JPS6256419B2 - - Google Patents

Info

Publication number
JPS6256419B2
JPS6256419B2 JP8696380A JP8696380A JPS6256419B2 JP S6256419 B2 JPS6256419 B2 JP S6256419B2 JP 8696380 A JP8696380 A JP 8696380A JP 8696380 A JP8696380 A JP 8696380A JP S6256419 B2 JPS6256419 B2 JP S6256419B2
Authority
JP
Japan
Prior art keywords
cylinder
fins
piston
working fluid
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8696380A
Other languages
Japanese (ja)
Other versions
JPS5712267A (en
Inventor
Yoshihiro Ishizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8696380A priority Critical patent/JPS5712267A/en
Publication of JPS5712267A publication Critical patent/JPS5712267A/en
Publication of JPS6256419B2 publication Critical patent/JPS6256419B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 本発明は空調機,除湿器,冷凍機,ヒートポン
プ原動機等に使用される閉サイクルガス機関のフ
レオン,ヘリウム,水素,空気,ネオン等の気体
又はこれらの混合気体からなる作動流体をピスト
ンの作用にて圧縮又は膨張なすシリンダの構造に
関する。
[Detailed Description of the Invention] The present invention is directed to gases such as freon, helium, hydrogen, air, neon, etc., or a mixture thereof, for closed cycle gas engines used in air conditioners, dehumidifiers, refrigerators, heat pump prime movers, etc. This invention relates to the structure of a cylinder that compresses or expands working fluid by the action of a piston.

閉サイクルガス機関として典型的なスタリング
サイクルを第1図にて説明する。
A typical Starling cycle as a closed cycle gas engine will be explained with reference to FIG.

圧縮シリンダ1と圧縮ピストン2により形成さ
れる圧縮室3と膨張シリンダ4と膨張ピストン5
にて形成される膨張室6との間に、作動流体の圧
縮熱を水又はポリビニルアルコール等の被作動流
体を介して放出するための第1熱交換器7,比熱
の大きい多数の金属球や網,セラミツクス等の蓄
熱体が収納された蓄熱器8,蓄熱器8により水又
はポリビニルアルコール等の被作動流体を冷却す
る第2熱交換器9が両シリンダ1,4の外方に順
次配されて、両室3,6は連通している。両ピス
トン2,5の往復動作はモータ(図示略)に連結
されたクランクシヤフト,回転斜板等により行な
われるもので、なお膨張ピストン5が圧縮ピスト
ン2よりも進角(位相差)が20〜130度早ければ
低温度が得られるが、55〜100度の範囲がどのよ
うな発生冷却温度においても効率が良い。
A compression chamber 3 formed by a compression cylinder 1 and a compression piston 2, an expansion cylinder 4, and an expansion piston 5
A first heat exchanger 7 for discharging the compression heat of the working fluid through the actuated fluid such as water or polyvinyl alcohol, and a large number of metal balls with high specific heat are installed between the expansion chamber 6 formed by the A heat storage device 8 containing a heat storage body such as a net or ceramics, and a second heat exchanger 9 that cools a working fluid such as water or polyvinyl alcohol using the heat storage device 8 are sequentially arranged outside the cylinders 1 and 4. Therefore, both chambers 3 and 6 are in communication. The reciprocating motion of both pistons 2 and 5 is performed by a crankshaft, a rotating swash plate, etc. connected to a motor (not shown), and the expansion piston 5 is advanced (phase difference) from the compression piston 2 by 20 to A lower temperature can be obtained if the temperature is 130 degrees earlier, but a range of 55 to 100 degrees is efficient at any cooling temperature generated.

冷却発生のための動作は膨張ピストン5をほぼ
上死点におき、位相差がたとへば90度遅れて往復
動される機構により圧縮ピストン2を上死点に向
けて動かすと、圧縮室3の作動流体は圧縮され、
圧縮熱が圧縮シリンダ1や第1熱交換器7にて外
部に放出され温度一定で作動流体の圧力が高ま
る。すなわち等温行程が行なわれ、次に膨張ピス
トン5を下部に、圧縮ピストン2をさらに上死点
に動かすと圧縮室3の作動流体は蓄熱器8内の蓄
熱体に徐々に冷やされて第2熱交換器9を通り膨
張室6に入る、いわゆる容積が一定の等容行程と
なる。次に膨張ピストン5をさらに下部に動かす
と膨張室6に入つた作動流体は第2熱交換器21
より熱を吸収しながら膨張する等温行程となり、
冷却を発生し、被作動流体を第2熱交換器21に
より冷却する。終りに低温度となつた作動流体は
膨張ピストン5を上に、圧縮ピストン2を下に動
かすことにより、膨張室6から第2熱交換器9を
通り、蓄熱器8で蓄熱体に冷熱を与え徐々に温度
上昇し、第1熱交換器9を通り圧縮室3に戻る等
容行程となり、1サイクルが終る。この行程を繰
り返すことにより、冷却を行なうことができる。
封入されている作動流体は常に圧縮室3と膨張室
6との間を第1熱交換器7,蓄熱器8,第2熱交
換器9を介して出入し、サイクル外部に出ないい
わゆる閉サイクルである。この閉サイクルガス機
関を空調器に利用し冷房に使用する場合を説明す
ると、4ポート弁の第1初換弁10をポート11
がポート12に、又ポート13がポート14に連
通切換し、又4ポート弁の第2切換弁15をポー
ト16がポート17にそしてポート18がポート
19に連通切換なす。20は室内ユニツト、21
は屋外ユニツトを示す。22,23は被作動流体
を循環するポンプを示すもので、各ポンプ22,
23にて各熱交換器7,9に送られてくる大気温
の被作動流体は第2熱交換器9に冷却されポート
16,17を通つて室内ユニツト20にて室内を
冷却し、その冷却に大気に温められた被作動流体
はポート12,11、ポンプ22を介して再び第
2熱交換器9に至る。又第1熱交換器7にて圧縮
熱を受けた被作動流体はポート18,19を通つ
て屋外ユニツトにてその圧縮熱を屋外に放ち、そ
れにより大気温となつた被作動流体はポート1
3,ポート14,ポンプ23を介して再び第1熱
交換器7に至る。又このシステムを暖房に使用す
る場合には、第1切換弁10はポート11をポー
ト13に、そしてポート12をポート14に連通
切換するとともに第2切換弁15はポート16が
ポート19にそしてポート18がポート17に連
通切換させれば良く屋外ユニツト21にて大気温
になつた被作動流体はポート13,11,ポンプ
22を通つて第2熱交換器9にて作動流体9にて
放熱し、その放熱した被作動流体はポート16,
19を通り、屋外ユニツト21に至る。又一方第
1熱交換器7にて圧縮熱を受けて大気温よりも暖
められた被作動流体はポート18,17を介して
室内ユニツト20にて放熱して室内を暖房し、そ
してその暖房の際に大気温に冷やされた被作動流
体はポート12,14,ポンプ23を介して第1
熱交換器7に至る。又この際、被作動流体がモー
タから生ずる熱を吸収して第1熱交換器7に至る
構成とすれば、更に暖房効率を向上なすことがで
きる。この様に室内を冷暖して空調を行なうこと
ができる。なおこの閉サイクルガス機関の第2熱
交換器又は膨張シリンダ4の双方を火炎,高温流
体(200〜1000℃)等で加熱すればクランクシヤ
フトより動力が得られる原動機となる。
The operation for generating cooling is to place the expansion piston 5 almost at the top dead center, and when the compression piston 2 is moved toward the top dead center by a mechanism that reciprocates with a 90 degree delay if the phase difference occurs, the compression chamber 3 is activated. The fluid is compressed
The heat of compression is released to the outside by the compression cylinder 1 and the first heat exchanger 7, and the pressure of the working fluid increases while keeping the temperature constant. That is, an isothermal stroke is performed, and then when the expansion piston 5 is moved to the lower part and the compression piston 2 is further moved to the top dead center, the working fluid in the compression chamber 3 is gradually cooled by the heat storage body in the heat storage device 8 and becomes a second heat source. The so-called volume that passes through the exchanger 9 and enters the expansion chamber 6 is a constant isovolume stroke. Next, when the expansion piston 5 is moved further downward, the working fluid that has entered the expansion chamber 6 is transferred to the second heat exchanger 21.
It becomes an isothermal process that expands while absorbing more heat,
Cooling is generated and the working fluid is cooled by the second heat exchanger 21. By moving the expansion piston 5 upward and the compression piston 2 downward, the working fluid, which has finally reached a low temperature, passes from the expansion chamber 6 to the second heat exchanger 9 and gives cold heat to the heat storage body in the heat storage device 8. The temperature gradually rises, and an isovolumic process returns to the compression chamber 3 through the first heat exchanger 9, completing one cycle. Cooling can be achieved by repeating this process.
The sealed working fluid always flows in and out between the compression chamber 3 and the expansion chamber 6 via the first heat exchanger 7, heat storage device 8, and second heat exchanger 9, and does not exit to the outside of the cycle, which is a so-called closed cycle. It is. To explain the case where this closed cycle gas engine is used as an air conditioner for cooling, the first switching valve 10 of the 4-port valve is connected to the port 11.
is switched to communicate with port 12, port 13 is communicated with port 14, and the second switching valve 15 of the 4-port valve is switched so that port 16 communicates with port 17 and port 18 communicates with port 19. 20 is an indoor unit, 21
indicates an outdoor unit. Reference numerals 22 and 23 indicate pumps that circulate the fluid to be operated.
At 23, the working fluid at atmospheric temperature is sent to each heat exchanger 7, 9, and is cooled by the second heat exchanger 9, passes through ports 16, 17, and cools the room in the indoor unit 20. The fluid to be worked, which has been warmed by the atmosphere, returns to the second heat exchanger 9 via the ports 12, 11 and the pump 22. Further, the working fluid that has received compression heat in the first heat exchanger 7 passes through ports 18 and 19 and releases the compression heat outdoors in the outdoor unit, so that the working fluid that has reached atmospheric temperature passes through ports 18 and 19.
3, port 14, and pump 23 to reach the first heat exchanger 7 again. When this system is used for heating, the first switching valve 10 switches port 11 to port 13 and port 12 to port 14, and the second switching valve 15 switches port 16 to port 19 and port 14. 18 may be switched to communicate with port 17. The working fluid, which has reached the ambient temperature in outdoor unit 21, passes through ports 13, 11 and pump 22 and radiates heat in working fluid 9 in second heat exchanger 9. , the heated fluid is transferred to port 16,
19 and reaches the outdoor unit 21. On the other hand, the working fluid, which has received compression heat in the first heat exchanger 7 and is warmed above the atmospheric temperature, radiates heat in the indoor unit 20 through ports 18 and 17 to heat the room. The actuated fluid, which has been cooled to ambient temperature, passes through the ports 12, 14 and the pump 23 to the first
The heat exchanger 7 is reached. Further, in this case, if the operating fluid absorbs the heat generated from the motor and reaches the first heat exchanger 7, the heating efficiency can be further improved. In this way, the room can be cooled and air-conditioned. Note that if both the second heat exchanger or the expansion cylinder 4 of this closed cycle gas engine are heated with flame, high temperature fluid (200 to 1000° C.), etc., it becomes a prime mover that can obtain power from the crankshaft.

しかしながら従来一般周知の閉サイクルガス機
関では熱交換器はシリンダの外方に数多くのパイ
プを別個に配設して構成されていたことから、構
成も複雑で装置も大きくなり、安価に製作するこ
とができない等の欠点を有していた。
However, in the conventionally known closed cycle gas engines, the heat exchanger was composed of many separate pipes arranged outside the cylinder, so the structure was complicated and the device was large, making it difficult to manufacture it at low cost. It had drawbacks such as the inability to

そこで本発明は前述の欠点を解消すべく、シリ
ンダの内壁及び外壁の両面に多数のフインを形成
するとともにそのシリンダの内壁側にピストンを
気密的にガイドするスリーブを装着して、内壁側
のフインとスリーブにて形成される空間を作動流
体の通路として、そのシリンダ自体に熱交換器の
機能を付与することにより、別個に熱交換器を配
設する必要をなくして簡単な構成にて安価に製作
できる熱ガス機関のシリンダ構造の提供を第1の
目的とする。更に本発明はシリンダの外方に別個
に配設していた蓄熱器をもシリンダに内蔵させ
て、小型化が容易な熱ガス機関のシリンダ構造の
提供を第2の目的とする。
Therefore, in order to solve the above-mentioned drawbacks, the present invention forms a large number of fins on both the inner and outer walls of the cylinder, and a sleeve for airtightly guiding the piston is attached to the inner wall of the cylinder. By using the space formed by the sleeve and the cylinder as a passage for the working fluid, and by giving the cylinder itself the function of a heat exchanger, there is no need to install a separate heat exchanger, resulting in a simple structure and low cost. The first objective is to provide a cylinder structure for a hot gas engine that can be manufactured. Furthermore, a second object of the present invention is to provide a cylinder structure for a hot gas engine that can be easily downsized by incorporating a heat storage device, which was previously arranged outside the cylinder, into the cylinder.

以下本発明の一実施例を第2〜6図に基づいて
説明する。
An embodiment of the present invention will be described below based on FIGS. 2 to 6.

30は中空で略円錐台状の薄肉厚の金属製シリ
ンダでその円筒部分の内壁及び外壁の両面にはそ
れぞれスパイラル状の多数の同一幅のフイン3
1,32の全部が円筒部分の下方から上方へ連続
して配設されており、両フイン31,32はその
相隣合う間隔はフインの各幅と略同一とし、内壁
側のフイン31と外壁側のフイン32とでは1ピ
ツチずれている。シリンダ30の内壁側にはシリ
ンダ30に対応した円錐台状のピストン33を気
密的にガイドする金属製スリーブ34が配設さ
れ、ピストン33の往復動を潤滑になすために、
そのスリーブ34の内周面に樹脂がコーテイング
されている。なおスリーブ34の外壁にフイン3
1を交叉しない様にフインを形成して、その間を
作動流体通路としても良い。シリンダ30の下方
部には作動流体の接続口35が設けられ、その接
続口35はシリンダ30の円筒部分の下方全周に
連通しており、その接続口35はシリンダ30の
内壁側のフイン31とスリーブ34にて形成され
る空間の多数の作動流体通路36を介して、ピス
トン33とシリンダ30の円錐部分の内壁にて形
成される圧縮又は膨張作動する作動室37に連通
する。シリンダ30の外壁の表面は被作動流体の
入口側接続口38と出口接続口39を有する断熱
カバー40にて被覆され、その入口側接続口38
はシリンダ30の円筒部下方の全周に連通し、又
出口側接続口39はシリンダ30の円筒部上方の
全周に連通する構成で、被作動流体は入口接続口
38からシリンダ30の外壁側のフイン32と断
熱カバー40にて形成される空間の多数の被作動
流体通路41を介して出口接続口39に連通す
る。従つて作動流体とシリンダ30の外壁若しく
は被作動流体間の熱の授受はシリンダ30特に両
フイン31,32を介して行なうことができ、シ
リンダ30自体に熱交換器の又、シリンダ30に
形成した両フイン31,32は第6図示の如く、
フイン31とフイン32とはそのスパイラル方向
を一方側のフインと機能を付与なすことができ
る。なおシリンダ30の円錐部もその表面積が逆
方向に形成しても第3図構成のシリンダと同様に
シリンダを薄肉化しても強度を保持できるもので
ある。平板状に比較して大きいことから、作動流
体の熱の授受を有利に行なうことができる。43
は作動流体の漏洩を防止するシールである。なお
シリンダ30は圧縮シリンダとしても又膨張シリ
ンダとしても作用させることができるが、膨張シ
リンダとして作用させる場合には、シリンダ30
の接続口35の内方でかつ内壁側フイン31の下
端部との間で、シリンダ30の内壁面とスリーブ
34の外周間に比熱の大きい多数の金属球や鋼,
セラミツクス等の蓄熱体が収納された環状の蓄熱
器42を介在させる構成とすれば、シリンダ30
の外方に蓄熱器を別個に配設しなくてもすみ、構
成も簡単で小型化することができる。
Reference numeral 30 is a hollow, substantially truncated cone-shaped, thin-walled metal cylinder, and a large number of spiral-shaped fins 3 of the same width are provided on both sides of the inner and outer walls of the cylindrical portion.
All of the fins 1 and 32 are arranged continuously from the bottom to the top of the cylindrical part, and the spacing between adjacent fins 31 and 32 is approximately the same as each width of the fins, and the fin 31 on the inner wall side and the outer wall It is shifted by one pitch from the side fins 32. A metal sleeve 34 is disposed on the inner wall side of the cylinder 30 to airtightly guide a truncated conical piston 33 corresponding to the cylinder 30, and in order to lubricate the reciprocating movement of the piston 33,
The inner peripheral surface of the sleeve 34 is coated with resin. Note that there are fins 3 on the outer wall of the sleeve 34.
The fins may be formed so as not to intersect with each other, and the space between them may be used as a working fluid passage. A working fluid connection port 35 is provided in the lower part of the cylinder 30 , and the connection port 35 communicates with the entire lower circumference of the cylindrical portion of the cylinder 30 . The space formed by the sleeve 34 communicates with a working chamber 37 formed by the inner wall of the conical portion of the piston 33 and the cylinder 30 for compression or expansion. The surface of the outer wall of the cylinder 30 is covered with a heat insulating cover 40 having an inlet connection port 38 and an outlet connection port 39 for the operated fluid.
communicates with the entire circumference of the lower part of the cylinder 30, and the outlet side connection port 39 communicates with the entire circumference of the upper part of the cylinder part of the cylinder 30, and the operated fluid flows from the inlet connection port 38 to the outer wall side of the cylinder 30. The space formed by the fins 32 and the heat insulating cover 40 communicates with the outlet connection port 39 through a number of actuated fluid passages 41 . Therefore, heat can be exchanged between the working fluid and the outer wall of the cylinder 30 or the operated fluid through the cylinder 30, especially through the fins 31 and 32. Both fins 31 and 32 are as shown in the sixth figure.
The fins 31 and 32 can function in the spiral direction as the fins on one side. It should be noted that even if the conical portion of the cylinder 30 is formed with its surface area in the opposite direction, the strength can be maintained even if the cylinder is made thin like the cylinder shown in FIG. 3. Since it is larger than a flat plate, it can advantageously transfer heat from the working fluid. 43
is a seal that prevents leakage of working fluid. Note that the cylinder 30 can act as both a compression cylinder and an expansion cylinder; however, when acting as an expansion cylinder, the cylinder 30
Between the inside of the connection port 35 and the lower end of the inner wall side fin 31, between the inner wall surface of the cylinder 30 and the outer periphery of the sleeve 34, a large number of metal balls or steel balls with high specific heat are
If the configuration is such that an annular heat storage device 42 containing a heat storage body such as ceramics is interposed, the cylinder 30
There is no need to separately arrange a heat storage device outside of the structure, and the structure can be made simple and compact.

次に本発明におけるシリンダの変形例を第7図
にて説明すると、この変形例は前述の実施例にお
けるシリンダ30及びピストン33の頂部の円錐
形状を図示の如くその中心部分を陥没状に変形し
たもので、この様に構成すれば更にシリンダの軸
方向長さを短かくでき、小型化することができ
る。なおこの陥没状のシリンダ30ではその外壁
に形成したフイン32は円筒部よりも上方の頂部
にも直線状に連続して形成されている。
Next, a modified example of the cylinder according to the present invention will be explained with reference to FIG. 7. In this modified example, the conical shape of the top of the cylinder 30 and piston 33 in the above-mentioned embodiment is deformed into a concave shape at the center as shown in the figure. With this configuration, the axial length of the cylinder can be further shortened and the cylinder can be made smaller. The fins 32 formed on the outer wall of the recessed cylinder 30 are also formed continuously in a straight line at the top above the cylindrical portion.

以上説明の如く本発明装置によれば、シリンダ
自体に熱交換器機能を付与したことにより、従来
の如くシリンダとは別個に多数のパイプ等にて形
成した熱交換器をシリンダの外方に配設する必要
がなくなり、構造簡単で安価に製作できる等実用
上優れてなる効果を奏する。又、シリンダの外周
に断熱カバーを設けることにより、より一層熱交
換器の機能を向上なすことができる。更に蓄熱器
もシリンダ内部に配設できることにより、更に構
造簡単で安価に製作できるものである。
As explained above, according to the device of the present invention, the heat exchanger function is provided to the cylinder itself, so that the heat exchanger formed of a large number of pipes or the like is placed outside the cylinder, unlike in the conventional case. This eliminates the need for installation, has a simple structure, and can be manufactured at low cost, resulting in excellent practical effects. Further, by providing a heat insulating cover around the outer periphery of the cylinder, the function of the heat exchanger can be further improved. Furthermore, since the heat storage device can also be disposed inside the cylinder, the structure is simpler and can be manufactured at a lower cost.

そしてシリンダの内外壁両面に形成したフイン
は略同一幅として内壁及び外壁側ともその相隣合
う間隔はフインの幅と略同一とし、内壁側と外壁
側とでは1ピツチずれた構成としたことから、作
動流体の圧力を受けるシリンダ自体を薄肉化して
も強度も充分であり、熱抵抗を小さくでき、効率
を向上することができる。
The fins formed on both the inner and outer walls of the cylinder have approximately the same width, and the spacing between adjacent fins on both the inner and outer walls is approximately the same as the width of the fins, and the inner and outer walls are shifted by one pitch. Even if the cylinder itself that receives the pressure of the working fluid is made thinner, it has sufficient strength, the thermal resistance can be reduced, and the efficiency can be improved.

更に本発明装置は熱交換器をシリンダ自体に形
成したこと及び蓄熱器をシリンダ内に装着したこ
とにより、熱侵入も小さくなつて吸熱及び放熱の
効率をなすとともに作動流体の圧力損失も低下な
すことができる。
Furthermore, in the device of the present invention, by forming the heat exchanger in the cylinder itself and installing the heat storage device in the cylinder, heat intrusion is reduced, making heat absorption and heat radiation efficient, and pressure loss of the working fluid is also reduced. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は閉サイクルガス機関を空調機に応用し
た例を示す説明図、第2図は本発明装置の一実施
例を示す縦断面図、第3図は本発明におけるシリ
ンダの円筒部分のみを示し、フイン形成を一部略
して示す斜視図、第4図は本発明におけるシリン
ダの円筒部分の底面図、第5図は本発明における
シリンダとスリーブと断熱カバーとの関係を示す
横断面部分図、第6図は本発明にシリンダのフイ
ン構成の他の例を一部略して示す斜視図、第7図
は本発明装置の変形例を示す部分断面図である。 33……ピストン、37……作動室、30……
シリンダ、31……フイン(内壁側)、32……
フイン(外壁側)、34……スリーブ、36……
作動流体通路、40……断熱ケース、42……蓄
熱器、41……被作動流体通路。
Fig. 1 is an explanatory diagram showing an example in which a closed cycle gas engine is applied to an air conditioner, Fig. 2 is a longitudinal sectional view showing an embodiment of the device of the present invention, and Fig. 3 shows only the cylindrical portion of the cylinder in the present invention. FIG. 4 is a bottom view of the cylindrical portion of the cylinder according to the present invention, and FIG. 5 is a partial cross-sectional view showing the relationship between the cylinder, sleeve, and heat insulating cover according to the present invention. FIG. 6 is a partially omitted perspective view showing another example of the fin structure of the cylinder according to the present invention, and FIG. 7 is a partial sectional view showing a modification of the apparatus according to the present invention. 33...Piston, 37...Working chamber, 30...
Cylinder, 31...Fin (inner wall side), 32...
Fin (outer wall side), 34...Sleeve, 36...
Working fluid passage, 40...insulation case, 42...regenerator, 41...operated fluid passage.

Claims (1)

【特許請求の範囲】 1 内蔵したピストンの作用にて作動流体を圧縮
又は膨張なす作動室を有する圧縮シリンダ又は膨
張シリンダの少なくとも何れか一方のシリンダの
内壁及び外壁の両面に多数条のフインを形成する
とともにそのシリンダの内壁側に前記ピストンを
気密的にガイドするスリーブを装着して、前記内
壁側のフインと前記スリーブの外周面にて形成さ
れた空間を作動流体の通路として、前記外壁と前
記作動流体間の熱の授受を前記シリンダを介して
行なわせしめることを特徴とする閉サイクルガス
機関のシリンダ構造。 2 内蔵したピストンの作用にて作動流体を圧縮
又は膨張なす作動室を有する圧縮シリンダ又は膨
張シリンダの少なくとも何れか一方のシリンダの
内壁及び外壁の両面に多数条のフインを形成する
とともにそのシリンダの内壁側に前記ピストンを
気密的にガイドするスリーブを装着して、前記内
壁側のフインと前記スリーブの外周面に形成され
た空間を作動流体の通路とするとともに、前記外
壁の外方に断熱ケースを装着して、前記外壁側の
フインと前記断熱ケースの内面にて形成された空
間を被作動流体の通路として、前記作動流体と前
記被作動流体間の熱の授受を前記シリンダを介し
て行なわせしめることを特徴とする閉サイクルガ
ス機関のシリンダ構造。 3 内蔵したピストンの作用にて作動流体を膨張
なす作動室を有する膨張シリンダの内壁及び外壁
の両面に多数条のフインを形成するとともにその
シリンダの内壁側に前記ピストンを気密的にガイ
ドするスリーブを装着して、前記内壁側のフイン
と前記スリーブの外周面にて形成された空間を作
動流体の通路とするとともにその通路中に蓄熱器
を介在させて、該蓄熱器と前記作動室間の作動流
体と前記外壁間の熱の授受を前記シリンダを介し
て行なう様にしたことを特徴とする閉サイクルガ
ス機関のシリンダ構造。 4 前記多数条のフインはスパイラル状としたこ
とを特徴とする前記特許請求の範囲1記載の閉サ
イクルガス機関のシリンダ構造。 5 前記多数条のフインは略同一幅として内壁及
び外壁側ともその相隣合う間隔はフインの幅と略
同一とし、内壁側と外壁側とでは1ピツチずれた
ことを特徴とする前記特許請求の範囲1記載の閉
サイクルガス機関のシリンダ構造。 6 前記シリンダの頂部の中央部分を陥没状に形
成するとともに前記ピストンの頂面もそのシリン
ダの形状に対応して陥没状に形成したことを特徴
とする前記特許請求の範囲1記載の閉サイクルガ
ス機関のシリンダ構造。 7 前記多数条のフインは内壁側と外壁側とでは
そのスパイラル方向を逆に形成したことを特徴と
する前記特許請求の範囲4項記載の閉サイクルガ
ス機関のシリンダ構造。
[Scope of Claims] 1. A plurality of fins are formed on both the inner and outer walls of at least either a compression cylinder or an expansion cylinder, which has a working chamber that compresses or expands working fluid by the action of a built-in piston. At the same time, a sleeve for airtightly guiding the piston is attached to the inner wall of the cylinder, and the space formed by the fins on the inner wall and the outer peripheral surface of the sleeve is used as a passage for working fluid, and the outer wall and the A cylinder structure for a closed cycle gas engine, characterized in that heat is exchanged between working fluids through the cylinder. 2. A compression cylinder or an expansion cylinder having a working chamber that compresses or expands working fluid by the action of a built-in piston, at least one of which has a plurality of fins formed on both the inner and outer walls of the cylinder, and the inner wall of the cylinder. A sleeve that airtightly guides the piston is attached to the side, and a space formed between the fins on the inner wall side and the outer peripheral surface of the sleeve is used as a passage for working fluid, and a heat insulating case is provided outside the outer wall. When installed, the space formed by the fins on the outer wall side and the inner surface of the heat insulating case is used as a passage for the actuated fluid, and heat is exchanged between the working fluid and the actuated fluid via the cylinder. A closed cycle gas engine cylinder structure characterized by: 3. An expansion cylinder having a working chamber that expands working fluid by the action of a built-in piston has a large number of fins formed on both the inner and outer walls thereof, and a sleeve that airtightly guides the piston on the inner wall side of the cylinder. When installed, the space formed by the fins on the inner wall side and the outer peripheral surface of the sleeve is used as a passage for the working fluid, and a heat storage device is interposed in the passage, so that the operation between the heat storage device and the working chamber is A cylinder structure for a closed cycle gas engine, characterized in that heat is exchanged between a fluid and the outer wall via the cylinder. 4. The cylinder structure for a closed cycle gas engine according to claim 1, wherein the multiple fins have a spiral shape. 5. The multiple fins have substantially the same width, and the spacing between adjacent fins on both the inner and outer walls is substantially the same as the width of the fins, and the inner and outer walls are shifted by one pitch. Cylinder structure of the closed cycle gas engine described in Range 1. 6. The closed cycle gas according to claim 1, wherein the central portion of the top of the cylinder is formed in a depressed shape, and the top surface of the piston is also formed in a depressed shape corresponding to the shape of the cylinder. Engine cylinder structure. 7. The cylinder structure for a closed cycle gas engine according to claim 4, wherein the plurality of fins are formed with spiral directions opposite to each other on the inner wall side and the outer wall side.
JP8696380A 1980-06-25 1980-06-25 Cylinder construction of closed cycle gas engine Granted JPS5712267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8696380A JPS5712267A (en) 1980-06-25 1980-06-25 Cylinder construction of closed cycle gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8696380A JPS5712267A (en) 1980-06-25 1980-06-25 Cylinder construction of closed cycle gas engine

Publications (2)

Publication Number Publication Date
JPS5712267A JPS5712267A (en) 1982-01-22
JPS6256419B2 true JPS6256419B2 (en) 1987-11-25

Family

ID=13901520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8696380A Granted JPS5712267A (en) 1980-06-25 1980-06-25 Cylinder construction of closed cycle gas engine

Country Status (1)

Country Link
JP (1) JPS5712267A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167973U (en) * 1984-04-13 1985-11-07 株式会社 富士電機総合研究所 refrigerator
JPS60167974U (en) * 1984-04-13 1985-11-07 株式会社 富士電機総合研究所 refrigerator
JPS60167975U (en) * 1984-04-18 1985-11-07 株式会社 富士電機総合研究所 refrigerator
JPS6352060U (en) * 1986-09-19 1988-04-08
JP2002257428A (en) * 2001-03-02 2002-09-11 Sumitomo Heavy Ind Ltd Heat exchanger for pulse pipe refrigerating machine
JP4858424B2 (en) * 2007-11-29 2012-01-18 トヨタ自動車株式会社 Piston engine and Stirling engine
CN110579035B (en) * 2018-06-11 2021-02-02 同济大学 Heat exchanger and pulse tube refrigerator comprising same

Also Published As

Publication number Publication date
JPS5712267A (en) 1982-01-22

Similar Documents

Publication Publication Date Title
US4148195A (en) Liquid piston heat-actuated heat pump and methods of operating same
US3413815A (en) Heat-actuated regenerative compressor for refrigerating systems
US4873831A (en) Cryogenic refrigerator employing counterflow passageways
KR100337751B1 (en) Heat and cold machine
US5214923A (en) Vuilleumier heat pump
US8240147B2 (en) Rotary energy conversion device with reciprocating pistons
JPS6256419B2 (en)
EP0515559A4 (en) Stirling free piston cryocoolers
JPH05248720A (en) Thermal-compression heat pump
US5343704A (en) Double-headed and swash plate type stirling engine
US4235078A (en) Cryogenic equipment for very low temperatures
CN110878722B (en) Opposed free piston Stirling generator system adopting annular combustor to provide heat
JPH07180921A (en) Stirling cold storage box
US4010621A (en) Stirling cycle heat pump
US4455841A (en) Heat-actuated heat pumping apparatus and process
US4697420A (en) Stirling cycle engine
JPH0336468A (en) Cooling warehouse
CN215062963U (en) Inverse Stirling cycle refrigerator
US4877434A (en) Cryogenic refrigerator
JPS6226603Y2 (en)
JP2667487B2 (en) Air conditioning
JPH06173763A (en) Hot gas engine
JP3022012B2 (en) Hot gas engine
RU2131563C1 (en) Air heating and cooling device
JPH0518623A (en) Vuilleumier cycle device