JPS6256503A - Composite sintered body of powder metallurgy and its production - Google Patents

Composite sintered body of powder metallurgy and its production

Info

Publication number
JPS6256503A
JPS6256503A JP19660485A JP19660485A JPS6256503A JP S6256503 A JPS6256503 A JP S6256503A JP 19660485 A JP19660485 A JP 19660485A JP 19660485 A JP19660485 A JP 19660485A JP S6256503 A JPS6256503 A JP S6256503A
Authority
JP
Japan
Prior art keywords
sintered body
melting point
powder
high melting
compression molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19660485A
Other languages
Japanese (ja)
Other versions
JPH026803B2 (en
Inventor
Chiaki Takami
千秋 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SILVER ROI KK
Original Assignee
SILVER ROI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SILVER ROI KK filed Critical SILVER ROI KK
Priority to JP19660485A priority Critical patent/JPS6256503A/en
Publication of JPS6256503A publication Critical patent/JPS6256503A/en
Publication of JPH026803B2 publication Critical patent/JPH026803B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the need for a brazing work and to obtain a composite sintered body of powder metallurgy having extremely stable quality by embedding a high melting metallic body having the m.p. higher than the sintering temp. into a sintered body of sintered hard alloy powder while exposing part thereof to the outside, then sintering the powder. CONSTITUTION:The powder of a sintered hard alloy such as WC or TiC and a binder are uniformly mixed at a prescribed compsn. and thereafter the mixture is packed into a metallic mold 4 recessed with a prescribed shape and is compressed under 5-45kg/mm<2> pressure to form a compression molding. An insertion hole for the high melting metal such as Mo or W is recessed to the compression molding simultaneously with or after compression molding. A metallic body 2 is inserted into the insertion hole to form the compression molding having 1-plural exposing points. Such compression molding is put into a sintering furnace and is subjected to preliminary sintering in a reducing or inert gaseous atmosphere or vacuum then to calcination at a high temp. of about 1,400 deg.C. The compression molding shrinks to the higher density during the calcination and compacts the metallic body 2. Both materials melt each other at the boundary thereof to form an intermediate layer 3. The thoroughly united composite sintered body 1 of powder metallurgy is thus obtd.

Description

【発明の詳細な説明】 本発明は、粉末冶金複合焼結体とその製造方法の改良に
関し、更に詳述すれば第1発明は、超硬合金粉末の焼結
体(1)に焼結温度より高い融、くを持つ被加工用の高
融点金属体(2)の少なくとも一面を外部に露出させて
a設し、焼結体(1)を高融点金属体(2)に溶着した
事を特徴とする粉末冶金複合焼結体に関し、第2発明は
、超硬合金粉末を所定の形状に圧縮成型すると共に焼結
温度より高い融点を持つ被加工用の高融、α金属体(2
)の少なくとも一面を外部に露出させて埋設し、然るf
&高融点−&属体(2)と共に圧縮成型体を焼結した事
を特徴とする粉末冶/に複合焼結体の製造方法に係るら
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a powder metallurgy composite sintered body and a method for manufacturing the same. At least one surface of a high melting point metal body (2) for processing having a higher melting point is exposed to the outside, and the sintered body (1) is welded to the high melting point metal body (2). Regarding the characteristic powder metallurgy composite sintered body, the second invention is a high melting α metal body (2
) is buried with at least one side exposed to the outside, and
The present invention relates to a method for producing a powder composite sintered body, characterized in that a compression molded body is sintered together with a high melting point metal body (2).

超硬粉末合金の焼結体は、一般にブレ入用金型のバンチ
グイや切削工具、の刃物として多用されている。ところ
で、焼結体のプレス用金型への取り付けは、従来では焼
結体に凹成した取付孔に鉄製のピースを嵌め込み、蝋付
けを行っていた。しかしながら、蝋付けは取付孔とピー
スとの嵌合Nflflが非常にシビアで、隙間が広すぎ
ると蝋付は部分の強度が低く、使用中に蝋付は沈漬が破
損したり、又、蝋付は部分に巣が出来たりして破損する
ことがあり、逆に隙間が狭過ぎたり、加熱温度が不足し
た場合には、隙間への蝋の回りが悪くなり、破損の原因
になるなど蝋付は部分の品質に安定性がなく実用上問題
があった。又、蝋付は技術には熟練度が必要であり、熟
練技術者の不足も上記の問題点を助長する結果となって
いた。更に、蝋付けにはかなりの加工時間を必要とし、
9I造工程の合理化を阻む要素ともなっていた。
Sintered bodies of cemented carbide powder alloys are generally widely used as bunching guids for brazing molds and as cutting tools for cutting tools. By the way, conventionally, the sintered body was attached to the press mold by fitting an iron piece into a mounting hole formed in the sintered body and soldering the piece. However, when brazing, the fit between the mounting hole and the piece is very strict, and if the gap is too wide, the strength of the brazing part will be low, and the brazing may break during use, or the brazing may break during use. If the gap is too narrow or the heating temperature is insufficient, the wax will not flow well into the gap, causing damage. The quality of the attached parts was not stable, which caused practical problems. Furthermore, the brazing technique requires skill, and the lack of skilled technicians has exacerbated the above-mentioned problems. Furthermore, brazing requires a considerable amount of processing time,
This was also a factor that hindered the rationalization of the 9I manufacturing process.

本発明はかかる従来例の欠点に鑑みて成されたもので、
その目的とするところは、蝋付は作業を省くことが出来
、品質の安定化を1超的に高めることが出来だ粉末冶金
複合焼結体とその製造方法を提供するにある。
The present invention was made in view of the drawbacks of the conventional example, and
The purpose is to provide a powder metallurgy composite sintered body and a method for manufacturing the same, which can omit brazing work and greatly improve quality stability.

以下、本発明を図示実施例に従って詳述する。Hereinafter, the present invention will be described in detail according to illustrated embodiments.

超硬合金粉末材料としては、例えば、炭化タングステン
、炭化チタン、炭化ジルコニウム、炭化タンタルなどが
あり、バインダとしてコバルトやニッケルなどがある。
Examples of cemented carbide powder materials include tungsten carbide, titanium carbide, zirconium carbide, and tantalum carbide, and binders include cobalt and nickel.

高融点金属材料としては、モリブデンやタングステンな
どがあり、加工性の点から主としてモリブデンが使Jl
11されている。まず、超硬合金粉末とバインダとを所
定の組成で均一に混ぜ合わせる。バインダの量が多くな
るほど焼結体(1)の硬度は下がるが、靭性は向上する
ものである。まず、所定の形状が凹設された金型にこの
混合物を充填し、2−十〜45に8/mm2の圧力を加
えて圧縮し、圧縮成型物を遣る。このとき、圧縮成型物
にはi0i融魚金属体(2)の挿入孔が圧縮8.型と同
時に又は圧縮成型後に凹設されるもので、高融点金属体
(2)をこの挿入孔に挿入した後焼成する事になる。高
融点金属体(2)と挿入孔との嵌合は、圧縮成型体が焼
結中に収縮する関係もあって遊嵌状態で足る。圧縮成型
体で形状の大きなものは数回に別けて[を項・圧縮を行
う。挿入された高融点金属体(2)のその少なくとも一
面は圧Jl?!成型体から外部に露出している。勿論、
埋設される高融点金属体(2)は1個である必要はなく
、設計に合わせて複数個でも良いし、又、1個の高融5
弘會属体(2)に対して露出箇所を複v!L箇所として
も当然良いものである。このようにして、まず、1箇所
乃至複v!LtIJ所の露出箇所を持つ圧縮成型体を作
り上げる。
High melting point metal materials include molybdenum and tungsten, and molybdenum is mainly used from the viewpoint of workability.
11 has been done. First, cemented carbide powder and a binder are uniformly mixed in a predetermined composition. As the amount of binder increases, the hardness of the sintered body (1) decreases, but the toughness improves. First, this mixture is filled into a mold having a predetermined shape and compressed by applying a pressure of 8/mm2 to 2-1 to 45 to give a compression molded product. At this time, the insertion hole of the i0i molten metal body (2) is compressed 8. It is recessed at the same time as the mold or after compression molding, and the high melting point metal body (2) is inserted into this insertion hole and then fired. The high-melting point metal body (2) and the insertion hole may be loosely fitted together because the compression-molded body contracts during sintering. For compression molded objects with large shapes, perform compression in several batches. At least one surface of the inserted high melting point metal body (2) has a pressure of Jl? ! Exposed to the outside from the molded body. Of course,
The number of high melting point metal bodies (2) to be buried does not have to be one, it may be multiple according to the design, or one high melting point metal body (2) can be buried.
Multiple exposed areas for Hirokai member (2)! Of course, it is also good as the L location. In this way, first, from one place to multiple v! A compression molded body with an exposed portion of the LtIJ site is created.

次に、この圧縮成型体を焼結炉に入れ、還元性又は不活
性ガス雰囲気中乃至真空中にて予備加熱し、然る後1,
400°C内外の高温で焼成する。焼成中に圧縮成型体
が収縮して稠密化し、高圧にて高融、X′1金属体(2
)を締め付け、その境界で両者が溶は合ってその中間層
(3)を形成し、完全に一体化がなされる。焼結炉から
取り出された焼結体(1)は、その高融点金属体(2)
の露出箇所に例えばねじ化加工が施され、プレス用金型
(4)にボルト(5)にてねじ止めされて使用されるこ
とになる。
Next, this compression molded body is placed in a sintering furnace and preheated in a reducing or inert gas atmosphere or in a vacuum, and then 1.
Fire at high temperatures around 400°C. During firing, the compression molded body contracts and becomes denser, melts at high pressure, and becomes an X'1 metal body (2
), and the two melt together at the boundary to form the intermediate layer (3), and are completely integrated. The sintered body (1) taken out from the sintering furnace is a high melting point metal body (2)
For example, the exposed portion is threaded and used by being screwed to a press mold (4) with bolts (5).

尚、以上の場合は挿入孔を先に形成し、後から高融点金
属体く2)を挿入して焼結する場合を説明したが、勿論
これに限られず、金型内の所定の位置に高融点金属体(
2)を予め配設し、然る後金型内に超硬合金粉末を充填
・圧縮してら良いものである。 又、挿入孔が盲穴の場
合は、高融点金属体(2)と圧縮成型体とを焼成すると
、第6図のようにまず最初に挿入孔の孔縁と高融点金属
体(2)とが溶着して挿入孔の孔底にガス溜ま1H6)
が発生し、焼結中に〃ス溜ます(6)が膨張して焼結体
(1)を膨らませる21目こなるので、第3図乃至第5
図に示すよろに高融点金属体(2)にガス抜き孔(7)
を穿設することが望ましい。ただし、焼結体(1)がポ
ーラ久で連続気泡型である場合はガス抜き孔(7)は必
要でない。
In the above case, the insertion hole is first formed, and then the high melting point metal body 2) is inserted and sintered. However, this is not limited to this, of course. High melting point metal body (
2) is placed in advance, and then the cemented carbide powder is filled and compressed into the mold. In addition, if the insertion hole is a blind hole, when the high melting point metal body (2) and the compression molded body are fired, the edge of the insertion hole and the high melting point metal body (2) will first meet as shown in Figure 6. is welded and gas remains at the bottom of the insertion hole 1H6)
occurs, and during sintering, the sintered body (6) expands and expands the sintered body (1).
Gas vent holes (7) in the high melting point metal body (2) as shown in the figure.
It is desirable to provide a hole. However, if the sintered body (1) is a polar, open-cell type, the gas vent hole (7) is not necessary.

本発明は叙上のように、焼結温度より高い融点を持つ高
融点金属体を埋設しであるので、焼結温度においでも高
融、l笠金属体が熔融せず、超硬合金粉末の焼結体内に
浸み込むと言うような事がなく、超硬合金粉末の焼結体
の劣化を引き起こすと言うようなことがない、換言すれ
ば鉄のような低融点金属体を使用すると焼結中に鉄が溶
け、ポーラス部分の残存している焼結体に浸み込んで付
き、被加工部分がなくなってしまうと同時に鉄の浸透部
分が劣化しでしまう事になる。又、高融、克金属体の少
なくとも一面を外部に露出させて埋設しであるので、こ
の露出部分をタップ加工など被加工用に利用する事が出
来るものであり、従来のような蝋付は作業を完全に排除
する事が出来るものである。又、超硬合金粉末を所定の
形状に圧縮成型すると共に焼結温度より高い融点を持つ
被加工用の高融1代金属体の少なくとも一面を外部に露
出させて埋設し、然る後高融点金属体と共に圧縮成型体
を焼結するのであるから、まず焼結中に焼結体が収縮し
、高融点金属体か超硬合金粉末の焼結体に強力に締め付
けられて両者の境界の隙間が′l)′I滅し、次に、高
融点金属体と超硬合金粉末の焼結体との境界に於いて両
者の中間J付が形成され、両者が完全に一体化されると
いう利5αがある。
As mentioned above, the present invention embeds a high melting point metal body with a melting point higher than the sintering temperature, so the high melting point metal body does not melt even at the sintering temperature, and the cemented carbide powder There is no possibility of the cemented carbide powder penetrating into the sintered body and causing deterioration of the sintered body.In other words, if a low melting point metal such as iron is used, the sintering During consolidation, the iron melts and soaks into the sintered body where the porous part remains, causing the processed part to disappear and at the same time, the part where the iron penetrates deteriorates. In addition, since at least one side of the high-melting metal body is buried and exposed to the outside, this exposed part can be used for processing such as tapping, and conventional brazing is not required. It is possible to completely eliminate the work. Further, the cemented carbide powder is compression molded into a predetermined shape, and at least one surface of a high melting primary metal body to be processed having a melting point higher than the sintering temperature is exposed to the outside and buried, and then the high melting point metal body is buried. Since the compression molded body is sintered together with the metal body, the sintered body shrinks during sintering and is strongly compressed by the sintered body of the high melting point metal body or cemented carbide powder, causing the gap between the two to close. 'l)'I disappears, and then an intermediate J is formed at the boundary between the high melting point metal body and the sintered body of cemented carbide powder, and the two are completely integrated. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

i@1図・・・本発明の一実施例の縦断面図図、第2図
・・・本発明の取付状態を示す縦断面図、第3図・・・
本発明の焼結体の挿入孔が盲穴である場合の一実施例の
u11!7i面図図、 第4図・・・第3図の平面図 第5図・・・本発明の焼結体の挿入孔が盲穴である場合
の他の実施例の平面図、 第6図・・・焼結体の挿入孔が盲穴で、焼結体が膨張し
た場合の縦断面図。 (1)・・・焼結体    (2)・・・高融点*属体
(3)・・・中間層(4)・・・プレス用金型(5)・
・・ボルト(6)・・・がス溜り(7)・・・ガス抜き
孔。 第1図 第2図 第3図 第4図
i@Figure 1... A vertical sectional view of an embodiment of the present invention, Fig. 2... A longitudinal sectional view showing the installed state of the present invention, Fig. 3...
U11!7i side view of an embodiment where the insertion hole of the sintered body of the present invention is a blind hole, Figure 4... Plan view of Figure 3 Figure 5... Sintering of the present invention A plan view of another embodiment in which the insertion hole of the body is a blind hole, and FIG. 6 is a longitudinal cross-sectional view when the insertion hole of the sintered body is a blind hole and the sintered body expands. (1)...Sintered body (2)...High melting point *metallic body (3)...Intermediate layer (4)...Press mold (5)
...The bolt (6)...is the stagnation (7)...the gas vent hole. Figure 1 Figure 2 Figure 3 Figure 4

Claims (6)

【特許請求の範囲】[Claims] (1)超硬合金粉末の焼結体に焼結温度より高い融点を
持つ被加工用の高融点金属体の少なくとも一面を外部に
露出させて埋設し、焼結体を高融点金属体に溶着した事
を特徴とする粉末冶金複合焼結体。
(1) A high melting point metal body for processing having a melting point higher than the sintering temperature is buried in a sintered body of cemented carbide powder with at least one side exposed to the outside, and the sintered body is welded to the high melting point metal body. A powder metallurgy composite sintered body characterized by:
(2)焼結により超硬合金粉末の焼結体と高融点金属体
との境界において両者の中間層を形成して成る事を特徴
とする特許請求の範囲第1項に記載の粉末冶金複合焼結
体。
(2) A powder metallurgy composite according to claim 1, characterized in that an intermediate layer is formed at the boundary between a sintered body of cemented carbide powder and a high melting point metal body by sintering. Sintered body.
(3)超硬合金粉末を所定の形状に圧縮成型すると共に
焼結温度より高い融点を持つ被加工用の高融点金属体の
少なくとも一面を外部に露出させて埋設し、然る後高融
点金属体と共に圧縮成型体を焼結した事を特徴とする粉
末冶金複合焼結体の製造方法。
(3) Compression molding of cemented carbide powder into a predetermined shape and burying a high melting point metal body to be processed having a melting point higher than the sintering temperature with at least one surface exposed to the outside; A method for manufacturing a powder metallurgy composite sintered body, characterized in that a compression molded body is sintered together with a body.
(4)焼結により超硬合金粉末の焼結体と高融点金属体
との境界において両者の中間層を形成して成る事を特徴
とする特許請求の範囲第3項に記載の粉末冶金複合焼結
体の製造方法。
(4) A powder metallurgy composite according to claim 3, characterized in that an intermediate layer is formed at the boundary between a sintered body of cemented carbide powder and a high melting point metal body by sintering. A method for producing a sintered body.
(5)圧縮成型用の金型内に超硬合金粉末を充填圧縮し
て金属粉末の圧縮成型体を形成すると共に圧縮成型体に
高融点金属体の挿入孔を形成し、然る後挿入孔に高融点
金属体を挿入する事を特徴とする特許請求の範囲第3項
に記載の粉末冶金複合焼結体の製造方法。
(5) Fill and compress cemented carbide powder in a compression molding mold to form a compression molded body of metal powder, and at the same time form an insertion hole for a high melting point metal body in the compression molded body, and then A method for producing a powder metallurgy composite sintered body according to claim 3, characterized in that a high melting point metal body is inserted into the powder metallurgy composite sintered body.
(6)圧縮成型用の金型内に高融点金属体を配設し、然
る後超硬合金粉末を金型内に充填圧縮する事を特徴とす
る特許請求の範囲第3項に記載の粉末冶金複合焼結体の
製造方法。
(6) The method according to claim 3, characterized in that a high-melting point metal body is placed in a compression mold, and then cemented carbide powder is filled and compressed into the mold. A method for producing a powder metallurgy composite sintered body.
JP19660485A 1985-09-05 1985-09-05 Composite sintered body of powder metallurgy and its production Granted JPS6256503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19660485A JPS6256503A (en) 1985-09-05 1985-09-05 Composite sintered body of powder metallurgy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19660485A JPS6256503A (en) 1985-09-05 1985-09-05 Composite sintered body of powder metallurgy and its production

Publications (2)

Publication Number Publication Date
JPS6256503A true JPS6256503A (en) 1987-03-12
JPH026803B2 JPH026803B2 (en) 1990-02-14

Family

ID=16360511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19660485A Granted JPS6256503A (en) 1985-09-05 1985-09-05 Composite sintered body of powder metallurgy and its production

Country Status (1)

Country Link
JP (1) JPS6256503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393808A (en) * 1986-10-08 1988-04-25 Tokai Gokin Kogyo Kk Method for mounting sintered head alloy block to press die
JPS63195548U (en) * 1987-05-31 1988-12-15
WO2009155655A1 (en) * 2008-06-27 2009-12-30 Excalibur Steel Company Pty Ltd Manufacture of wear resistant composite components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757525A (en) * 1980-05-30 1982-04-06 Riikuman Peetaa Method and apparatus for measuring blood pressure
JPS58486A (en) * 1981-06-22 1983-01-05 Mitsubishi Heavy Ind Ltd Semisubmergible dredger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757525A (en) * 1980-05-30 1982-04-06 Riikuman Peetaa Method and apparatus for measuring blood pressure
JPS58486A (en) * 1981-06-22 1983-01-05 Mitsubishi Heavy Ind Ltd Semisubmergible dredger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393808A (en) * 1986-10-08 1988-04-25 Tokai Gokin Kogyo Kk Method for mounting sintered head alloy block to press die
JPS63195548U (en) * 1987-05-31 1988-12-15
JPH0351305Y2 (en) * 1987-05-31 1991-11-01
WO2009155655A1 (en) * 2008-06-27 2009-12-30 Excalibur Steel Company Pty Ltd Manufacture of wear resistant composite components

Also Published As

Publication number Publication date
JPH026803B2 (en) 1990-02-14

Similar Documents

Publication Publication Date Title
EP0958262B1 (en) Method for infiltrating preformed components and component assemblies
US4289833A (en) Liquid phase sintered dense composite body for brazed joints and method for making the same
US5765095A (en) Polycrystalline diamond bit manufacturing
US3175260A (en) Process for making metal carbide hard surfacing material and composite casting
CN1026337C (en) Low melting point copper-manganese-zine alloy for infiltration binder in matrix body rock drill bits
EP0995876B1 (en) Methods of manufacturing rotary drill bits
US4108652A (en) Method for producing a sintered body of high density
US5737980A (en) Brazing receptacle for improved PCD cutter retention
DE2702602A1 (en) MOLDING TOOLS FOR MOLDING MOLDABLE MATERIALS AND METHODS FOR MANUFACTURING SUCH MOLDING TOOLS
DE3935955C1 (en)
US5956561A (en) Net shaped dies and molds and method for producing the same
EP0347627B1 (en) Method for producing a piston with cavity
IE52547B1 (en) Casting having wear resistant compacts and method of manufacture
US2244052A (en) Method of forming hard cemented carbide products
US4456577A (en) Methods for producing composite rotary dresser
JPS6256503A (en) Composite sintered body of powder metallurgy and its production
US4787129A (en) Metal of manufacturing a composite journal bushing
US4246218A (en) Process for the manufacture of a piece comprising at least one porous abradable material
US10201890B1 (en) Sintered metal carbide containing diamond particles and induction heating method of making same
JPH042986Y2 (en)
JPH0140082B2 (en)
JPH03138304A (en) Manufacture of porous sintered hard alloy
JPH11264003A (en) Cemented carbide sintered alloy
CA2554564A1 (en) Sheet material infiltration of powder metal parts
JPH0351305Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term