been evacuated beforehand. The tank 14 is cooled to -110 to -180°C by a cooler 16. Residual gas H2, N,.

02等は、沸点が一180℃以下であり、ポンプ2によ
り、タンク14を通って外部へ排気される。2時間放電
を続け、アモルファスシリコンの膜形成を終えた後、放
電をやめ、バルブ9を閉じてガスの導入を止める。バル
ブ5.6を閉じて、バルブ7を開け、冷却器16の調整
をして、タンク14の温度を−110〜−93℃にして
、堆積用原料ガスであるSiH4ガスを気化させ、タン
ク15にS i H4ガスを貯める。そして次回の膜形
成時に、バルブ8を開け、Sj、H4ガスをS i H
4ボンベ10からと共に反応容器1内へ導入し、膜形成
を行なった。この時のS i H,ガスの利用率は50
〜70%であった。
02 and the like have a boiling point of 1180° C. or lower, and are exhausted to the outside through the tank 14 by the pump 2. After continuing the discharge for 2 hours and completing the formation of the amorphous silicon film, the discharge is stopped and the valve 9 is closed to stop the introduction of gas. Close the valve 5.6, open the valve 7, adjust the cooler 16, set the temperature of the tank 14 to -110 to -93°C, vaporize the SiH4 gas that is the raw material gas for deposition, and then open the tank 15. Store S i H4 gas in. Then, during the next film formation, valve 8 is opened to supply Sj and H4 gases to S i H
4 into the reaction vessel 1 from the cylinder 10 to form a film. At this time, the utilization rate of S i H and gas is 50
It was ~70%.

次に別の実施例について説明する。B、H6を300〜
500ppm含む5jH4ガスを反応容器1−内に導入
し、基板12上にP型のアモルファスシリコン1漠を0
.5μm形成する。この時、バルブ5,6を閉じ、バル
ブ3,4を開けて、SiH,ガスの回収は行わない。次
に82H,を5〜10ppm含むS j、 H、ガスを
反応容器1内に導入し、基板12上にj形のアモルファ
スシリコン膜を15〜25μm形成する。この時。
Next, another embodiment will be described. B, H6 from 300
5jH4 gas containing 500 ppm is introduced into the reaction vessel 1-, and P-type amorphous silicon 1 is deposited on the substrate 12.
.. Form 5 μm. At this time, valves 5 and 6 are closed, valves 3 and 4 are opened, and SiH and gas are not recovered. Next, a Sj, H gas containing 5 to 10 ppm of 82H, is introduced into the reaction vessel 1 to form a J-shaped amorphous silicon film with a thickness of 15 to 25 μm on the substrate 12. At this time.

バルブ5.6を開け、バルブ4.7を閉じて、B2I(
6を含む5in4ガスを液化させて、タンク14に貯め
る。次にSiH4及びCH,ガスを反応容器1に導入し
て、SiC膜を0.1〜0.2μm形成する。この時、
バルブ5,6を閉じ、バルブ4を開けて、Sin、ガス
の回収は行わない。次に放電をやめ、第1の実施例と同
様にして、SiH4ガスの再利用を行ったところ、ガス
の利用率は30〜50%であった。なお、タンク14に
貯まったB 、 H、の液化ガスは、冷却器16を調整
してタンク14の温度を−80〜−70℃にして気化さ
せ、バルブ6を開けて、ポンプ2により排気して、排ガ
ス処理を行う。
Open valve 5.6, close valve 4.7, and turn B2I(
The 5in4 gas containing 6 is liquefied and stored in a tank 14. Next, SiH4, CH, and gas are introduced into the reaction vessel 1 to form a SiC film with a thickness of 0.1 to 0.2 μm. At this time,
Valves 5 and 6 are closed, valve 4 is opened, and no gas is recovered. Next, when the discharge was stopped and the SiH4 gas was reused in the same manner as in the first example, the gas utilization rate was 30 to 50%. The liquefied gases B and H stored in the tank 14 are evaporated by adjusting the cooler 16 to bring the temperature of the tank 14 to -80 to -70°C, opening the valve 6, and exhausting the gas by the pump 2. and perform exhaust gas treatment.

発明の効果 以上のへたごとく本発明によれば、堆積用原料ガスの利
用率を上げ、膜の材料費を下げ、低コストで電子写真感
光体や太陽電池などを量産できる。
According to the present invention, which exceeds the effects of the invention, it is possible to increase the utilization rate of raw material gas for deposition, lower the cost of film materials, and mass-produce electrophotographic photoreceptors, solar cells, etc. at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例における膜の形成方法に使用する
膜形成装置の構成図である。 1・・反応容器、2・・・ポンプ、3〜9・・バルブ、
10・・・5IF(4ボンベ、11・・・t32H,ボ
ンベ、14.15・・・タンク、16・・・冷却器
The drawing is a configuration diagram of a film forming apparatus used in a film forming method in an embodiment of the present invention. 1...Reaction vessel, 2...Pump, 3-9...Valve,
10...5IF (4 cylinders, 11...t32H, cylinders, 14.15...tanks, 16...coolers

Claims (1)

【特許請求の範囲】 1、反応容器内の膜の形成に利用されなかった未反応の
堆積用原料ガスとその他のガスとを含むガスを排気し、
この排気ガスを前記堆積用原料ガスの沸点以下の温度に
冷却してこの堆積用原料ガスを含むガスを液化させ、前
記堆積用原料ガスの沸点以下の沸点のその他のガスを排
気し、次に前記液化ガスを前記堆積用原料ガスの沸点以
上でかつ残留しているその他のガスの沸点以下の温度に
加熱して堆積用原料ガスを気化させ、これを回収して膜
の形成に再利用する膜の形成方法。 2、堆積用原料ガスはシリコン原子を含む特許請求の範
囲第1項記載の膜の形成方法。 3、その他のガスはH_2、N_2、O_2、B_2H
_6である特許請求の範囲第1項または第2項記載の膜
の形成方法。 4、堆積用原料ガスはSiH_4である特許請求の範囲
第2項または第3項記載の膜の形成方法。 5、堆積用原料ガスを含むガスを液化させる温度を、堆
積用原料ガスの沸点とその沸点より70℃低い温度との
間とした特許請求の範囲第4項記載の膜の形成方法。 6、堆積用原料ガスを含むガスを気化させる温度を、堆
積用原料ガスの沸点とその沸点より20℃高い温度との
間とした特許請求の範囲第4項記載の膜の形成方法。
[Claims] 1. Exhaust gas containing unreacted deposition raw material gas and other gases that were not used for film formation in the reaction vessel;
This exhaust gas is cooled to a temperature below the boiling point of the deposition raw material gas to liquefy the gas containing the deposition raw material gas, and other gases with boiling points below the deposition raw material gas are exhausted, and then The liquefied gas is heated to a temperature above the boiling point of the deposition raw material gas and below the boiling point of other remaining gases to vaporize the deposition raw material gas, which is recovered and reused for film formation. How to form a film. 2. The method of forming a film according to claim 1, wherein the deposition source gas contains silicon atoms. 3.Other gases are H_2, N_2, O_2, B_2H
The method for forming a film according to claim 1 or 2, which is _6. 4. The film forming method according to claim 2 or 3, wherein the deposition source gas is SiH_4. 5. The method for forming a film according to claim 4, wherein the temperature at which the gas containing the deposition raw material gas is liquefied is between the boiling point of the deposition raw material gas and a temperature 70° C. lower than the boiling point. 6. The method of forming a film according to claim 4, wherein the temperature at which the gas containing the deposition material gas is vaporized is between the boiling point of the deposition material gas and a temperature 20° C. higher than the boiling point.
JP19518785A 1985-09-04 1985-09-04 Formation of film Pending JPS6256572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19518785A JPS6256572A (en) 1985-09-04 1985-09-04 Formation of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19518785A JPS6256572A (en) 1985-09-04 1985-09-04 Formation of film

Publications (1)

Publication Number Publication Date
JPS6256572A true JPS6256572A (en) 1987-03-12

Family

ID=16336899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19518785A Pending JPS6256572A (en) 1985-09-04 1985-09-04 Formation of film

Country Status (1)

Country Link
JP (1) JPS6256572A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261963A (en) * 1991-12-04 1993-11-16 Howmet Corporation CVD apparatus comprising exhaust gas condensation means
JPH11189877A (en) * 1997-12-26 1999-07-13 Sanyo Electric Co Ltd Thin film forming device using rotary electrode
JP2004071970A (en) * 2002-08-08 2004-03-04 Shin Etsu Chem Co Ltd Manufacturing method and manufacturing system of silicon substrate for solar cell
JP2014159630A (en) * 2013-01-17 2014-09-04 Air Products And Chemicals Inc System and method for recovering and reusing tungsten hexafluoride

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261963A (en) * 1991-12-04 1993-11-16 Howmet Corporation CVD apparatus comprising exhaust gas condensation means
JPH11189877A (en) * 1997-12-26 1999-07-13 Sanyo Electric Co Ltd Thin film forming device using rotary electrode
JP2004071970A (en) * 2002-08-08 2004-03-04 Shin Etsu Chem Co Ltd Manufacturing method and manufacturing system of silicon substrate for solar cell
JP2014159630A (en) * 2013-01-17 2014-09-04 Air Products And Chemicals Inc System and method for recovering and reusing tungsten hexafluoride

Similar Documents

Publication Publication Date Title
US4448633A (en) Passivation of III-V semiconductor surfaces by plasma nitridation
US4968384A (en) Method of producing carbon-doped amorphous silicon thin film
JPS6256572A (en) Formation of film
JPH04174517A (en) Manufacture of diamond semiconductor
JPH0641631B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus for tantalum oxide film
JPS60117712A (en) Forming method of thin film
JPS6383273A (en) Method for synthesizing boron nitride film
JPH03122266A (en) Production of thin nitride film
JPS6348817A (en) Epitaxial growth method
JPS59190209A (en) Preparation of silicon coating film
JPS5888030A (en) Formation of thin film
JPH079059B2 (en) Method for producing carbon thin film
JP2654456B2 (en) Manufacturing method of high quality IGFET
JP2654466B2 (en) Reactive gas filling method
JPH03257166A (en) Method and device for chemical vapor growth of tantalum oxide film
JPS62232180A (en) Superconducting material
JPH03222321A (en) Manufacture of amorphous semiconductor thin film
JPS59144899A (en) Reactive gas filling method
JPH0258768B2 (en)
Jayatissa et al. Microcrystalline Silicon Films Deposited by Cathode‐Type RF Glow Discharge Technique
JPS62180056A (en) Production of thin carbon film
JPH05343713A (en) Manufacture of amorphous solar cell
JP2521953B2 (en) Method for producing semiconducting carbon thin film
JPS62116773A (en) Electrically conductive transparent film
JPS62116772A (en) Electrically conductive transparent film