JPS6256501A - Composite sintered body of ceramics and powder metal - Google Patents

Composite sintered body of ceramics and powder metal

Info

Publication number
JPS6256501A
JPS6256501A JP19660585A JP19660585A JPS6256501A JP S6256501 A JPS6256501 A JP S6256501A JP 19660585 A JP19660585 A JP 19660585A JP 19660585 A JP19660585 A JP 19660585A JP S6256501 A JPS6256501 A JP S6256501A
Authority
JP
Japan
Prior art keywords
ceramics
sintered
compression molding
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19660585A
Other languages
Japanese (ja)
Inventor
Chiaki Takami
千秋 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SILVER ROI KK
Original Assignee
SILVER ROI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SILVER ROI KK filed Critical SILVER ROI KK
Priority to JP19660585A priority Critical patent/JPS6256501A/en
Publication of JPS6256501A publication Critical patent/JPS6256501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a titled composite sintered body which can be selectively used for both applications of electricity conduction and insulation and in which ceramics and sintered metallic body layer are thoroughly united by forming the sintered metallic body to the outside circumference of the ceramics. CONSTITUTION:A metal alone or a mixture prepd. by uniformly mixing the metallic powder and binder at a prescribed compsn. is packed into a metallic mold recessed with a prescribed shape and 5-45kg/mm<2> pressure is exerted thereto to form a compression molding. An insertion hole for the ceramics 2 is recessed to the compression molding simultaneously with or after compression molding and the ceramics 2 is inserted into the insertion hole. The compression molding is then put into a sintering furnace and is subjected to preliminary heating in a reducing or inert gaseous atmosphere or vacuum then to calcination at the sintering temp. meeting the sintered metallic body layer 1. The compression molding shrinks to the higher density during the calcination and compacts the ceramics 2 with the high pressure, thus penetrating the molten metal into the ceramics 2 at the boundary thereof and forming an intermediate layer 2 thereof. The composite sintered body thoroughly united with the ceramics and the powder metal is thus obtd.

Description

【発明の詳細な説明】 本発明は、セラミックスと粉末4を属の複合焼結体の改
良に関し、更に詳述すれば、セラミックス(2)の外周
に金属粉末の焼結金属体層(1)を形成して成る事を特
徴とするセラミックスと粉末金属の複合焼結体に係るも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a composite sintered body made of ceramics and powder 4, and more specifically, a sintered metal body layer (1) of metal powder on the outer periphery of ceramics (2). This invention relates to a composite sintered body of ceramics and powdered metal characterized by forming.

セラミックスは、電気絶縁性、高硬度、不鯖性、耐薬品
性、低膨張率その池数々の優れた特性を有しており、碍
子やプラグを始め古くから各種の用途に利用されてきた
。しかしながら、近年その性質が着しく改良されて米た
とはいうものの衝撃荷重、引っ張り強さ、ヒートショッ
クなどには極めて脆く、又、機械加工性が皆無であるな
ど、マイナス面も数多く残されている。
Ceramics have many excellent properties such as electrical insulation, high hardness, corrosion resistance, chemical resistance, and low expansion coefficient, and have been used for a variety of purposes including insulators and plugs since ancient times. However, although its properties have been improved in recent years, it still has many negative aspects, such as being extremely brittle against shock loads, tensile strength, heat shock, etc., and having no machinability. .

一方、焼結金属体は、金属粉末単体または金属粉末とバ
インダとを均一に配合し、所定の形状に圧縮・成型した
後、焼き固めたものであり、衝撃荷重、引っ張り強さ、
ヒートショック、靭性などの機械的性質や機械加工性が
優れているものの、一般に錆びやすく、熱膨張係数も大
きく、良導体であってセラミックスとは逆の性質を具備
するものである。
On the other hand, sintered metal bodies are made by uniformly blending a single metal powder or a metal powder and a binder, compressing and molding it into a predetermined shape, and then sintering it.
Although it has excellent mechanical properties such as heat shock and toughness and machinability, it is generally prone to rust, has a large coefficient of thermal expansion, and is a good conductor, which is the opposite of ceramics.

本発明はかかる従来のセラミックスや焼結金属体の持つ
長所や欠点に着目して成されたもので、その目的とする
ところは、両者の欠点を補完し合い、その長所のみを引
き出すことの出来たセラミックスと粉末金属の複合焼結
体を提供するにある。
The present invention has been made by focusing on the advantages and disadvantages of such conventional ceramics and sintered metal bodies, and its purpose is to complement each other's disadvantages and bring out only their advantages. To provide a composite sintered body of ceramics and powder metal.

以下、本発明を図示実施例に従って詳述する。Hereinafter, the present invention will be described in detail according to illustrated embodiments.

金属粉末材料としては、例えば、鉄、銅などを始め雇硬
合金粉末(fIlえば、炭化タングステン、炭化チタン
、炭化ジルコニウム、炭化タンタルなどで、そのバイン
ダとしてコバルトやニッケルなどが使用される。)など
粉末化が可能な金属は総て用いられる。セラミックス(
2)は^120.の微粉末単体又はこれにバインダとし
てコバルトなどを少量加えて焼結したものである。まず
、金属粉末単体又は金属粉末とバインダとを所定の組成
で均一に混ぜ合わせる。超硬合金の場合はバインダの量
が多くなるほど焼結金属体/1l(1)の硬度は下がる
が、靭性は向上するものである。!lず、所定の形状が
凹設された金型にこの混合物を充填し、44〜45k。
Examples of metal powder materials include iron, copper, etc., and hard alloy powders (for example, tungsten carbide, titanium carbide, zirconium carbide, tantalum carbide, etc., and cobalt, nickel, etc. are used as binders), etc. All metals that can be powdered can be used. Ceramics (
2) is ^120. It is made by adding a small amount of cobalt as a binder and sintering it. First, a metal powder alone or a metal powder and a binder are uniformly mixed in a predetermined composition. In the case of cemented carbide, as the amount of binder increases, the hardness of the sintered metal body/l (1) decreases, but the toughness improves. ! First, this mixture was filled into a mold with a predetermined shape, and 44 to 45 k.

/+us’の圧力を加えて圧縮し、圧縮成型物を造る。A pressure of /+us' is applied to create a compression molded product.

このとき、圧縮成型物にはセラミックス(2)の挿入孔
が圧縮成型と同時に又は圧縮成型後に凹設されるもので
、セラミックス(2)をこの挿入孔に挿入した後焼成す
る事になる。七ラミ7クス(2)と挿入孔との嵌合は、
圧縮成型体が焼結中に収縮する関係もあって遊嵌状態で
足る。圧縮成型体で形状の大きなものは数回に別けて充
填・圧縮を行う。
At this time, an insertion hole for the ceramic (2) is provided in the compression molded product at the same time as or after the compression molding, and the ceramic (2) is fired after being inserted into the insertion hole. The fitting of the seven laminates (2) and the insertion hole is as follows:
Since the compression molded body contracts during sintering, a loose fit is sufficient. For compression molded products with large shapes, filling and compression are performed in several batches.

挿入されるセラミックス(2ンは1個である必要はなく
、設計に合わせて複数個としても良い、このようにして
、まず、1箇所乃至複Wi閃所にセラミックス(2)を
挿入した圧縮成型体を作り、次に、この圧縮成型体を焼
結炉に入れ、還元性又は不活性がス雰囲気中乃至真空中
にて予備加熱し、然る後焼結金属体1(1)に合・わせ
だ焼結温度(例えば、超硬合金の場合は1 、400℃
内外の高温)で焼成する。
The number of ceramics (2) to be inserted does not have to be one, and may be multiple depending on the design.In this way, first, compression molding is performed with the ceramics (2) inserted in one or multiple places. Next, this compression-molded body is placed in a sintering furnace, preheated in a reducing or inert gas atmosphere or in a vacuum, and then combined into a sintered metal body 1 (1). Washeda sintering temperature (for example, 1,400℃ for cemented carbide)
Fired at high temperatures (inside and outside).

焼成中に圧縮成型体が収縮して1lllffi化し、高
圧にてセラミックス(2)を締め付け、その境界でセラ
ミックス(2)内に溶けた金属が浸透1−でその中間層
(3)を形成し、完全に一体化がなされる。焼結金属体
/11(1)は鋳造物に近い稠密体としでも良いし、逆
にポーラスなものとしても良い、ポーラスな場合は焼結
金属体/I(1)自身が熱膨張を吸収する事が出来るた
め、セラミックス(2)の低熱膨張率に追随していくこ
とが出来、熱膨張率が問題になるような箇所には最適で
ある。又、焼結金属体N(1)による放熱効果も見逃す
事が出来ない。焼結炉から取り出された複合焼結体(^
)は、その焼結金属体層(1)に例えばねじ加工を始め
各種の機械加工が施され、各種の用途に利用されること
になる。
During firing, the compression molded body contracts and becomes 1llllffi, and the ceramic (2) is tightened under high pressure, and at the boundary, the metal molten in the ceramic (2) penetrates and forms an intermediate layer (3). Complete integration is achieved. The sintered metal body/11(1) may be a dense body similar to a cast material, or it may be porous.If it is porous, the sintered metal body/I(1) itself absorbs thermal expansion. Therefore, it can follow the low coefficient of thermal expansion of ceramics (2), making it ideal for locations where the coefficient of thermal expansion is a problem. Furthermore, the heat dissipation effect of the sintered metal body N(1) cannot be overlooked. Composite sintered body taken out from the sintering furnace (^
), the sintered metal body layer (1) is subjected to various machining processes, including, for example, screw machining, and is used for various purposes.

尚、以上の場合は挿入孔を先に形成し、後からセラミッ
クス(2)を挿入して焼結する場合を説明したが、勿論
これに限られず、金型内の所定の位置にセラミックス(
2)を予め配設し、然る後金型内に金属粉末を充填・圧
縮しても良いものである。
In the above case, the insertion hole is first formed and the ceramic (2) is then inserted and sintered. However, this is not limited to this, of course.
2) may be provided in advance, and then the metal powder may be filled and compressed into the mold.

又、挿入孔が盲穴の場合は、セラミックス(2)と圧縮
成型体とを焼成すると、第5図のようにまず最初に挿入
孔の孔縁とセラミックス(2)とが溶着して挿入孔の孔
底にガス溜まり(4)が発生し、焼結中にがス溜ます(
4)が膨張して焼結金属体層(1)を膨らませる事にな
るので、第2図乃至第4図に示すようにセラミックス(
2ン(又は焼結金属体層(1))にガス抜き孔(5)を
穿設することが望ましい。
In addition, when the insertion hole is a blind hole, when the ceramic (2) and the compression molded body are fired, the edge of the insertion hole and the ceramic (2) are first welded to each other as shown in Fig. 5, and the insertion hole is closed. A gas pocket (4) occurs at the bottom of the hole, and gas accumulates during sintering (
4) expands and causes the sintered metal body layer (1) to swell, so as shown in Figures 2 to 4, the ceramic (
It is desirable to provide gas vent holes (5) in the second layer (or in the sintered metal body layer (1)).

ただし、焼結金属体層(1)が連続気泡型の場合は、ガ
ス抜き孔(5)を必要としないらのである。
However, if the sintered metal body layer (1) is of open cell type, the gas vent holes (5) are not required.

本発明は叙上のように、セラミックスの外周に焼結金属
体層を形成しであるので、焼結金属体層がセラミックス
の保!!!屑となり、セラミックスに引張力、衝撃荷重
、ヒートシタツクなどが加わっても焼結4r属体層がこ
れらを吸収してしまい、セラミ7り久の折損を防止でき
、逆に圧縮荷重が加わった時はセラミックスがこバーに
抗して焼結金属体層の座屈や1王潰を防ぐ舟が出来るも
のである。
As described above, the present invention involves forming a sintered metal layer on the outer periphery of the ceramic, so that the sintered metal layer protects the ceramic. ! ! Even if the ceramic is subjected to tensile force, impact load, heat shock, etc., the sintered 4R metal layer absorbs the debris and prevents the ceramic from breaking.On the other hand, when a compressive load is applied, A boat can be made in which the ceramic resists the bar and prevents the sintered metal layer from buckling or collapsing.

又、焼結金属体層がセラミックスの外周16゛形成され
ているため、焼結金属体M+、−機械加」−を施−を寥
により、主要部分はセラミックスであるじら拘わらず、
金属材料と同様の使い方が出来、従来セラミックスを適
用出来なかっtこ用途にも新たに適用することが出来る
ものである。又、焼結金属体7′勺は熱及び電気の良導
体であるため、セラミックス部分で発生した熱を効果的
に放熱してセラミックスの過熱を防ぐ事が出来る他、通
電には焼結金べ体層を使用し、絶縁にはセラミックス部
分を使用する事により、通電・絶縁の両用途に使い分け
する事が出来るものである。又、セラミックスの外周に
焼結金属体層を形成しであるので、焼結中に焼結金属体
層が収縮し、セラミックスが焼結−fk属体層に強力に
締め付けられて両者の境界の隙間が消滅し、次に、セラ
ミックスと金属粉末の焼結金属体層との境界に於いてセ
ラミックス内に溶けた金属が浸透し、中間層が形成され
て両者が完全に一体化されるという利点がある。
In addition, since the sintered metal body layer is formed on the outer periphery of ceramics, the sintered metal body M+ is subjected to mechanical processing, even though the main part is made of ceramics.
It can be used in the same way as metal materials, and can be newly applied to applications where ceramics could not be used conventionally. In addition, since the sintered metal body 7' is a good conductor of heat and electricity, it can effectively dissipate the heat generated in the ceramic part and prevent the ceramic from overheating. By using layers and ceramic parts for insulation, it can be used for both electrical conduction and insulation purposes. In addition, since the sintered metal layer is formed around the outer periphery of the ceramic, the sintered metal layer contracts during sintering, and the ceramic is strongly tightened to the sintered-fk metal layer, causing the boundary between the two to shrink. The advantage is that the gap disappears and then the molten metal penetrates into the ceramic at the boundary between the ceramic and the sintered metal body layer of metal powder, forming an intermediate layer and completely integrating the two. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図・・・本発明の一実施例の縦断面図、Pt42図
・・・本発明の焼結金属体層の挿入孔が盲穴である場合
の縦断面図、 第3図・・・第2図の平面図 第4図・・・本発明の焼結金属体層の挿入孔が盲穴であ
る場合の他の実施例の平面図、 第5図・・・焼結金属体層の押入孔が盲穴で、焼結金属
体・層が膨張した場合の縦断面図。 (1)・・・焼結金属体M(2)・・・セラミックス(
3)・・・中11f1層    (4)・・・ガス溜り
(5)・・・〃ス抜き孔  (^)・・・複合焼結体。 発明者 高見 千秋 第1図 △ 第5図  ゛ 第2図
Fig. 1... A vertical cross-sectional view of an embodiment of the present invention, Pt42 Fig.... A longitudinal cross-sectional view when the insertion hole of the sintered metal body layer of the present invention is a blind hole, Fig. 3... A plan view of FIG. 2. FIG. 4: A plan view of another embodiment in which the insertion hole of the sintered metal layer of the present invention is a blind hole. FIG. 5: A plan view of the sintered metal layer of the present invention. A vertical cross-sectional view when the push-in hole is a blind hole and the sintered metal body/layer expands. (1)...Sintered metal body M (2)...Ceramics (
3)...Medium 11f1 layer (4)...Gas reservoir (5)...Slot hole (^)...Composite sintered body. Inventor Chiaki Takami Figure 1△ Figure 5 ゛Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)セラミックスの外周に焼結金属体層を形成して成
る事を特徴とするセラミックスと粉末金属の複合焼結体
(1) A composite sintered body of ceramics and powder metal, characterized by forming a sintered metal layer on the outer periphery of ceramics.
(2)焼結金属体層をポーラスに形成して成る事を特徴
とする特許請求の範囲第1項に記載のセラミックスと粉
末金属の複合焼結体。
(2) A composite sintered body of ceramics and powder metal according to claim 1, characterized in that the sintered metal body layer is formed porous.
(3)焼結金属体層の気泡を連続気泡型として成る事を
特徴とする特許請求の範囲第2項に記載のセラミックス
と粉末金属の複合焼結体。
(3) A composite sintered body of ceramics and powder metal according to claim 2, characterized in that the cells in the sintered metal layer are of an open cell type.
(4)焼結金属体層の気泡を独立気泡型として成る事を
特徴とする特許請求の範囲第2項に記載のセラミックス
と粉末金属の複合焼結体。
(4) A composite sintered body of ceramics and powder metal according to claim 2, wherein the cells in the sintered metal layer are of a closed cell type.
JP19660585A 1985-09-05 1985-09-05 Composite sintered body of ceramics and powder metal Pending JPS6256501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19660585A JPS6256501A (en) 1985-09-05 1985-09-05 Composite sintered body of ceramics and powder metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19660585A JPS6256501A (en) 1985-09-05 1985-09-05 Composite sintered body of ceramics and powder metal

Publications (1)

Publication Number Publication Date
JPS6256501A true JPS6256501A (en) 1987-03-12

Family

ID=16360529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19660585A Pending JPS6256501A (en) 1985-09-05 1985-09-05 Composite sintered body of ceramics and powder metal

Country Status (1)

Country Link
JP (1) JPS6256501A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916608A (en) * 1972-06-08 1974-02-14
JPS5114105A (en) * 1974-07-25 1976-02-04 Toshiba Tungaloy Co Ltd Hyomennitaimamosei taishokutaisankaseibutsushitsuo hifukushita kyuno seizohoho
JPS5841775A (en) * 1981-09-07 1983-03-11 大同特殊鋼株式会社 Manufacture of ceramic-metal composite body
JPS58189306A (en) * 1982-03-05 1983-11-05 ロ−ルス−ロイス、パブリック、リミテッド、カンパニ− Complex ceramic metal component
JPS59205406A (en) * 1983-05-07 1984-11-21 Ngk Spark Plug Co Ltd Preparation of connector of ceramics and metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916608A (en) * 1972-06-08 1974-02-14
JPS5114105A (en) * 1974-07-25 1976-02-04 Toshiba Tungaloy Co Ltd Hyomennitaimamosei taishokutaisankaseibutsushitsuo hifukushita kyuno seizohoho
JPS5841775A (en) * 1981-09-07 1983-03-11 大同特殊鋼株式会社 Manufacture of ceramic-metal composite body
JPS58189306A (en) * 1982-03-05 1983-11-05 ロ−ルス−ロイス、パブリック、リミテッド、カンパニ− Complex ceramic metal component
JPS59205406A (en) * 1983-05-07 1984-11-21 Ngk Spark Plug Co Ltd Preparation of connector of ceramics and metal

Similar Documents

Publication Publication Date Title
EP2969318B1 (en) Glass-metal composites
AU2002215682B2 (en) Powder metallurgical method for producing high-density shaped parts
US5382405A (en) Method of manufacturing a shaped article from a powdered precursor
EP1082578B1 (en) Lead-free projectiles made by liquid metal infiltration
US4365679A (en) Drill bit
GB2220004A (en) Production of a cavity
CA1162182A (en) Method for producing an improved layer particular for a drill bit
US3352951A (en) Method for induction sintering refractory carbide articles
JPS6256501A (en) Composite sintered body of ceramics and powder metal
US3335001A (en) Production of composite metallic billets by powder metallurgy
US6821313B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JPH0911005A (en) Laminated structure sintered body and manufacture thereof
EP0533745B1 (en) Method of manufacturing compound products
JP3487886B2 (en) Laminated structure sintered body and method of manufacturing the same
JP2004221605A (en) Heat sink material and method of manufacturing same
JPS59121724A (en) Electric contact member for vacuum breaker and method of producing same
JPH08291356A (en) Cbn sintered compact and its manufacture
US7270782B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
KR20080099526A (en) The manufacturing method of a tungsten heavy alloy
JPH05156319A (en) Cylindrical or columnar ceramic-metal composite with functionally gradient layer radially formed and its production
JPS6256503A (en) Composite sintered body of powder metallurgy and its production
JPH07242914A (en) Tungsten-based alloy, inertial body of the same alloy and production thereof
JP2928821B2 (en) Method for producing high-density chromium-based cermet sintered body
JPH0351305Y2 (en)
JPH0421723B2 (en)