JPS6256234B2 - - Google Patents
Info
- Publication number
- JPS6256234B2 JPS6256234B2 JP54093996A JP9399679A JPS6256234B2 JP S6256234 B2 JPS6256234 B2 JP S6256234B2 JP 54093996 A JP54093996 A JP 54093996A JP 9399679 A JP9399679 A JP 9399679A JP S6256234 B2 JPS6256234 B2 JP S6256234B2
- Authority
- JP
- Japan
- Prior art keywords
- base material
- graphite
- hydrocarbon liquid
- pyrographite
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 47
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 29
- 239000002131 composite material Substances 0.000 claims description 25
- 229910002804 graphite Inorganic materials 0.000 claims description 23
- 239000010439 graphite Substances 0.000 claims description 23
- 229930195733 hydrocarbon Natural products 0.000 claims description 23
- 150000002430 hydrocarbons Chemical class 0.000 claims description 23
- 239000004215 Carbon black (E152) Substances 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 13
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910021398 atomic carbon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001179 chromel Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
- Chemically Coating (AREA)
- Chemical Vapour Deposition (AREA)
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】
本発明は、高温耐久性等を有する金属、炭素又
はこれらの混合物を母材として、炭化水素液中に
おいて前記の母材を加熱処理し析出したグラフア
イト(以下、パイログラフアイトと呼ぶ。)の被
覆層を形成した複合材の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention uses metal, carbon, or a mixture thereof having high-temperature durability as a base material, and produces graphite (hereinafter referred to as pyrocarbon) precipitated by heat-treating the base material in a hydrocarbon liquid. The present invention relates to a method for manufacturing a composite material having a coating layer formed of graphite (referred to as graphite).
従来、パイログラフアイトは、母材を真空炉中
において所定の温度および時間のもとに加熱し、
該母材の表面に気相の炭化水素を吹きつけ遊離炭
素を該表面に沈積し被覆層を形成するようにして
いるので緻密で強度が高く、且つ母材表面全体に
被覆することができなかつた。即ち従来は母材の
一面に低密度のパイログラフアイトを析出した複
合材が提供されているだけである。 Conventionally, pyrographite is produced by heating a base material in a vacuum furnace at a predetermined temperature and time.
Gas-phase hydrocarbon is sprayed onto the surface of the base material to deposit free carbon on the surface to form a coating layer, which is dense and strong, and does not cover the entire surface of the base material. Ta. That is, conventionally, only composite materials in which low-density pyrographicite is precipitated on one surface of a base material have been provided.
本発明は母材の表層に、均一且つ緻密なパイロ
グラフアイト層を形成し、該パイログラフアイト
層を形成した複合材を少なくとも2以上をグラフ
アイト、炭素、金属、又は樹脂の結合材で固定し
結合力を高めた状態で一体に形成したグラフアイ
ト複合材の製造方法を提供することを目的とす
る。 The present invention forms a uniform and dense pyrographite layer on the surface layer of a base material, and fixes at least two or more composite materials with the pyrographite layer formed thereon with a binder of graphite, carbon, metal, or resin. An object of the present invention is to provide a method for manufacturing a graphite composite material that is integrally formed with increased bonding strength.
次に、本発明の概要を述べる。反応室内に予熱
し適温に保つた炭化水素液を供給し、反応室には
所定の温度および時間、滞流し適正な分解により
パイログラフアイトを析出し得るための加熱器と
制御機構及び液の循環機構を設ける。タングステ
ン、炭化タングステン、ニクロム、クロメルのよ
うな金属、グラフアイトその他の炭素類成形材を
母材として用いる。勿論抵抗体、耐熱体以外には
他の金属、合金が用いられる。これらの母材は、
単一線状体、モノフイラメント、マルチフイラメ
ント、より線、ロープのようなひも体として、ま
た板状体として、また布地体として、さらに所望
のパイログラフアイト複合材を得られるのに適当
した形体として形成したものを用いる。 Next, an outline of the present invention will be described. A heater, control mechanism, and liquid circulation are provided to supply a preheated hydrocarbon liquid and keep it at an appropriate temperature into the reaction chamber, and allow it to remain in the reaction chamber at a predetermined temperature and time to precipitate pyrographicite through appropriate decomposition. A mechanism will be established. Metals such as tungsten, tungsten carbide, nichrome and chromel, graphite and other carbonaceous forming materials are used as the base material. Of course, other metals and alloys can be used in addition to the resistor and heat resistor. These base materials are
As a single filament, a monofilament, a multifilament, a strand, a string such as a rope, a plate, a fabric, and any shape suitable for obtaining the desired pyrographite composite. Use the formed one.
いま、ひも状体の母材を用いた場合を説明す
る。母材を、反応器中の電極支持体間に配置し、
所定の予熱温度に保持した炭化水素液を流量制御
しながら前記の母材の周囲に供給し、反応器内の
母材を加熱器により所定の温度に加熱して周りの
炭化水素液を加熱分解し、パイログラフアイトを
前記の母材の全面に析出沈着させて層を形成す
る。母材の加熱は、前記の電極を用いて、母材に
通電加熱し該母材の周の炭化水素液の気化分解に
よる析出パイログラフアイト層を形成することも
できる。また高周波コイルにより母材を誘導加熱
により均一加熱をし、適正な液流制御をし析出パ
イログラフアイト層を形成することもできる。板
状体についても同様に行う。 Now, a case will be explained in which a string-like base material is used. a matrix is placed between the electrode supports in the reactor;
The hydrocarbon liquid maintained at a predetermined preheating temperature is supplied around the base material while controlling the flow rate, and the base material in the reactor is heated to the predetermined temperature with a heater to thermally decompose the surrounding hydrocarbon liquid. Then, pyrographicite is precipitated and deposited on the entire surface of the base material to form a layer. The base material can also be heated by applying electricity to the base material using the electrode described above to form a precipitated pyrographicite layer by vaporizing and decomposing the hydrocarbon liquid around the base material. Furthermore, it is also possible to uniformly heat the base material by induction heating using a high-frequency coil and appropriately control the liquid flow to form a precipitated pyrographite layer. The same process is performed for the plate-shaped body.
次に、本発明を若干の実施例について図面に基
づいて説明する。第1図は製造装置の実施例図
を、第2図、第3図AとBおよび第4図は本発明
のユニツトグラフアイト複合材の例示図を示し
た。 Next, some embodiments of the present invention will be explained based on the drawings. FIG. 1 shows an embodiment of the manufacturing apparatus, and FIGS. 2, 3, A and B, and 4 show examples of the unitographite composite material of the present invention.
第1図において、コントローラー24は、炭化
水素11Aの循環貯槽9、制御弁6Aと6Bと6
C、ポンプ6、電源5,14、炭化水素分解度セ
ンサー22(同感知子21)、それぞれ回路19
と16と、15と、12と、18をもつて連結
し、炭化水素液11Aを貯槽9中において所定の
温度に、予備加熱し、循環ポンプ6をもつて、反
応室1の送入口2Bから送りこみ、送出口2Aか
ら配管10を通し、所定の制御速度をもつて制御
弁6Cを通し、もとの循環槽9にもどす。反応室
1内のコイル3は、電源5を、コントローラー2
4をもつて、センサー22の検知を導入し一定の
温度に、母材7を誘導加熱により加熱する。加熱
温度は300〜800℃程度の範囲、例えば650℃に加
熱する。また母材7を支持する装着部4Aと4B
の間に通電電源14を接続して通電加熱する。電
源14もコントローラー24により制御し母材7
の温度制御することを可能にする。なお母材7の
加熱は電源5,14のいずれか一方を利用しても
よい。 In FIG. 1, the controller 24 includes a circulation storage tank 9 for hydrocarbon 11A, control valves 6A, 6B, and 6
C, pump 6, power supply 5, 14, hydrocarbon decomposition sensor 22 (same sensor 21), each circuit 19
16, 15, 12, and 18, the hydrocarbon liquid 11A is preheated to a predetermined temperature in the storage tank 9, and then the hydrocarbon liquid 11A is preheated to a predetermined temperature in the storage tank 9. The liquid is sent through the pipe 10 from the outlet 2A, passed through the control valve 6C at a predetermined controlled speed, and returned to the original circulation tank 9. The coil 3 in the reaction chamber 1 is connected to a power source 5 and a controller 2.
4, the detection by the sensor 22 is introduced and the base material 7 is heated to a constant temperature by induction heating. The heating temperature ranges from about 300 to 800°C, for example, 650°C. Also, mounting parts 4A and 4B that support the base material 7
An energizing power source 14 is connected between the two, and heating is performed by energizing. The power supply 14 is also controlled by the controller 24 and the base material 7
Allows you to control the temperature. Note that either one of the power sources 5 and 14 may be used to heat the base material 7.
いま、タングステンよりなる母材7を、支持部
4Aと4Bの間に配装する。センサー22により
検知子21により内部の炭化水素の分解を感知
し、所要の条件に維持するよう、制御する。母材
7はコイル3により誘導加熱され所定の温度に加
熱制御される。こうして、母材タングステン7の
全面に炭化水素の気化、分解析出および母材の面
に原子炭素をパイログラフアイトとして沈積し、
母材タングステンの外周にパイログラフアイト沈
着層を所定の厚さに全面に形成する。このパイロ
グラフアイトは、均一な厚さと緻密な層を制御し
て形成された表層を形成し、その断面は、例えば
第4図に部分拡大して示したように被覆層8が母
材7の周に密着する。この層は、耐熱性が良好で
あり、耐摩耗性が高く、また硬度が高い。母材7
をグラフアイトにして用いて、前記のタングステ
ンの場合と同様に、グラフアイトの周に、パイロ
グラフアイト層を所望のものに、きわめて知時間
に生成することができた。母材はひもに代替して
第2図に例示した板片7を母材に角板状に形成し
たパイログラフアイト層8を有する複合材を得
た。次に第3図A図に例示したユニツト、すなわ
ち複合グラフアイト材単体を接触して少なくとも
2個以上を配置したユニツトの間隙を前記の単体
の場合と同様に、制御して、母材としてユニツト
グラフアイト複合材を得た。また同B図に例示の
所定の間隔に配置した少なくとも2以上の単体か
らなるユニツトの間隙をパイログラフアイトで沈
填したものを得た。勿論母材複数個を第3図のよ
うに1体に析出パイログラフアイトで複合化する
ことができ、また複合グラフアイト単体の複数を
金属、グラフアイトで第3図のように複合化させ
ることもできる。 Now, the base material 7 made of tungsten is placed between the support parts 4A and 4B. The decomposition of internal hydrocarbons is detected by the sensor 22 and the detector 21, and control is performed to maintain the required conditions. The base material 7 is heated by induction by the coil 3 and heated to a predetermined temperature. In this way, hydrocarbons are vaporized and separated over the entire surface of the base material tungsten 7, and atomic carbon is deposited as pyrographicite on the surface of the base material,
A pyrographicite deposited layer is formed on the entire surface of the tungsten base material to a predetermined thickness. This pyrographite forms a surface layer with a controlled uniform thickness and dense layer, and its cross section shows that the coating layer 8 is the base material 7, for example, as shown in FIG. Close to the surroundings. This layer has good heat resistance, high wear resistance, and high hardness. Base material 7
Using graphite, it was possible to form a desired pyrographite layer around the graphite in a very short time, as in the case of tungsten. A composite material having a pyrographite layer 8 formed in the form of a rectangular plate using the plate piece 7 illustrated in FIG. 2 as the base material was obtained by replacing the base material with a string. Next, the gap of the unit illustrated in FIG. 3A, that is, the unit in which at least two composite graphite materials are arranged in contact with each other, is controlled in the same manner as in the case of the single component, and the unit is used as the base material. A graphite composite was obtained. Also, as shown in Figure B, the gaps between at least two or more single units arranged at predetermined intervals were filled with pyrographicite. Of course, multiple base materials can be composited into one with precipitated pyrographite as shown in Figure 3, and multiple composite graphite can be composited with metal and graphite as shown in Figure 3. You can also do it.
これらの本発明のグラフアイト複合材は、母材
表面が環境の気・液の相に接しないから、母材の
特性を維持して使用し、適合しない相中において
もパイログラフアイトの高い耐用特性を有する表
層を利用し、電気抵抗体、ヒーター、通電体また
は構造体の部品として用いられる。前記のユニツ
ト・グラフアイト複合材も、さらに1体として扱
つて用いられる。また母材に通電し高温にしても
表層部が保護を与える。例えば、耐摩耗性、高機
械的強度、耐熱性および高い硬度を有する特性
は、抵抗体のほか、さらにガスケツト、パツキ
ン、メカニカルシール、軸受部品または密封材の
主要部などに用いて秀れた効果を示す。 Since the graphite composite material of the present invention does not have the base material surface in contact with the gas or liquid phase of the environment, it can be used while maintaining the properties of the base material, and the pyrographite has high durability even in incompatible phases. Utilizing the surface layer with these characteristics, it can be used as parts for electrical resistors, heaters, current-carrying bodies, or structures. The above-mentioned unit graphite composite material can also be used as a single unit. The surface layer also provides protection even when the base material is heated to high temperatures. For example, its characteristics of wear resistance, high mechanical strength, heat resistance, and high hardness make it excellent for use in resistors, gaskets, packings, mechanical seals, bearing parts, and the main parts of sealing materials. shows.
また、本発明のグラフアイト複合材は、引例の
炭化水素液を変化し、すでに説明した650℃の温
度を中心に、より高温にまたはより低温に変化し
て行うことができた。またパイログラフアイト層
の表面に金属処理による金属被覆を形成しまたは
該金属被覆層の面にパイログラフアイト層を形成
させた複合材を用いることができる。 Furthermore, the graphite composite material of the present invention could be produced by changing the hydrocarbon liquid in the cited example, and by changing the temperature from the already explained 650° C. to higher or lower temperatures. Further, a composite material can be used in which a metal coating is formed by metal treatment on the surface of a pyrographite layer, or a pyrographite layer is formed on the surface of the metal coating layer.
以上のように本発明のグラフアイト複合材の製
造方法は、母材を炭化水素液の充填された反応器
中に配装置し、前記炭化水素液を循環ポンプによ
つて予熱貯蔵槽との間を制御し循環させながら前
記母材を直接若しくは間接的加熱手段により加熱
し、前記母材の全表面に前記炭化水素液から熱分
解するパイログラフアイト析出被覆する工程を採
るから、母材の表面には炭化水素液の循環制御に
よつて高スピードでパイログラフアイトを析出被
覆することができ、そのパイログラフアイト被覆
槽は炭化水素液及び母材の加熱温度制御によつて
均一且つ緻密な良好な層を形成することができ
る。そして本発明は次の工程で、前記パイログラ
フアイトを析出被複した複合材を少なくとも2以
上を接触又は間隔を置いて設け、該複合材間をグ
ラフアイト、炭素、金属、又は樹脂の結合材で固
定し一体に成形するようにしたものであるから、
母材の任意の組合せ構造体が得られ、母材の分散
強化した構造体を容易に得られる。 As described above, in the method for producing a graphite composite material of the present invention, a base material is placed in a reactor filled with a hydrocarbon liquid, and the hydrocarbon liquid is transferred between a preheating storage tank and a preheating storage tank using a circulating pump. The base material is heated by direct or indirect heating means while controlled and circulated, and the entire surface of the base material is coated with pyrographite which is thermally decomposed from the hydrocarbon liquid. By controlling the circulation of the hydrocarbon liquid, pyrographite can be deposited and coated at high speed, and the pyrographite coating tank can be coated with a uniform and dense coating by controlling the heating temperature of the hydrocarbon liquid and base material. can form layers. Then, in the next step, the present invention comprises providing at least two composite materials in which the pyrographite is precipitated and deposited thereon, in contact with each other or with a space between them, and connecting the composite materials with a binder of graphite, carbon, metal, or resin. Because it is fixed in place and molded in one piece,
A structure with any combination of base materials can be obtained, and a structure in which the base materials are dispersed and strengthened can be easily obtained.
又製造される複合材は母材の表面がパイログラ
フアイトで覆われ、外相と遮断し、高い硬度、高
い機械的強度、高い耐摩性、耐蝕性等を有し、母
材をパイログラフアイトで覆うことによつて任意
の母材の2以上の複合化を結合材の結合力を高め
た状態で高強度の複合体を得ることができる。こ
れにより極めて広い範囲に亘り有効な特性を利用
することができ、グラフアイト複合材として広く
活用することができる。 In addition, the manufactured composite material has the surface of the base material covered with pyrographite to isolate it from the external phase, and has high hardness, high mechanical strength, high wear resistance, and corrosion resistance. By covering, a high-strength composite can be obtained by combining two or more arbitrary base materials and increasing the bonding strength of the binder. As a result, effective properties can be utilized over an extremely wide range, and it can be widely used as a graphite composite material.
第1図は本発明のグラフアイト複合材の形成を
示す装置の正面断面図。第2図は斜視図をもつ
て、第3図A図と同B図は平面断面図をもつて、
第4図は側面断面1部拡大図をもつて、本発明の
グラフアイト複合材の例示をした。
7……母材、8……パイログラフアイト、1
1,11A……炭化水素液、1……反応器、6…
…循環制御ポンプ、6A,6B,6C……制御
弁、3……加熱器(コイル)、9……循環貯槽、
4A,4B……支持部、24……コントローラ
ー、21……感知子、22……センサー。
FIG. 1 is a front sectional view of an apparatus illustrating the formation of a graphite composite material of the present invention. FIG. 2 is a perspective view, and FIGS. 3A and 3B are plan sectional views.
FIG. 4 illustrates the graphite composite material of the present invention with a partially enlarged side cross-sectional view. 7...Base material, 8...Pyrographite, 1
1,11A...Hydrocarbon liquid, 1...Reactor, 6...
...Circulation control pump, 6A, 6B, 6C... Control valve, 3... Heater (coil), 9... Circulation storage tank,
4A, 4B...Support part, 24...Controller, 21...Sensor, 22...Sensor.
Claims (1)
フアイト、又は炭素母材を炭化水素液の充填され
た反応器中に配装し、前記炭化水素液を循環ポン
プによつて予熱貯蔵槽との間を制御し循環させな
がら前記母材を直接若しくは間接的加熱手段によ
り加熱し、前記母材の全表面に前記炭化水素液か
ら熱分解するパイログラフアイトを析出被覆する
工程と、前記パイログラフアイトを析出被覆した
複合材を少なくとも2以上を接触又は間隔を置い
て設け、該複合材間をグラフアイト、炭素、金属
又は樹脂の結合材で固定し一体に成形する工程と
から成るグラフアイト複合材の製造方法。1. A wire, rod, plate, or other shaped metal, graphite, or carbon matrix is arranged in a reactor filled with a hydrocarbon liquid, and the hydrocarbon liquid is transferred to a preheating storage tank by a circulation pump. heating said base material by direct or indirect heating means while controlling and circulating between said hydrocarbon liquid, and depositing and coating pyrographite which is thermally decomposed from said hydrocarbon liquid on the entire surface of said base material; Graphite comprising the step of providing at least two or more composite materials precipitated and coated with graphite in contact with each other or at intervals, and fixing the composite materials with a binder of graphite, carbon, metal, or resin and molding them into one piece. Method of manufacturing composite materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9399679A JPS5617915A (en) | 1979-07-24 | 1979-07-24 | Graphite composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9399679A JPS5617915A (en) | 1979-07-24 | 1979-07-24 | Graphite composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5617915A JPS5617915A (en) | 1981-02-20 |
JPS6256234B2 true JPS6256234B2 (en) | 1987-11-25 |
Family
ID=14098004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9399679A Granted JPS5617915A (en) | 1979-07-24 | 1979-07-24 | Graphite composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5617915A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2516914B1 (en) * | 1981-11-26 | 1986-03-14 | Commissariat Energie Atomique | METHOD FOR DENSIFICATION OF A POROUS STRUCTURE |
FR2544661A1 (en) * | 1983-04-19 | 1984-10-26 | Europ Propulsion | COMPOSITE MATERIALS CONSISTING OF A RESIN CARBON COKE MATRIX, REINFORCED BY REFRACTORY FIBERS COATED WITH PYROLYTIC CARBON, AND PROCESS FOR OBTAINING THEM |
JPH0672004B2 (en) * | 1985-03-22 | 1994-09-14 | 日立化成工業株式会社 | Manufacturing method of pyrolytic carbon coated graphite products |
JPS6330385A (en) * | 1986-07-21 | 1988-02-09 | 東洋炭素株式会社 | Protective carbonaceous material for heating |
FR2760742B1 (en) * | 1997-03-13 | 1999-05-28 | Europ Propulsion | METHOD FOR DENSIFICATION OF A POROUS STRUCTURE WITH CIRCULATION OF THE PRECURSOR AND ASSOCIATED DEVICE |
JP4581055B2 (en) * | 2004-06-10 | 2010-11-17 | 株式会社ピュアロンジャパン | Carbon film manufacturing apparatus and manufacturing method thereof |
JP4704013B2 (en) * | 2004-11-16 | 2011-06-15 | 財団法人電力中央研究所 | Carbon nanotube production method and apparatus |
JP2013023746A (en) * | 2011-07-23 | 2013-02-04 | Toshiyuki Onishi | Method for forming graphite on metal surface |
JP5836050B2 (en) * | 2011-10-14 | 2015-12-24 | 株式会社Ihiエアロスペース | Method and apparatus for densifying porous structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6037045A (en) * | 1983-08-09 | 1985-02-26 | Ricoh Co Ltd | Information memory |
-
1979
- 1979-07-24 JP JP9399679A patent/JPS5617915A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6037045A (en) * | 1983-08-09 | 1985-02-26 | Ricoh Co Ltd | Information memory |
Also Published As
Publication number | Publication date |
---|---|
JPS5617915A (en) | 1981-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3490087B2 (en) | Vapor-phase chemical infiltration of substances into porous substrates at controlled surface temperatures | |
US3172774A (en) | Method of forming composite graphite coated article | |
US3160517A (en) | Method of depositing metals and metallic compounds throughout the pores of a porous body | |
RU2410851C2 (en) | Device for sealing porous material | |
US3684585A (en) | Method for forming adherent titanium carbide coatings on metal or composite substrates | |
JPS6256234B2 (en) | ||
CN1044010C (en) | Method for resistance heating of metal using a pyrolytic boron nitride coated graphite boat | |
JPH049757B2 (en) | ||
WO1998051127A1 (en) | Deposited resistive coatings | |
JPH0536229B2 (en) | ||
US3114961A (en) | Treatment of porous bodies | |
JP3107571B2 (en) | CVI method for permeating a pyrolytic carbon matrix into a porous substrate having a temperature gradient formed | |
US3843950A (en) | Porous electric heating element | |
KR880007362A (en) | Condensation diamond | |
JP3929397B2 (en) | Method and apparatus for manufacturing organic EL element | |
US3725110A (en) | Process of coating articles with pyrolytic graphite and coated articles made in accordance with the process | |
US3446607A (en) | Iridium coated graphite | |
US3458341A (en) | Metal boride-metal carbide-graphite deposition | |
Restall et al. | Alternative processes and treatments | |
US3552939A (en) | Metal carbide coatings on metal substrates | |
CA1093395A (en) | Chemical vapor deposition | |
US2694377A (en) | System of gas plating | |
JPH0325880A (en) | Infrared heater | |
JPH02204391A (en) | Crucible for molecular beam source | |
JPS58120510A (en) | Depositing method for carbon by thermal decomposition |