JPH06173763A - Hot gas engine - Google Patents

Hot gas engine

Info

Publication number
JPH06173763A
JPH06173763A JP32645192A JP32645192A JPH06173763A JP H06173763 A JPH06173763 A JP H06173763A JP 32645192 A JP32645192 A JP 32645192A JP 32645192 A JP32645192 A JP 32645192A JP H06173763 A JPH06173763 A JP H06173763A
Authority
JP
Japan
Prior art keywords
temperature side
low temperature
high temperature
chamber
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32645192A
Other languages
Japanese (ja)
Inventor
Hiroshi Sekiya
弘志 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32645192A priority Critical patent/JPH06173763A/en
Publication of JPH06173763A publication Critical patent/JPH06173763A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/34Regenerative displacers having their cylinders at right angle, e.g. "Robinson" engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/02Single-acting two piston engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enhance the cooling performance coefficient and the heating performance coefficient by purposely making the scavenging volume of a intermediate temperature chamber in a low temperature part larger than a low temperature chamber so as to decrease the value of heat absorption in a high temperature part. CONSTITUTION:A high temperature side displacer 3 and a low temperature side displacer 6 are reciprocated in association with the rotation of a crank mechanism 31 with a predetermined phase difference, and working gas charged in cylinders 1, 2 is expanded in high and low temperature chambers 4, 7, but is compressed in intermediate temperature chambers 5, 8 on the high and low temperature sides so as to radiate heat which is used for heating by means of heat-exchangers 12, 16, and heat absorption during expansion of the low temperature chamber 7 is used for cooling. In this case, an auxiliary cylinder 19 and an auxiliary cylinder 18 are provided between the intermediate temperature chamber 8 and a crank 32 in the low temperature side cylinder 2, and accordingly, a working chamber 20 defined underneath the auxiliary piston 18 increases the volumetric change of the intermediate temperature chamber 8 in the low temperature part so that the degree of heat absorption in the high temperature chamber 4 is decreased. However, the value of heat-exchange in the low and intermediate temperature chambers 7, 8 do not vary, and thereby it is possible to enhance the cooling and heating performance coefficients.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は空調機,冷凍機等に用
いるVM(ブルマイヤ)サイクル使用の熱ガス機関に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot gas engine using a VM (Bulmier) cycle used in air conditioners, refrigerators and the like.

【0002】[0002]

【従来の技術】一般に、低温熱源,中温熱源及び高温熱
源の間で動作する機関で、高温熱源から得た熱エネルギ
(熱仕事)によって低温熱源から吸熱し、中温熱源への
放熱を行う最も基本的な機関としてVM機関がある。こ
のVM機関は、高温及び低温の二つのディスプレーサ
(作動ガスを移動させるもの)を有し、それぞれのディ
スプレーサが関与する領域によって高温部と低温部に分
割される。この高温部と低温部においては、ディスプレ
ーサの移動によって作動ガスの掃気が生じ、この掃気に
よる容積変化に相当する部分を作動室と定義すれば、各
部には二つの作動室が存在し、これらの作動室の内の一
つは中温熱源と同等の温度レベルにあり、中温室と呼
ぶ。同様に、高温熱源と同等の温度レベルにある作動室
を高温室、低温熱源と同等の温度レベルにある作動室を
低温室と呼ぶ。
2. Description of the Related Art Generally, an engine that operates between a low temperature heat source, a medium temperature heat source and a high temperature heat source absorbs heat from the low temperature heat source by heat energy (thermal work) obtained from the high temperature heat source and radiates heat to the medium temperature heat source. The VM organization is the most basic organization. This VM engine has two hot and cold displacers (which move the working gas), and is divided into a hot part and a cold part by a region in which each displacer is involved. In the high temperature part and the low temperature part, the scavenging of the working gas occurs due to the movement of the displacer, and if the part corresponding to the volume change due to this scavenging is defined as the working chamber, there are two working chambers in each part. One of the working chambers is at the same temperature level as the medium temperature heat source and is called the medium greenhouse. Similarly, a working chamber at the same temperature level as the high temperature heat source is called a high temperature chamber, and a working chamber at the same temperature level as the low temperature heat source is called a low temperature chamber.

【0003】幾何学的に求められるこれらの作動室の仕
事は、それぞれの容積変化と作動空間(機関全体)内の
一様な圧力変動によって、高温室では膨脹仕事,高温側
の中温室では圧縮仕事,また低温室では膨脹仕事,低温
側の中温室では圧縮仕事となる。このVM機関の場合で
は、三つの熱源間の熱移動を生じるだけの機関であるた
め、動作原理上、高温部及び低温部における二つの掃気
容積は一致し、高温部の膨脹仕事と圧縮仕事、及び低温
部の膨脹仕事と圧縮仕事の絶対量はそれぞれ等しくな
る。
The work of these working chambers, which is geometrically required, is expanded work in the high temperature chamber and compressed in the middle temperature chamber on the high temperature side due to the respective volume changes and uniform pressure fluctuations in the working space (entire engine). The work is expansion work in the low temperature room, and compression work in the middle temperature room on the low temperature side. In the case of this VM engine, since it is an engine that only causes heat transfer between the three heat sources, the two scavenging volumes in the high temperature part and the low temperature part are the same, and the expansion work and compression work of the high temperature part Also, the absolute amounts of expansion work and compression work in the low temperature part are equal to each other.

【0004】[0004]

【発明が解決しようとする課題】しかし、実際の機関に
おいては、ディスプレーサを駆動するためのロッドが装
着され、これによる体積変化によって両部の掃気容積に
差が生じるが、ロッドの体積変化を当該の作動室容積変
化に加えれば、上記のように両部の掃気容積はそれぞれ
一致する。なお、低温及び高温ディスプレーサの位相は
90°に限定されるものではなく、両シリンダの内径に
ついても同一である必要はない。
However, in an actual engine, a rod for driving the displacer is mounted, and the volume change caused by this causes a difference in the scavenging volumes of both parts. In addition to the change in the working chamber volume, the scavenging volumes of both parts are the same as described above. The phases of the low temperature and high temperature displacers are not limited to 90 °, and the inner diameters of both cylinders need not be the same.

【0005】本発明は上記実情に鑑み、低温部の掃気容
積に着眼し、低温室よりも低温部中温室の掃気容積を意
図的に大きくし、高温部での吸熱量を減少させることに
よって、冷房成績係数と暖房成績係数の向上を可能にす
る熱ガス機関を提供することを目的としたものである。
In view of the above situation, the present invention focuses on the scavenging volume of the low temperature part, intentionally increases the scavenging volume of the greenhouse in the low temperature part rather than the low temperature part, and reduces the heat absorption amount in the high temperature part. It is an object of the present invention to provide a hot gas engine capable of improving a cooling performance coefficient and a heating performance coefficient.

【0006】[0006]

【課題を解決するための手段】本発明は、作動ガスが封
入された高温側シリンダ及び低温側シリンダと、この高
温側シリンダ内を高温室と高温側中温室とに区画する高
温側ディスプレーサと、前記低温側シリンダ内を低温室
と低温側中温室とに区画する低温側ディスプレーサと、
この高温側ディスプレーサ及び低温側ディスプレーサが
それぞれロッド及びリンク機構を介して連結された回転
軸と、前記高温室と高温側中温室とをつなぐガス流路に
配置された作動ガス加熱用の高温側熱交換器、高温側再
生器及び中温側熱交換器と、前記低温室と低温側中温室
とをつなぐガス流路に配置された低温側熱交換器、低温
側再生器及び中温側熱交換器とから成る熱ガス機関にお
いて、前記低温側中温室の容積変化量を前記低温室より
も大きくするための補助シリンダと補助ピストンを設け
たものである。
According to the present invention, a high temperature side cylinder and a low temperature side cylinder in which a working gas is filled, a high temperature side displacer for partitioning the high temperature side cylinder into a high temperature chamber and a high temperature side medium greenhouse, A low temperature side displacer for partitioning the inside of the low temperature side cylinder into a low temperature chamber and a low temperature side medium greenhouse,
This high-temperature side displacer and the low-temperature side displacer are connected to each other via a rod and a link mechanism, respectively, and a high-temperature side heat for heating the working gas arranged in a gas flow path connecting the high-temperature chamber and the high-temperature middle greenhouse. An exchanger, a high temperature side regenerator and a medium temperature side heat exchanger, and a low temperature side heat exchanger, a low temperature side regenerator and a medium temperature side heat exchanger arranged in a gas flow path connecting the low temperature chamber and the low temperature side medium greenhouse. In the hot gas engine, the auxiliary cylinder and the auxiliary piston are provided for making the volume change amount of the low temperature side medium greenhouse larger than that of the low temperature chamber.

【0007】また、作動ガスが封入された高温側シリン
ダ及び低温側シリンダと、この高温側シリンダ内を高温
室と高温側中温室とに区画する高温側ディスプレーサ
と、前記低温側シリンダ内を低温室と低温側中温室とに
区画する低温側ディスプレーサと、この高温側ディスプ
レーサ及び低温側ディスプレーサがそれぞれロッド及び
リンク機構を介して連結された回転軸と、前記高温室と
高温側中温室とをつなぐガス流路に配置された作動ガス
加熱用の高温側熱交換器、高温側再生器及び中温側熱交
換器と、前記低温室と低温側中温室とをつなぐガス流路
に配置された低温側熱交換器、低温側再生器及び中温側
熱交換器とから成る熱ガス機関において、前記低温側シ
リンダは前記低温側中温室部分を前記低温室側部分より
も大径シリンダとした段付き形状を有し、前記低温側デ
ィスプレーサは前記大径シリンダ内を往復動する部分を
大径ディスプレーサとした段付き形状を有したものであ
る。
Further, a high temperature side cylinder and a low temperature side cylinder filled with working gas, a high temperature side displacer for partitioning the inside of the high temperature side cylinder into a high temperature chamber and a high temperature side middle greenhouse, and a low temperature chamber inside the low temperature side cylinder. And a low temperature side displacer that divides the high temperature side displacer into a low temperature side medium greenhouse, a rotary shaft to which the high temperature side displacer and the low temperature side displacer are connected via a rod and a link mechanism, respectively, and a gas that connects the high temperature chamber and the high temperature side medium greenhouse. High temperature side heat exchanger for heating working gas, high temperature side regenerator and medium temperature side heat exchanger arranged in the flow path, and low temperature side heat arranged in the gas flow path connecting the low temperature room and the low temperature side middle greenhouse In a hot gas engine consisting of an exchanger, a low temperature side regenerator and a medium temperature side heat exchanger, the low temperature side cylinder is a low temperature side medium greenhouse part having a larger diameter cylinder than the low temperature chamber side part. Has a stepped shape, the cold side displacer are those having a stepped shape in which the portion that reciprocates in the large-diameter cylinder and the large-diameter displacer.

【0008】[0008]

【作用】上記のような構成のため、回転軸の回転でリン
ク機構を介して高温側ディスプレーサと低温側ディスプ
レーサがそれぞれ所定の位相差をもって往復運動し、シ
リンダ内に封入された作動ガスは高温室と低温室では膨
脹を、高温側の中温室と低温側の中温室では圧縮がなさ
れ、該高温側の中温室と低温側の中温室でのガス圧縮時
に放熱をし、この放熱を各中温室に連通する熱交換器を
経て暖房使用とし、低温室の膨脹時の吸熱を冷房使用と
する。この場合、低温側シリンダ内の中温室とクランク
室との間に補助シリンダと補助ピストンが設けてあり、
補助ピストンの下側にできる作動室(低温部中温室と同
位相)が低温部中温室の容積変化量を増大させ、高温部
での吸熱量は減少する。
With the above-described structure, the high temperature side displacer and the low temperature side displacer reciprocate with a predetermined phase difference through the link mechanism due to the rotation of the rotary shaft, and the working gas enclosed in the cylinder is stored in the high temperature chamber. In the low temperature room, expansion is performed, and in the high temperature side mid greenhouse and the low temperature side mid greenhouse, compression is performed, and heat is released during gas compression in the high temperature side mid greenhouse and the low temperature side mid greenhouse. It is used for heating via a heat exchanger that communicates with, and the heat absorption during expansion of the cold room is used for cooling. In this case, an auxiliary cylinder and an auxiliary piston are provided between the middle greenhouse in the low temperature side cylinder and the crank chamber,
The working chamber (the same phase as the greenhouse in the low temperature part) formed below the auxiliary piston increases the volume change amount of the greenhouse in the low temperature part, and the heat absorption amount in the high temperature part decreases.

【0009】[0009]

【実施例】以下、本発明を実施例の図面に基づいて説明
すれば、次の通りである。
The present invention will be described below with reference to the drawings of the embodiments.

【0010】図1は低温側シリンダ内の中温室下部側に
補助シリンダと補助ピストンを備えた熱ガス機関の実施
例を示し、1は高温側シリンダで、2は低温側シリンダ
であり、これらは直角をなすように配置されている。こ
の高温側シリンダ1内にはピストン機構となる高温側デ
ィスプレーサ3を配しシリンダを高温室4と高温側中温
室5に区画しており、また低温側シリンダ2内には低温
側ディスプレーサ6を配しシリンダを低温室7と低温側
中温室8に区画している。9は前記高温室4と高温側中
温室5とをつなぐ高温側ガス通路で、該高温側ガス通路
9には作動ガス加熱用の高温側熱交換器10、高温側再
生器11及び高温部中温側熱交換器12を配設してい
る。13は低温室7と低温側中温室8をつなぐ低温側ガ
ス通路で、該低温側ガス通路13に低温側熱交換器14
と低温側再生器15及び低温部中温側熱交換器16を配
設している。また、高温側中温室5と低温側中温室8と
は連通路17にて連通している。18は低温側中温室8
の下方に設けた補助シリンダ19に備えた補助ピストン
で、該補助ピストン18のピストンロッドは低温側ディ
スプレーサ6の低温側ピストンロッド26を共用した構
成とし、且つ補助ピストン18で区画された補助室20
と低温側ディスプレーサ6の中温室8と連通路17を経
て連通する構成とし、中温室8の掃気容積を低温室7の
掃気容積より実質的に大きくしている。21は補助ピス
トン18の上側にある空間からクランク室32に連通す
るクランク室連通路である。22は高温側ピストンシー
ルで高温室4と中温室5を遮断する。23は低温側ピス
トンシールで低温室7と低温側中温室8を遮断する。2
4は補助ピストン18の外周に装着の補助ピストンシー
ルである。25は高温側ディスプレーサ3の下端に突設
の高温側ピストンロッドで、先端をクランク室32に配
設した回転軸端のクランク機構31にリンクを介在して
連結している。28は高温側ロッドシールであり、29
は低温側ロッドシールであり、30は補助ロッドシール
である。
FIG. 1 shows an embodiment of a hot gas engine equipped with an auxiliary cylinder and an auxiliary piston on the lower side of the middle greenhouse in the low temperature side cylinder, 1 is a high temperature side cylinder and 2 is a low temperature side cylinder. It is arranged so as to form a right angle. A high temperature side displacer 3 serving as a piston mechanism is arranged in the high temperature side cylinder 1 to divide the cylinder into a high temperature chamber 4 and a high temperature side medium greenhouse 5, and a low temperature side displacer 6 is arranged in the low temperature side cylinder 2. The cylinder is divided into a low temperature room 7 and a low temperature side middle greenhouse 8. Reference numeral 9 denotes a high temperature side gas passage that connects the high temperature chamber 4 and the high temperature side middle greenhouse 5, and the high temperature side gas passage 9 has a high temperature side heat exchanger 10, a high temperature side regenerator 11, and a high temperature side medium temperature for working gas heating. The side heat exchanger 12 is provided. Reference numeral 13 denotes a low temperature side gas passage that connects the low temperature chamber 7 and the low temperature side medium greenhouse 8 to the low temperature side gas exchanger 13.
A low temperature side regenerator 15 and a low temperature part medium temperature side heat exchanger 16 are provided. Further, the high temperature side middle greenhouse 5 and the low temperature side middle greenhouse 8 communicate with each other through a communication passage 17. 18 is a low temperature side middle greenhouse 8
Is an auxiliary piston provided in an auxiliary cylinder 19 provided below the auxiliary cylinder 18, and the piston rod of the auxiliary piston 18 has a structure in which the low temperature side piston rod 26 of the low temperature side displacer 6 is shared, and the auxiliary chamber 20 is divided by the auxiliary piston 18.
The scavenging volume of the middle greenhouse 8 is made substantially larger than the scavenging volume of the low temperature chamber 7 in such a manner that it communicates with the middle greenhouse 8 of the low temperature side displacer 6 through the communication passage 17. Reference numeral 21 is a crank chamber communication passage that communicates with the crank chamber 32 from the space above the auxiliary piston 18. Reference numeral 22 denotes a high temperature side piston seal that shuts off the high temperature chamber 4 and the middle greenhouse 5. Reference numeral 23 denotes a low temperature side piston seal which shuts off the low temperature chamber 7 and the low temperature side middle greenhouse 8. Two
An auxiliary piston seal 4 is attached to the outer circumference of the auxiliary piston 18. Reference numeral 25 denotes a high temperature side piston rod projecting from the lower end of the high temperature side displacer 3, the front end of which is connected to a crank mechanism 31 at the end of a rotary shaft disposed in a crank chamber 32 via a link. 28 is a rod seal on the high temperature side, and 29
Is a low temperature side rod seal, and 30 is an auxiliary rod seal.

【0011】即ち、この実施例では、低温側シリンダ内
中温室8とクランク室32との間に補助シリンダ19と
補助ピストン18を設けたものであり、補助ピストン1
8のの下側にできる作動室(低温部中温室と同位相)を
低温部中温室8の容積変化量を増大するために用いてい
る。ここに、補助シリンダ内径と補助ピストン外径、ま
た作動室内にあるピストンロッドの外径は適切な値に設
定される。補助ピストン18の上側にある空間は機関サ
イクルに影響を及ぼさないようにクランク室と連通、或
いは大気開放にする。
That is, in this embodiment, the auxiliary cylinder 19 and the auxiliary piston 18 are provided between the inside greenhouse 8 in the low temperature side cylinder and the crank chamber 32.
8 is used to increase the volume change amount of the greenhouse 8 in the low temperature section. Here, the auxiliary cylinder inner diameter, the auxiliary piston outer diameter, and the outer diameter of the piston rod in the working chamber are set to appropriate values. The space above the auxiliary piston 18 communicates with the crank chamber or is open to the atmosphere so as not to affect the engine cycle.

【0012】次にこの作用を説明すると、先ずモータ等
にて回転されるクランク機構31がクランク運動をすれ
ば、これに連結した位相を90°ずらした高温側ディス
プレーサ3,低温側ディスプレーサ6をそれぞれ高温側
シリンダ1,低温側シリンダ2に対して往復運動させ
る。
Explaining this operation, first, when the crank mechanism 31 rotated by a motor or the like makes a crank motion, the high temperature side displacer 3 and the low temperature side displacer 6 connected to the crank mechanism 31 are shifted by 90 °. It reciprocates with respect to the high temperature side cylinder 1 and the low temperature side cylinder 2.

【0013】ここで、例えば図2の第1行程では、両デ
ィスプレーサ3,6の動作によって、低温側中温室8が
作動ガスで満たされるとともに、高温側中温室5にある
作動ガスの移動が生じる。これに伴って、機関内の作動
ガス圧力は上昇し、温度上昇した高温側中温室5からの
作動ガスは高温部中温側熱交換器12を通過するときに
暖房に寄与する熱を外部へ放出する。
Here, in the first step of FIG. 2, for example, the operation of both displacers 3 and 6 fills the low temperature side middle greenhouse 8 with the working gas, and the movement of the working gas in the high temperature side middle greenhouse 5 occurs. . Along with this, the pressure of the working gas in the engine rises, and the working gas from the high temperature side middle greenhouse 5 whose temperature has risen releases heat contributing to heating to the outside when passing through the high temperature part middle temperature side heat exchanger 12. To do.

【0014】第2行程では、両ディスプレーサ3,6の
動作によって、高温室4が作動ガスで満たされるととも
に、低温側中温室8にある作動ガスの移動が生じる。こ
れに伴って、機関内の作動ガス圧力はさらに上昇し、温
度上昇した低温側中温室8からの作動ガスは低温部中温
側熱交換器16を通過するときに暖房に寄与する熱を外
部に放出する。
In the second step, the operation of both displacers 3 and 6 causes the high temperature chamber 4 to be filled with the working gas, and at the same time, the working gas in the middle greenhouse 8 on the low temperature side moves. Along with this, the working gas pressure in the engine further rises, and the working gas from the low temperature side middle greenhouse 8 whose temperature has risen transfers the heat contributing to heating to the outside when passing through the low temperature part medium temperature side heat exchanger 16. discharge.

【0015】第3行程では、両ディスプレーサ3,6の
動作によって、低温室7が作動ガスで満たされるととも
に、高温室4にある作動ガスの移動が生じる。これに伴
って、機関内の作動ガス圧力は低下し、温度降下した高
温室4からの作動ガスは高温側熱交換器10を通過する
ときに機関を駆動するための熱を外部から吸引する。
In the third step, the operation of both displacers 3 and 6 causes the low temperature chamber 7 to be filled with the working gas and the working gas in the high temperature chamber 4 to move. Along with this, the pressure of the working gas in the engine decreases, and the working gas from the high temperature chamber 4 whose temperature has dropped absorbs heat for driving the engine from the outside when passing through the high temperature side heat exchanger 10.

【0016】第4行程では、両ディスプレーサ3,6の
動作によって、高温側中温室5が作動ガスで満たされる
とともに、低温室7にある作動ガスの移動が生ずる。こ
れに伴って、機関内の作動ガス圧力はさらに低下し、温
度降下した低温室7からの作動ガスは低温側熱交換器1
4を通過するときに冷房に寄与する熱を外部から吸収す
る。
In the fourth step, the operation of both displacers 3 and 6 causes the hot middle greenhouse 5 to be filled with working gas, and the working gas in the cold room 7 to move. Along with this, the pressure of the working gas in the engine is further lowered, and the working gas from the low temperature chamber 7 whose temperature has dropped is cooled by the heat exchanger 1 on the low temperature side.
Heat that contributes to cooling when passing through 4 is absorbed from the outside.

【0017】いま、図2の作動空間の容積Vと圧力Pの
関係に基づいて詳述すると、低温側中温室8の掃気容積
が増大しているため、高温室4での吸熱のときに圧力降
下量が減少し(行程3の実線、なお点線は従来タイプの
変化量を示す)、吸熱量QHは減少する。これに対応し
て、行程1の実線のすように高温側中温室5での放熱の
ときに圧力上昇量が減少し、放熱量QMhも減少する。し
かし、低温室7及び低温側中温室8での交換熱量は変化
しないため、冷房及び暖房成績係数は向上する。
Explaining in detail based on the relationship between the volume V of the working space and the pressure P in FIG. 2, since the scavenging volume of the low temperature side medium greenhouse 8 is increasing, the pressure at the time of heat absorption in the high temperature chamber 4 is increased. The amount of drop decreases (solid line in stroke 3, the dotted line shows the amount of change of the conventional type), and the heat absorption amount QH decreases. Correspondingly, when the heat is dissipated in the high temperature side middle greenhouse 5 as indicated by the solid line in the process 1, the amount of pressure increase decreases and the amount of heat dissipation QMh also decreases. However, since the amount of heat exchanged in the low temperature room 7 and the low temperature side middle greenhouse 8 does not change, the cooling and heating performance coefficient is improved.

【0018】図3に示す他の実施例は、高温及び低温側
シリンダとは別に設けられた補助シリンダと補助ピスト
ンを持つものである。これは直角配置の高温側シリンダ
1と低温側シリンダ2とは別に補助ピストン18を備え
た補助シリンダ19を設置し、補助シリンダ19の補助
ピストンロッド27は前記高温側ピストンロッド25と
は別途の伝達機構(図示せず)にて動くものであり、且
つ補助シリンダ19の上部の補助室20を前記連通路1
7に連通する構成としている。24は補助ピストンシー
ルである。本実施例の場合には、前記第1の実施例と同
様に補助シリンダ内径及び補助ピストン外径は適切な値
に選定され、また、低温側中温室8の容積変化量を増大
するようにピストン位相差は設定される。
Another embodiment shown in FIG. 3 has an auxiliary cylinder and an auxiliary piston provided separately from the high temperature side and low temperature side cylinders. This is provided with an auxiliary cylinder 19 having an auxiliary piston 18 separately from the high temperature side cylinder 1 and the low temperature side cylinder 2 arranged at right angles, and the auxiliary piston rod 27 of the auxiliary cylinder 19 is transmitted separately from the high temperature side piston rod 25. It moves by a mechanism (not shown), and the auxiliary chamber 20 above the auxiliary cylinder 19 is connected to the communication passage 1
It is configured to communicate with 7. Reference numeral 24 is an auxiliary piston seal. In the case of the present embodiment, as in the first embodiment, the auxiliary cylinder inner diameter and the auxiliary piston outer diameter are selected to appropriate values, and the piston is arranged to increase the volume change amount of the low temperature side middle greenhouse 8. The phase difference is set.

【0019】図4の他の実施例は、低温側シリンダ及び
低温側ディスプレーサの中温室部分を低温室部分よりも
大きくし、中温室の容積を低温室よりも増大させたもの
である。即ち、低温側シリンダ2の形状を低温側中温室
部分を低温室部分よりも大径シリンダ2aとした段付き
形状とすると共に、低温側ディスプレーサ6も前記大径
シリンダ内を往復動する部分を大径ディスプレーサ6a
とした段付き形状としたものである。このときは、低温
側ピストンシール23aを低温室部分にも追加するもの
であり、両ピストンシール間にできる空間をクランク連
通路21をもってクランク室32に連通させ、或いは大
気開放にする構成とする。本実施例の場合には、低温側
中温室8の容積変化量を大きくするのみならず、低温室
7の容積変化量を小さくすることも可能であり、両者は
ほぼ同様の効果が期待できる。
In the other embodiment of FIG. 4, the middle greenhouse portion of the low temperature side cylinder and the low temperature side displacer is made larger than the low temperature chamber portion, and the volume of the middle greenhouse is made larger than that of the low temperature chamber. That is, the low temperature side cylinder 2 has a stepped shape in which the low temperature side medium greenhouse portion has a larger diameter cylinder 2a than the low temperature chamber portion, and the low temperature side displacer 6 also has a large portion that reciprocates in the large diameter cylinder. Diameter displacer 6a
It has a stepped shape. At this time, the low temperature side piston seal 23a is also added to the low temperature chamber portion, and the space formed between both piston seals is communicated with the crank chamber 32 through the crank communication passage 21 or is open to the atmosphere. In the case of the present embodiment, it is possible not only to increase the volume change amount of the low temperature side middle greenhouse 8 but also to reduce the volume change amount of the low temperature chamber 7, and both can be expected to have substantially the same effect.

【0020】本発明の効果を図5に示す。これは、各部
位における作動ガス温度をサイクル中一定とし、各作動
室の容積は正弦波状に変化するものと仮定した、簡易的
な計算によって求めた機関性能である。これにより、低
温側中温室8の容積変化量を低温室7よりも大きくする
ことによって、冷房及び暖房成績係数は向上している。
The effect of the present invention is shown in FIG. This is the engine performance obtained by a simple calculation, assuming that the working gas temperature in each part is constant during the cycle and the volume of each working chamber changes sinusoidally. As a result, the cooling and heating performance coefficient is improved by making the volume change amount of the low temperature side middle greenhouse 8 larger than that of the low temperature chamber 7.

【0021】図中、QC : 低温室の吸熱量、 QM
1:低温側中温室の放熱量 QH : 高温室の吸熱量、 QMh:高温側中温室の放
熱量 COPC :冷房成績係数、 COPH : 暖房成績係数 VMl: 低温側中温室の掃気容積、 ΔV:増分容積
In the figure, QC: Endothermic amount of low greenhouse, QM
1: Heat dissipation in the low-temperature side medium greenhouse QH: High-greenhouse heat absorption amount, QMh: Heat dissipation in the high-temperature side medium greenhouse COPC: Cooling performance coefficient, COPH: Heating performance coefficient VMl: Scavenging volume of the low-temperature middle greenhouse, ΔV: Increment volume

【0022】[0022]

【発明の効果】本発明は以上説明したように、低温部の
掃気容積に着眼し、低温室よりも低温側中温室の掃気容
積を意図的に大きくし、高温部での吸熱量を減少させる
ことによって、冷房成績係数と暖房成績係数の向上を可
能にする熱サイクル機関を提供することができる。
As described above, the present invention focuses on the scavenging volume of the low temperature portion, intentionally increases the scavenging volume of the medium greenhouse at the lower temperature side than the low temperature chamber, and reduces the heat absorption amount in the high temperature portion. As a result, it is possible to provide a heat cycle engine capable of improving the cooling performance coefficient and the heating performance coefficient.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す熱ガス機関の概略図であ
る。
FIG. 1 is a schematic diagram of a hot gas engine showing an embodiment of the present invention.

【図2】同熱ガス機関のサイクル基本行程図である。FIG. 2 is a cycle basic stroke diagram of the hot gas engine.

【図3】第2の実施例の熱ガス機関の概略図である。FIG. 3 is a schematic diagram of a hot gas engine according to a second embodiment.

【図4】第3の実施例の熱ガス機関の概略図である。FIG. 4 is a schematic diagram of a hot gas engine according to a third embodiment.

【図5】本発明の効果を示す機関性能図である。FIG. 5 is an engine performance diagram showing the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 高温側シリンダ 2 低温側シリンダ 3 高温側ディスプレーサ 4 高温室 5 高温側中温室 6 低温側ディスプレーサ 7 低温室 8 低温側中温室 9 高温側ガス流路 10 高温側熱交換器 11 高温側再生器 12 高温部中温側熱交換器側 13 低温側ガス流路 14 低温側熱交換器 15 低温側再生器 16 低温部中温側熱交換器 17 連通路 18 補助ピストン 19 補助シリンダ 20 補助室 21 クランク室連通路 31 クランク機構 32 クランク室 1 high temperature side cylinder 2 low temperature side cylinder 3 high temperature side displacer 4 high greenhouse 5 high temperature side medium greenhouse 6 low temperature side displacer 7 low greenhouse 8 low temperature side medium greenhouse 9 high temperature side gas flow path 10 high temperature side heat exchanger 11 high temperature side regenerator 12 High temperature part middle temperature side heat exchanger side 13 Low temperature side gas flow path 14 Low temperature side heat exchanger 15 Low temperature side regenerator 16 Low temperature part medium temperature side heat exchanger 17 Communication passage 18 Auxiliary piston 19 Auxiliary cylinder 20 Auxiliary chamber 21 Crank chamber communication passage 31 crank mechanism 32 crank chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 作動ガスが封入された高温側シリンダ及
び低温側シリンダと、この高温側シリンダ内を高温室と
高温側中温室とに区画する高温側ディスプレーサと、前
記低温側シリンダ内を低温室と低温側中温室とに区画す
る低温側ディスプレーサと、この高温側ディスプレーサ
及び低温側ディスプレーサがそれぞれロッド及びリンク
機構を介して連結された回転軸と、前記高温室と高温側
中温室とをつなぐガス流路に配置された作動ガス加熱用
の高温側熱交換器、高温側再生器及び中温側熱交換器
と、前記低温室と低温側中温室とをつなぐガス流路に配
置された低温側熱交換器、低温側再生器及び中温側熱交
換器とから成る熱ガス機関において、前記低温側中温室
の容積変化量を前記低温室よりも大きくするための補助
シリンダと補助ピストンを設けたことを特徴とする熱ガ
ス機関。
1. A high temperature side cylinder and a low temperature side cylinder filled with working gas, a high temperature side displacer for partitioning the inside of the high temperature side cylinder into a high temperature chamber and a high temperature side middle greenhouse, and a low temperature chamber inside the low temperature side cylinder. And a low temperature side displacer that divides the high temperature side displacer into a low temperature side medium greenhouse, a rotary shaft to which the high temperature side displacer and the low temperature side displacer are connected via a rod and a link mechanism, respectively, and a gas that connects the high temperature chamber and the high temperature side medium greenhouse. High temperature side heat exchanger for heating working gas, high temperature side regenerator and medium temperature side heat exchanger arranged in the flow path, and low temperature side heat arranged in the gas flow path connecting the low temperature room and the low temperature side middle greenhouse In a hot gas engine consisting of an exchanger, a low temperature side regenerator and a medium temperature side heat exchanger, an auxiliary cylinder and an auxiliary pit for making the volume change amount of the low temperature side medium greenhouse larger than that of the low temperature chamber. A hot gas engine characterized by the provision of an engine.
【請求項2】 作動ガスが封入された高温側シリンダ及
び低温側シリンダと、この高温側シリンダ内を高温室と
高温側中温室とに区画する高温側ディスプレーサと、前
記低温側シリンダ内を低温室と低温側中温室とに区画す
る低温側ディスプレーサと、この高温側ディスプレーサ
及び低温側ディスプレーサがそれぞれロッド及びリンク
機構を介して連結された回転軸と、前記高温室と高温側
中温室とをつなぐガス流路に配置された作動ガス加熱用
の高温側熱交換器、高温側再生器及び中温側熱交換器
と、前記低温室と低温側中温室とをつなぐガス流路に配
置された低温側熱交換器、低温側再生器及び中温側熱交
換器とから成る熱ガス機関において、前記低温側シリン
ダは前記低温側中温室部分を前記低温室側部分よりも大
径シリンダとした段付き形状を有し、前記低温側ディス
プレーサは前記大径シリンダ内を往復動する部分を大径
ディスプレーサとした段付き形状を有していることを特
徴とする熱ガス機関。
2. A high temperature side cylinder and a low temperature side cylinder filled with a working gas, a high temperature side displacer for partitioning the inside of the high temperature side cylinder into a high temperature chamber and a high temperature side middle greenhouse, and a low temperature chamber inside the low temperature side cylinder. And a low temperature side displacer that divides the high temperature side displacer into a low temperature side medium greenhouse, a rotary shaft to which the high temperature side displacer and the low temperature side displacer are connected via a rod and a link mechanism, respectively, and a gas that connects the high temperature chamber and the high temperature side medium greenhouse. High temperature side heat exchanger for heating working gas, high temperature side regenerator and medium temperature side heat exchanger arranged in the flow path, and low temperature side heat arranged in the gas flow path connecting the low temperature room and the low temperature side middle greenhouse In a hot gas engine including an exchanger, a low temperature side regenerator and a medium temperature side heat exchanger, the low temperature side cylinder is a stepped structure in which the low temperature side medium greenhouse part is a cylinder having a larger diameter than the low temperature chamber side part. The hot gas engine has a cylindrical shape, and the low temperature side displacer has a stepped shape in which a portion that reciprocates in the large diameter cylinder is a large diameter displacer.
JP32645192A 1992-12-07 1992-12-07 Hot gas engine Pending JPH06173763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32645192A JPH06173763A (en) 1992-12-07 1992-12-07 Hot gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32645192A JPH06173763A (en) 1992-12-07 1992-12-07 Hot gas engine

Publications (1)

Publication Number Publication Date
JPH06173763A true JPH06173763A (en) 1994-06-21

Family

ID=18187959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32645192A Pending JPH06173763A (en) 1992-12-07 1992-12-07 Hot gas engine

Country Status (1)

Country Link
JP (1) JPH06173763A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170009701A1 (en) * 2014-01-20 2017-01-12 Tour Engine, Inc. Variable volume transfer shuttle capsule and valve mechanism
US10598080B2 (en) 2013-07-17 2020-03-24 Tour Engine, Inc. Spool shuttle crossover valve and combustion chamber in split-cycle engine
US11668231B2 (en) 2018-11-09 2023-06-06 Tour Engine, Inc. Transfer mechanism for a split-cycle engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598080B2 (en) 2013-07-17 2020-03-24 Tour Engine, Inc. Spool shuttle crossover valve and combustion chamber in split-cycle engine
US11230965B2 (en) 2013-07-17 2022-01-25 Tour Engine, Inc. Spool shuttle crossover valve and combustion chamber in split-cycle engine
US20170009701A1 (en) * 2014-01-20 2017-01-12 Tour Engine, Inc. Variable volume transfer shuttle capsule and valve mechanism
US10253724B2 (en) * 2014-01-20 2019-04-09 Tour Engine, Inc. Variable volume transfer shuttle capsule and valve mechanism
US11668231B2 (en) 2018-11-09 2023-06-06 Tour Engine, Inc. Transfer mechanism for a split-cycle engine

Similar Documents

Publication Publication Date Title
JPH05248720A (en) Thermal-compression heat pump
JPH06101922A (en) Vuilleumier heat pump apparatus
JPH06173763A (en) Hot gas engine
JPH07180921A (en) Stirling cold storage box
JP3101448B2 (en) Hot gas engine
US5440883A (en) Pulse-tube refrigerator
JP3022012B2 (en) Hot gas engine
JP3357774B2 (en) External combustion engine piston
JP3071052B2 (en) Hot gas engine
JPH0336468A (en) Cooling warehouse
JPS6256419B2 (en)
JP3043153B2 (en) Hot gas engine
JP3043154B2 (en) Hot gas engine
SU1746019A1 (en) External heat fed engine
JP3643761B2 (en) Stirling refrigerator
JP3071053B2 (en) Hot gas engine
JPH0518623A (en) Vuilleumier cycle device
JPH0718612B2 (en) Refrigeration equipment
JP3685632B2 (en) Stirling heat engine
JPH05157388A (en) Hot gas engine
JPH0250384B2 (en)
JP2002303463A (en) Stirling refrigerating machine
JPS6313021B2 (en)
JPH0949666A (en) Stirling refrigerating machine
GB2042157A (en) Closed heating or cooling system