JP3043153B2 - Hot gas engine - Google Patents
Hot gas engineInfo
- Publication number
- JP3043153B2 JP3043153B2 JP3324727A JP32472791A JP3043153B2 JP 3043153 B2 JP3043153 B2 JP 3043153B2 JP 3324727 A JP3324727 A JP 3324727A JP 32472791 A JP32472791 A JP 32472791A JP 3043153 B2 JP3043153 B2 JP 3043153B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- low
- chamber
- medium
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は低温熱源、中温熱源およ
び高温熱源の間で動作し作動ガスが移動することによ
り、高温熱源から得た熱エネルギ(熱仕事)によって、
低温熱源から吸熱し、中温熱源へ放熱を行う熱ガス機関
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention operates between a low-temperature heat source, a medium-temperature heat source and a high-temperature heat source to move a working gas, thereby using heat energy (thermal work) obtained from a high-temperature heat source .
Absorbs heat from the low temperature heat source, to a hot-gas engine to perform the heat radiation to the medium-temperature heat source.
【0002】[0002]
【従来の技術】熱ガス機関は、高温および低温の二つの
ディスプレーサ(作動ガスを移動させるもの)を有し、
それぞれのディスプレーサが関与する領域によって、高
温部と低温部に分割される。高温部と低温部において
は、ディスプレーサの作動によって作動ガスの移動が生
じ、このガス移動による容積変化に相当する部分を作動
室と称すれば、各部には二つの作動室が存在し、これら
の作動室の内の一つは中温熱源と同等の温度レベルにあ
り、ここでは中温室と定義する。同様に、高温熱源と同
等の温度レベルにある作動室を高温室、低温熱源と同等
の温度レベルにある作動室を低温室と定義する。2. Description of the Related Art A hot gas engine has two displacers (moving a working gas) of a high temperature and a low temperature.
It is divided into a high-temperature part and a low-temperature part according to a region in which each displacer is involved. In the high-temperature part and the low-temperature part, the working gas is moved by the operation of the displacer. If a part corresponding to a volume change due to the gas movement is called a working chamber, each part has two working chambers. One of the working chambers is at a temperature level equivalent to that of the medium temperature heat source, and is defined as a medium temperature room here. Similarly, a working room at the same temperature level as the high-temperature heat source is defined as a high-temperature room, and a working room at the same temperature level as the low-temperature heat source is defined as a low-temperature room.
【0003】幾何学的に求められるこれらの作動室の仕
事は、それぞれの容積変化と作動空間(機関全体)内の
一様な圧力変動によって、高温室では膨張仕事、高温部
の中温室では圧縮仕事、また低温室では膨張仕事、低温
部の中温室では圧縮仕事となる。[0003] The work of these working chambers geometrically required is expansion work in a high-temperature chamber and compression in a middle-temperature room in a high-temperature section due to each volume change and uniform pressure fluctuation in the working space (entire engine). Work and expansion work in a low temperature room, and compression work in a medium temperature room in a low temperature part.
【0004】かかる熱ガス機関では、三つの熱源間で熱
移動が生じるだけであるため、動作原理上、高温部およ
び低温部における二つのガス移動容積は一致し、高温部
の膨張仕事と圧縮仕事および低温部の膨張仕事と圧縮仕
事の絶対量はそれぞれ等しくなる。実際の機関において
は、特開昭63−311050号公報に示されるよう
に、ディスプレーサを駆動するためのロッドが設けられ
ているが、このロッドの体積変化を含めて考えれば、高
温部と低温部のガス移動容積はそれぞれ等しくなるよう
に設定されているのが一般的であった。In such a hot gas engine, since only heat transfer occurs between three heat sources, the two gas transfer volumes in the high temperature section and the low temperature section match in terms of the operation principle, and the expansion work and compression work in the high temperature section are performed. The absolute amount of expansion work and the amount of compression work in the low-temperature portion are equal to each other. In an actual engine, a rod for driving a displacer is provided as shown in Japanese Patent Application Laid-Open No. 63-31050. However, considering the volume change of this rod, a high-temperature part and a low-temperature part are considered. In general, the gas transfer volumes were set to be equal to each other.
【0005】[0005]
【発明が解決しようとする課題】上記公報で提示の装置
は、高温側ディスプレーサと低温側ディスプレーサのロ
ッドの径を変えることにより、高温部と低温部とを合計
した総容積を変化させ、この変化と封入された作動ガス
の圧力変化とによって軸出力のみを増大させるようにし
たものであった。The apparatus disclosed in the above publication changes the total volume of the high-temperature portion and the low-temperature portion by changing the diameter of the rods of the high-temperature displacer and the low-temperature displacer. And the pressure change of the enclosed working gas to increase only the shaft output.
【0006】本発明は高温部のガス移動容積に着目し、
中温室のガス移動容積を高温室のガス移動容積よりも大
きく設定することにより、冷暖房能力と熱効率の向上を
図った熱ガス機関を提供することを目的としたものであ
る。The present invention focuses on the gas transfer volume in the high temperature section,
It is an object of the present invention to provide a hot gas engine with improved cooling and heating capacity and thermal efficiency by setting the gas transfer volume of the medium temperature chamber to be larger than the gas transfer volume of the high temperature chamber.
【0007】[0007]
【課題を解決するための手段】本発明は、上記課題を解
決するために、作動ガスが封入されたシリンダと、この
シリンダ内を高温室と中温室と低温室とに区画する高温
側ディスプレーサ及び低温側ディスプレーサと、高温室
と中温室とをつなぐガス流路に配置された作動ガス加熱
用の高温側熱交換器と高温側再生器及び中温側熱交換器
と、低温室と中温室とをつなぐガス流路に配置された低
温側熱交換器と低温側再生器及び中温側熱交換器とから
成る熱ガス機関において、前記中温室及び/又は前記高
温室に補助シリンダを設け、該補助シリンダの容積を高
温側ディスプレーサの作動に応じて変動させることによ
り前記中温室のガス移動容積を前記高温室のガス移動容
積よりも大きく設定するようにしたものである。In order to solve the above-mentioned problems, the present invention provides a cylinder filled with a working gas, a high-temperature side displacer for partitioning the cylinder into a high-temperature chamber, a medium-temperature chamber, and a low-temperature chamber, and A low-temperature displacer, a high-temperature heat exchanger for working gas heating, a high-temperature regenerator and a medium-temperature heat exchanger disposed in a gas flow path connecting the high-temperature chamber and the medium-temperature chamber, and a low-temperature chamber and a medium-temperature chamber. In a hot gas engine comprising a low-temperature side heat exchanger, a low-temperature side regenerator and a medium-temperature side heat exchanger arranged in a gas flow path to be connected, an auxiliary cylinder is provided in the medium-temperature chamber and / or the high-temperature chamber, and the auxiliary cylinder is provided . High volume
By changing it according to the operation of the warm side displacer,
Ri in which the gas transfer volume of the in the greenhouse and to set larger than the gas transfer volume of the hot chamber.
【0008】[0008]
【作用】本発明では、上述のような熱ガス機関におい
て、前記中温室及び/又は前記高温室に補助シリンダを
設け、該補助シリンダの容積を高温側ディスプレーサの
作動に応じて変動させることにより、中温室のガス移動
容積が高温室のガス移動容積よりも大きく設定されてい
るため、低温室での行程において作動ガスの圧力の低下
度合が大きくなることにより、低温側熱交換器での吸熱
量が増大して冷房能力が向上すると共に、低温部中温側
熱交換器での放熱行程において作動ガスの圧力の上昇度
合が大きくなることにより、中温側熱交換器での放熱量
が増大して暖房能力が向上し、且つ、高温側熱交換器で
の吸熱量は中温室におけるガス移動容積の増大にかかわ
らず略一定であるため、成績係数が向上する。According to the present invention, in a hot gas engine as described above,
An auxiliary cylinder in the middle temperature chamber and / or the high temperature chamber.
And the volume of the auxiliary cylinder is
By varying according to the operation, since the gas transfer volume of the medium temperature chamber is set to be larger than the gas transfer volume of the high temperature chamber, the degree of decrease in the pressure of the working gas during the stroke in the low temperature chamber increases, The amount of heat absorbed by the low-temperature heat exchanger is increased to improve the cooling capacity, and the degree of increase in the working gas pressure in the heat-dissipation process by the low-temperature medium-temperature heat exchanger is increased. In this case, the heat radiation amount increases, and the heating capacity improves, and the heat absorption amount in the high-temperature side heat exchanger is substantially constant irrespective of the increase in the gas transfer volume in the medium temperature chamber, so that the coefficient of performance improves.
【0009】[0009]
【実施例】図1は本発明の熱ガス機関の概念図であり、
1,2は作動ガス(ヘリウムガスや水素ガス等)が封入
された高温側シリンダ及び低温側シリンダ、3は高温側
シリンダ1内を高温室4と高温側中温室5とに区画する
高温側ディスプレーサ、6は低温側シリンダ2内を低温
室7と低温側中温室8とに区画する低温側ディスプレー
サである。1 is a conceptual diagram of a hot gas engine according to the present invention.
Reference numerals 1 and 2 denote a high-temperature side cylinder and a low-temperature side cylinder filled with a working gas (such as helium gas or hydrogen gas), and 3 denotes a high-temperature side displacer for partitioning the high-temperature side cylinder 1 into a high-temperature chamber 4 and a high-temperature medium-temperature chamber 5. Reference numeral 6 denotes a low-temperature displacer that partitions the low-temperature cylinder 2 into a low-temperature chamber 7 and a low-temperature medium-temperature chamber 8.
【0010】9は高温室4と高温側中温室5とをつなぐ
高温側ガス流路で、作動ガス加熱用の高温側熱交換器1
0と高温側再生器11及び高温部中温側熱交換器12と
が配置されている。Reference numeral 9 denotes a high-temperature gas passage connecting the high-temperature chamber 4 and the high-temperature medium-temperature chamber 5, and a high-temperature heat exchanger 1 for heating working gas.
0, a high temperature side regenerator 11 and a high temperature portion middle temperature side heat exchanger 12 are arranged.
【0011】13は低温室7と低温側中温室8とをつな
ぐ低温側ガス流路で、低温側熱交換器14と低温側再生
器15及び低温部中温側熱交換器16とが配置されてい
る。Reference numeral 13 denotes a low-temperature gas flow path connecting the low-temperature chamber 7 and the low-temperature medium-temperature chamber 8, and a low-temperature heat exchanger 14, a low-temperature regenerator 15, and a low-temperature medium-temperature heat exchanger 16 are arranged. I have.
【0012】17は高温側中温室5と低温側中温室8と
を連通させる連通路である。Reference numeral 17 denotes a communication passage for communicating the high-temperature medium-temperature room 5 with the low-temperature medium-temperature room 8.
【0013】そして、高温側中温室5のガス移動容積が
高温室4のガス移動容積よりも大きく設定されており、
図1ではこの高温側中温室5の増分容積を既に含めたも
のとして表わしているが、この増分容積変化と高温側中
温室5の容積変化との位相は同位相に限定されるもので
はなく、また、増分容積を付加する機構を別途設けるこ
とも可能である。The gas transfer volume of the high temperature side medium temperature chamber 5 is set larger than the gas transfer volume of the high temperature chamber 4.
In FIG. 1, the incremental volume of the high-temperature side medium-temperature chamber 5 is already included, but the phase of the incremental volume change and the volume change of the high-temperature side intermediate-temperature chamber 5 is not limited to the same phase. It is also possible to separately provide a mechanism for adding an incremental volume.
【0014】すなわち、本発明では、本発明による効果
を得るために高温室4と中温室5,8とにおけるサイク
ル上での作動ガス移動容積が規定される。That is, in the present invention, the working gas transfer volume on the cycle in the high temperature chamber 4 and the medium temperature chambers 5 and 8 is defined in order to obtain the effect of the present invention.
【0015】尚、低温および高温ディスプレーサ6,3
の位相は90°に限定されるものではなく、両シリンダ
1,2の内径についても同一である必要はない。The low and high temperature displacers 6,3
Is not limited to 90 °, and the inner diameters of both cylinders 1 and 2 need not be the same.
【0016】ここで、本発明におけるガス移動容積につ
いて、動作原理上、以下のとおり定義する。Here, the gas transfer volume in the present invention is defined as follows on the principle of operation.
【0017】熱ガス機関は、三つの熱源(高温、中温お
よび低温)の間で作動し、主として熱源間での熱移動を
生じるものであるが、この熱移動は二つの熱的な作用
(一次熱作用、二次熱作用と称する)によって可能とな
る。すなわち、熱ガス機関を高温部(高温室4、高温側
中温室5、高温側再生器11等)と低温部(低温室7、
低温側中温室8、低温側再生器15等)に分離すると、
ディスプレーサ3、6動作による作動ガスの移動によっ
て、当該の熱源温度と同レベルの温度に作動ガスが変化
する場合の熱的な作用が一次熱作用(再生器11、15
による効果)であり、このときに、構造的に設定された
ディスプレーサ3、6の位相によりディスレーサが静止
しているため見かけ上作動ガスの移動がない作動室内で
の上記一次熱作用によって生じる作動ガスと熱源との熱
交換が二次熱作用である。[0017] A hot gas engine operates between three heat sources (high, medium and low) and primarily produces heat transfer between the heat sources, which heat transfer has two thermal effects (primary). Thermal action, called secondary thermal action). That is, the hot gas engine is connected to a high temperature section (high temperature chamber 4, high temperature side medium temperature chamber 5, high temperature side regenerator 11, etc.) and a low temperature section (low temperature chamber 7,
When separated into the low-temperature side medium-temperature room 8 and the low-temperature side regenerator 15)
By the movement of the working gas by the operation of the displacers 3 and 6, the thermal action when the working gas changes to the same level as the heat source temperature is the primary heating action (the regenerators 11 and 15).
At this time, the working gas generated by the primary heat action in the working chamber where there is no apparent movement of the working gas because the displacer is stationary due to the phase of the displacers 3 and 6 which is structurally set. The heat exchange between the heat source and the heat source is a secondary heat effect.
【0018】したがって、高温部の一次熱作用は低温部
の二次熱作用を誘起し、反対に低温部の一次熱作用は高
温部の二次熱作用を誘起する。本発明におけるガス移動
容積とは、このような二次熱作用を誘起する各行程での
一次熱作用に関与している作動ガス移動量のことであ
り、各熱源と同等の温度レベルにある作動ガスの移動量
を意味している。Therefore, the primary heat action of the high temperature section induces the secondary heat action of the low temperature section, and the primary heat action of the low temperature section induces the secondary heat action of the high temperature section. The gas transfer volume in the present invention refers to the amount of working gas transfer related to the primary heat action in each step of inducing such secondary heat action, and the operation gas at the same temperature level as each heat source. It means the amount of gas transfer.
【0019】上記の説明は動作原理上での考え方であ
り、実際の機関においては、作動ガスの移動に関与する
ディスプレーサ3,6や別途補助シリンダ(後述する)
を追加する場合に必要となるピストンはおおむね正弦波
状に動作するため、作動ガスの移動や静止状態は上記説
明のように明確ではない。The above description is based on the principle of operation. In an actual engine, the displacers 3 and 6 involved in the movement of the working gas and the auxiliary cylinder (described later) are used.
In addition, since the piston required when adding the above is operated in a substantially sinusoidal shape, the movement and the stationary state of the working gas are not clear as described above.
【0020】しかし、ディスプレーサ3,6やピストン
(後述する)動作による容積変化の位相から、それらの
容積変化がどの行程の一次熱作用に関与するかというこ
とは判別可能であり、また、ガス移動容積については、
当該の熱源と同等の温度レベルにある作動ガスの各行程
での最大容積と最小容積との差として求められる。However, from the phase of the volume change due to the operation of the displacers 3, 6 and the piston (described later), it is possible to determine which stroke the volume change involves in the primary thermal action, and it is also possible to determine the gas movement. For volume,
It is determined as the difference between the maximum volume and the minimum volume in each stroke of the working gas at the same temperature level as the heat source.
【0021】図1に示した概念図に則り、本発明の実施
例を図2に基づいて説明する。図2は高温側中温室5の
ガス移動容積を高温室4のガス移動容積よりも大きくす
るために、高温側中温室5に上述の如く増分容積を付加
する機能として、高温側中温室5にピストン18を有す
る補助シリンダ19を設けた第1の実施例であり、図1
と同一の構成部品は同一符号を付して説明は省略する。An embodiment of the present invention will be described with reference to FIG. 2 based on the conceptual diagram shown in FIG. FIG. 2 shows the function of adding an incremental volume to the high-temperature side middle-temperature chamber 5 as described above in order to make the gas transfer volume of the high-temperature side middle-temperature chamber 5 larger than that of the high-temperature chamber 4. FIG. 1 shows a first embodiment in which an auxiliary cylinder 19 having a piston 18 is provided.
The same components as those described above are denoted by the same reference numerals, and description thereof is omitted.
【0022】尚、上述の増分容積の大きさや位相及び補
助シリンダ19の取付位置は図2に限定されるものでは
ない。The size and phase of the above-mentioned incremental volume and the mounting position of the auxiliary cylinder 19 are not limited to those shown in FIG.
【0023】図3は図2における高温側ディスプレーサ
3と低温側ディスプレーサ6とピストン18との作動行
程と、作動空間内の概略的な圧力変動を示したもので、
低温側ディスプレーサ6の変位(第1行程)によって低
温室7内の作動ガスが低温側中温室8に移動し、作動空
間内の圧力が実線の如く上昇する。FIG. 3 shows the operation strokes of the high temperature side displacer 3, the low temperature side displacer 6, and the piston 18 in FIG. 2 and a schematic pressure fluctuation in the operation space.
Due to the displacement (first stroke) of the low-temperature side displacer 6, the working gas in the low-temperature chamber 7 moves to the low-temperature middle-temperature chamber 8, and the pressure in the working space rises as shown by the solid line.
【0024】尚、破線は補助シリンダ19を設けない従
来の熱ガス機関の圧力を示したもので、実線で示す圧力
が破線で示す圧力よりも低くなっているのはピストン1
8が図3において右端に位置し補助シリンダ19の内容
積分だけ高温側中温室5のガス移動容積が増えているか
らである。The broken line indicates the pressure of the conventional hot gas engine without the auxiliary cylinder 19. The pressure indicated by the solid line is lower than the pressure indicated by the broken line.
3 is located at the right end in FIG. 3 and the gas movement volume of the high temperature side middle temperature chamber 5 is increased by the integral integration of the auxiliary cylinder 19.
【0025】このときに、高温側中温室5にある作動ガ
スの温度が上昇して熱源との温度差が生じるため、高温
部中温側熱交換器12より熱量QMHを放出する。At this time, since the temperature of the working gas in the high temperature side middle temperature chamber 5 rises and a temperature difference from the heat source is generated, the heat quantity QMH is released from the high temperature portion middle temperature side heat exchanger 12.
【0026】そして、高温側ディスプレーサ3の変位
(第2行程)によって高温側中温室5から高温室4に作
動ガスが移動し、作動空間内の圧力が実線の如く上昇す
る。Then, the working gas moves from the high temperature side middle temperature chamber 5 to the high temperature chamber 4 due to the displacement (second stroke) of the high temperature side displacer 3, and the pressure in the working space rises as shown by the solid line.
【0027】この上昇度合が破線で示す圧力よりも大き
いのはピストン18が図3において左端に移行して補助
シリンダ19の内容積が零になっているからであり、こ
のとき低温側中温室8にある作動ガスの温度が上昇して
低温部中温側熱交換器16から放出される放熱量QMCは
この圧力の上昇度合が大きくなることにより増大し、こ
の低温部中温側熱交換器16で加熱された媒体と高温部
中温側熱交換器12で加熱された媒体とを暖房用熱源と
して利用することにより高い暖房能力を得ることができ
る。This rise is greater than the pressure indicated by the broken line because the piston 18 moves to the left end in FIG. 3 and the internal volume of the auxiliary cylinder 19 becomes zero. The heat radiation amount Q MC released from the low-temperature part middle-temperature side heat exchanger 16 due to an increase in the temperature of the working gas in the low-temperature part medium-temperature side heat exchanger 16 increases due to the increase in the pressure. A high heating capacity can be obtained by using the heated medium and the medium heated by the high-temperature portion middle-temperature side heat exchanger 12 as a heating heat source.
【0028】次に、低温側ディスプレーサ6の変位(第
3行程)によって低温側中温室8から低温室7に作動ガ
スが移動し、作動空間内の圧力が実線の如く低下する。Next, the working gas moves from the low-temperature middle-temperature room 8 to the low-temperature room 7 due to the displacement of the low-temperature displacer 6 (third stroke), and the pressure in the working space decreases as shown by the solid line.
【0029】このように実線の如く圧力が低下するのは
ピストン18が左端に位置したままであり、補助シリン
ダ19の内容積が零になっているからである。The pressure decreases as indicated by the solid line because the piston 18 remains at the left end and the internal volume of the auxiliary cylinder 19 becomes zero.
【0030】このときに、高温室4にある作動ガスの温
度が低下して高温側熱交換器10で熱量QHを吸入す
る。[0030] At this time, the temperature of the working gas in the high-temperature chamber 4 is sucked an amount of heat Q H in the high-temperature side heat exchanger 10 decreases.
【0031】更に、高温側ディスプレーサ3の変位(第
4行程)によって高温室4の作動ガスが高温側中温室5
に移動し、作動空間内の圧力が実線の如く低下する。Further, the working gas in the high temperature chamber 4 is changed by the displacement of the high temperature side displacer 3 (fourth stroke).
And the pressure in the working space decreases as shown by the solid line.
【0032】この低下度合が破線よりも大きいのはピス
トン18が右端に移行して補助シリンダ19の内容積分
だけ高温側中温室5のガス移動容積が増えているからで
あり、このとき低温室7にある作動ガスの温度が低下し
て低温側熱交換器14で吸入される吸熱量QCはこの圧
力の低下度合が大きくなることにより増大し、この低温
側熱交換器14で冷却された媒体を冷房用熱源として利
用することにより高い冷房能力を得ることができる。The degree of the decrease is larger than the broken line because the piston 18 moves to the right end and the gas transfer volume of the high temperature side middle temperature chamber 5 is increased by the integral integration of the auxiliary cylinder 19, and at this time, the low temperature chamber 7 endothermic amount Q C is increased by the reduction degree of the pressure increases, the cooled medium in the low-temperature heat exchanger 14 where the temperature of the working gas is sucked by the low-temperature heat exchanger 14 decreases in By using as a cooling heat source, a high cooling capacity can be obtained.
【0033】このように、吸熱量QCと放熱量QMCとが
増大するのに対し、高温側熱交換器10での吸熱量QH
は高温側中温室5におけるガス移動容積の増大にかかわ
らず略一定であるため、成績係数は向上する。As described above, the amount of heat absorption Q C and the amount of heat dissipation Q MC increase, whereas the amount of heat absorption Q H in the high-temperature side heat exchanger 10
Is substantially constant irrespective of an increase in the gas transfer volume in the high-temperature middle-temperature chamber 5, the coefficient of performance is improved.
【0034】図4は各部位における作動ガス温度をサイ
クル中一定とし、各作動室の容積が正弦波状に変化する
ものと仮定した簡易的な計算式〔日本機械学会論文集
(B編)57巻542号(1991−10)、論文No
91−0373A参照〕に、本発明におけるガス移動容
積を加味して求めた機関性能であり、低温側熱交換器1
4での吸熱量QCと低温部中温側熱交換器16での放熱
量QMCが増大し、冷房成績係数COPC(QC/QH)及
び暖房成績係数COPC〔(QMH+QMC)/QH〕が(V
MH+ΔV)/VMH>1(但し、VMHは高温側中温室5の
ガス移動容積、ΔVは補助シリンダ19による増分容積
を示す)において高いことがわかる。FIG. 4 shows a simple calculation formula that assumes that the working gas temperature at each part is constant during the cycle and that the volume of each working chamber changes in a sinusoidal manner [Transactions of the Japan Society of Mechanical Engineers (B) Vol. No. 542 (1991-10), Paper No.
91-0373A] shows the engine performance obtained in consideration of the gas transfer volume in the present invention.
Heat discharge Q MC in heat absorption amount Q C and the low temperature portion medium temperature heat exchanger 16 is increased by 4, the cooling coefficient of performance COP C (Q C / Q H ) and the heating coefficient of performance COP C [(Q MH + Q MC ) / Q H ] is (V
MH + ΔV) / V MH > 1 (where V MH indicates the gas transfer volume of the high-temperature middle-temperature chamber 5 and ΔV indicates the incremental volume of the auxiliary cylinder 19).
【0035】図5はピストン18を有する補助シリンダ
19を高温室4に設けて高温室4のガス移動容積を逆に
減少させることにより、高温側中温室5のガス移動容積
を高温室4のガス移動容積よりも大きく設定した第2の
実施例であり、この場合には高温側ディスプレーサ3の
変位(第2行程)によって作動空間内の圧力が実線の如
く上昇して低温部中温側熱交換器16から放出される放
熱量QMCが増大し、この低温部中温側熱交換器16で加
熱された媒体と高温部中温側熱交換器12で加熱された
媒体とを暖房用熱源として利用することにより高い暖房
能力を得ることができる。FIG. 5 shows that an auxiliary cylinder 19 having a piston 18 is provided in the high-temperature chamber 4 to reduce the gas transfer volume of the high-temperature chamber 4 in reverse, so that the gas transfer volume of the high-temperature medium-temperature chamber 5 is reduced. This is a second embodiment in which the displacement is set larger than the moving volume. In this case, the displacement in the high-temperature side displacer 3 (second stroke) causes the pressure in the working space to rise as shown by the solid line, and the low-temperature portion middle-temperature side heat exchanger The amount of heat radiation Q MC released from the heat exchanger 16 increases, and the medium heated by the low-temperature medium-temperature heat exchanger 16 and the medium heated by the high-temperature medium-temperature heat exchanger 12 are used as heat sources for heating. A higher heating capacity can be obtained.
【0036】又、高温側ディスプレーサ3の変位(第4
行程)によって作動空間内の圧力が実線の如く低下して
低温側熱交換器14で吸入される吸熱量QCが増大し、
この低温側熱交換器14で冷却された媒体を冷房用熱源
として利用することにより高い冷房能力を得ることがで
きる。The displacement of the high temperature side displacer 3 (fourth
Endothermic amount Q C is increased to be inhaled by the low-temperature heat exchanger 14 pressure in the working space by the stroke) is reduced as the solid line,
By using the medium cooled by the low-temperature side heat exchanger 14 as a cooling heat source, a high cooling capacity can be obtained.
【0037】図6は図4と同様にして求めた機関性能で
あり、成績係数COPC,COPHが(VH+ΔV)/VH
<1(但し、VHは高温室4のガス移動容積を示す)に
おいて高いことがわかる。FIG. 6 shows the engine performance obtained in the same manner as in FIG. 4, and the coefficient of performance COP C and COP H is (V H + ΔV) / V H
<1 (where V H indicates the gas transfer volume of the high temperature chamber 4) is high.
【0038】尚、第1の実施例においては補助シリンダ
19を高温側中温室5に設けたが、この代わりに高温側
中温室5と連通している低温側中温室8に設けても良
い。このように、本発明は各行程での一次熱作用に関与
するガス移動容積を規定するものであり、本発明による
効果を得るための具体的な構造に限定されるものではな
い。In the first embodiment, the auxiliary cylinder 19 is provided in the high-temperature medium-temperature chamber 5. Alternatively, the auxiliary cylinder 19 may be provided in the low-temperature medium-temperature chamber 8 communicating with the high-temperature medium temperature chamber 5. As described above, the present invention defines the gas transfer volume involved in the primary heat action in each step, and is not limited to a specific structure for obtaining the effects of the present invention.
【0039】[0039]
【発明の効果】本発明によれば、三つの熱源(高温、中
温、低温)で動作する熱ガス機関において、低温熱源か
らの吸熱を誘起する一次熱作用に関与する中温熱源の温
度レベルにある中温室のガス移動容積を同高温熱源の温
度レベルにある高温室のガス移動容積よりも大きく設定
したので、低温熱源からの吸熱行程で作動ガスの圧力の
低下度合が大きくなることにより吸熱量が増えるため冷
房能力を向上させることができ、一方、中温熱源への放
熱行程で作動ガスの圧力の上昇度合が大きくなることに
より放熱量が増えるため暖房能力を向上させることがで
きる。According to the present invention, in a hot gas engine operating with three heat sources (high temperature, medium temperature, and low temperature), the temperature level of the medium temperature heat source involved in the primary heat effect of inducing heat absorption from the low temperature heat source is reduced. Since the gas transfer volume of a certain medium-temperature chamber is set to be larger than the gas transfer volume of the high-temperature room at the same high-temperature heat source temperature level, the amount of heat absorbed by the working gas pressure drop during the heat-absorbing process from the low-temperature heat source increases. , The cooling capacity can be improved. On the other hand, the heating capacity can be improved because the amount of heat radiation increases due to the increase in the pressure of the working gas during the heat radiation process to the medium temperature heat source.
【0040】しかも、このように吸熱量及び放熱量が増
大するのに対し高温熱源からの吸熱量が中温室における
ガス移動容積の増大にかかわらず略一定であるため、成
績係数が上がり、熱効率を向上させることができる。Moreover, while the amount of heat absorption and the amount of heat radiation increase as described above, the amount of heat absorption from the high-temperature heat source is substantially constant irrespective of the increase in the gas transfer volume in the medium temperature chamber, so that the coefficient of performance increases and the thermal efficiency increases. Can be improved.
【図1】本発明の熱ガス機関の概念図である。FIG. 1 is a conceptual diagram of a hot gas engine of the present invention.
【図2】第1の実施例を示す熱ガス機関の説明図であ
る。FIG. 2 is an explanatory diagram of a hot gas engine showing a first embodiment.
【図3】第1の実施例における熱ガス機関の行程図であ
る。FIG. 3 is a stroke diagram of the hot gas engine in the first embodiment.
【図4】第1の実施例における機関性能図である。FIG. 4 is an engine performance diagram in the first embodiment.
【図5】第2の実施例における熱ガス機関の行程図であ
る。FIG. 5 is a stroke diagram of the hot gas engine in the second embodiment.
【図6】第2の実施例における機関性能図である。FIG. 6 is an engine performance diagram in the second embodiment.
1 高温側シリンダ 2 低温側シリンダ 3 高温側ディスプレーサ 4 高温室 5 高温側中温室 6 低温側ディスプレーサ 7 低温室 8 低温側中温室 10 高温側熱交換器 11 高温側再生器 12 高温部中温側熱交換器 14 低温側熱交換器 15 低温側再生器 16 低温部中温側熱交換器 18 ピストン 19 補助シリンダ DESCRIPTION OF SYMBOLS 1 High temperature side cylinder 2 Low temperature side cylinder 3 High temperature side displacer 4 High temperature room 5 High temperature side middle temperature room 6 Low temperature side displacer 7 Low temperature room 8 Low temperature side middle temperature room 10 High temperature side heat exchanger 11 High temperature side regenerator 12 High temperature part middle temperature side heat exchange 14 Low-temperature side heat exchanger 15 Low-temperature side regenerator 16 Low-temperature part middle-temperature side heat exchanger 18 Piston 19 Auxiliary cylinder
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 9/14 510 F25B 9/14 520 F02G 1/05 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) F25B 9/14 510 F25B 9/14 520 F02G 1/05
Claims (1)
シリンダ内を高温室と中温室と低温室とに区画する高温
側ディスプレーサ及び低温側ディスプレーサと、高温室
と中温室とをつなぐガス流路に配置された作動ガス加熱
用の高温側熱交換器と高温側再生器及び中温側熱交換器
と、低温室と中温室とをつなぐガス流路に配置された低
温側熱交換器と低温側再生器及び中温側熱交換器とから
成る熱ガス機関において、前記中温室及び/又は前記高
温室に補助シリンダを設け、該補助シリンダの容積を高
温側ディスプレーサの作動に応じて変動させることによ
り前記中温室のガス移動容積を前記高温室のガス移動容
積よりも大きく設定したことを特徴とする熱ガス機関。1. A cylinder filled with a working gas, a high-temperature side displacer and a low-temperature side displacer for partitioning the cylinder into a high-temperature chamber, a medium-temperature chamber, and a low-temperature chamber, and a gas passage connecting the high-temperature chamber and the medium-temperature chamber. A high-temperature side heat exchanger for heating working gas, a high-temperature side regenerator and a medium-temperature side heat exchanger, and a low-temperature side heat exchanger and a low-temperature side disposed in a gas flow path connecting the low-temperature room and the medium-temperature room In a hot gas engine comprising a regenerator and a medium temperature side heat exchanger, an auxiliary cylinder is provided in the intermediate temperature chamber and / or the high temperature chamber , and the volume of the auxiliary cylinder is increased.
By changing it according to the operation of the warm side displacer,
Hot gas engine, characterized in that the gas transfer volume of the in the greenhouse were greater than the gas movement the volume of the hot chamber Ri.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3324727A JP3043153B2 (en) | 1991-12-09 | 1991-12-09 | Hot gas engine |
US07/987,215 US5400599A (en) | 1991-12-09 | 1992-12-08 | Hot gas machine |
CN92114812A CN1042256C (en) | 1991-12-09 | 1992-12-09 | Heat engine |
DE19924241463 DE4241463A1 (en) | 1991-12-09 | 1992-12-09 | Stirling motor with three heat sources at different temperatures - has cylinder divided into high, medium and low temperature chambers, and has variable gas displacement volumes in high and medium temp. parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3324727A JP3043153B2 (en) | 1991-12-09 | 1991-12-09 | Hot gas engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05157385A JPH05157385A (en) | 1993-06-22 |
JP3043153B2 true JP3043153B2 (en) | 2000-05-22 |
Family
ID=18169031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3324727A Expired - Fee Related JP3043153B2 (en) | 1991-12-09 | 1991-12-09 | Hot gas engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3043153B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102379089B1 (en) * | 2015-10-13 | 2022-03-28 | 경북대학교 산학협력단 | Vuilleumier heat pump using gas spring |
KR102379086B1 (en) * | 2015-10-13 | 2022-03-28 | 경북대학교 산학협력단 | Vuilleumier Heat Pump |
-
1991
- 1991-12-09 JP JP3324727A patent/JP3043153B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05157385A (en) | 1993-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4416114A (en) | Thermal regenerative machine | |
US9828942B2 (en) | Thermal energy recovery system | |
JPS62223577A (en) | Heat drive heat pump | |
JPS58500450A (en) | Stirling engine with parallel flow heat exchanger | |
JPH05248720A (en) | Thermal-compression heat pump | |
JPH06101922A (en) | Vuilleumier heat pump apparatus | |
US5400599A (en) | Hot gas machine | |
JP3043153B2 (en) | Hot gas engine | |
EP0162868B1 (en) | Stirling cycle engine and heat pump | |
JP3043154B2 (en) | Hot gas engine | |
JPH05157388A (en) | Hot gas engine | |
JPH05157387A (en) | Hot gas engine | |
JP3357774B2 (en) | External combustion engine piston | |
JP3022012B2 (en) | Hot gas engine | |
JP3101448B2 (en) | Hot gas engine | |
JP3286482B2 (en) | Free piston Vilmier cycle engine | |
JP3071053B2 (en) | Hot gas engine | |
JPH06173763A (en) | Hot gas engine | |
JP3071052B2 (en) | Hot gas engine | |
JP3695813B2 (en) | Free-piston Virmier cycle engine | |
CN118128662A (en) | Single piston Stirling engine operating in Brayton cycle | |
JPH0718612B2 (en) | Refrigeration equipment | |
JPH0645811Y2 (en) | Chiller | |
JP2000018742A (en) | Cooling device | |
JPH05626B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |