JPS6256221B2 - - Google Patents

Info

Publication number
JPS6256221B2
JPS6256221B2 JP59112763A JP11276384A JPS6256221B2 JP S6256221 B2 JPS6256221 B2 JP S6256221B2 JP 59112763 A JP59112763 A JP 59112763A JP 11276384 A JP11276384 A JP 11276384A JP S6256221 B2 JPS6256221 B2 JP S6256221B2
Authority
JP
Japan
Prior art keywords
alloy
added
toughness
alloys
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59112763A
Other languages
Japanese (ja)
Other versions
JPS60255949A (en
Inventor
Mitsuru Adachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Aluminum Co Ltd
Original Assignee
Mitsui Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Aluminum Co Ltd filed Critical Mitsui Aluminum Co Ltd
Priority to JP11276384A priority Critical patent/JPS60255949A/en
Publication of JPS60255949A publication Critical patent/JPS60255949A/en
Publication of JPS6256221B2 publication Critical patent/JPS6256221B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は極めて短い熱処理時間で高い靭性と
AC4C合金程度の引張強さを有する不可避的不銃
物としてFeを含有するAl―Si―Mg系鋳物用合金
に関する。 従来、Al―Si―Mg系合金、とりわけJIS
AC4C合金は、熱処理及び改良処理(Sr、Na、
Sbなどの添加)により優れた強度と靭性を示
し、さらに鋳造性が良好なことなどから、各種産
業部品に広く使用されている。しかし、この合金
は、高い靭性を得るために通常530℃程度で6〜
9時間の溶体化処理と140〜180℃で3〜6時間の
焼戻し処理が施されているが、この熱処理費が鋳
物製品の加工費に少なからぬウエイトを占めてい
る。このため、製品コストの低減よび熱処理炉の
作業能率の向上から熱処理時間の短縮化は大きな
課題である。 また、改良処理AC4C合金の中では最も高い靭
性を安定して示すSb添加AC4C合金は、実操業で
用いられる鋳型(300〜400℃に加熱された塗型剤
が塗られた金型)では、とりわけ薄肉部や急冷部
において、鋳造温度の低下に伴い、とくに720℃
以下では、靭性低下の原因となる100μ前後の糸
状または棒状のMg―Sb化合物が晶出する傾向が
強い。このため、Sbを含まない合金に比べる
と、溶湯の温度管理が煩わしいという欠点があつ
た。 本発明の目的は前述の2つの問題を解決する鋳
物用アルミニウム合金を提供することである。 特定発明は、Si4〜6%、Mg0.3〜0.6%、
Sb0.05〜0.2%、不可避的不純物たるFe、残部ア
ルミニウムよりなる鋳物用アルミニウム合金であ
る。 特許請求の範囲の第2番目に記載された発明
は、特定発明の合金にTi0.2%以下添加した鋳物
用アルミニウム合金である。 特許請求の範囲の第3番目に記載された発明
は、特定発明の合金にSn0.005〜0.05%添加した
鋳物用アルミニウム合金である。 特許請求の範囲の第4番目に記載された発明
は、特定発明の合金にSn0.005〜0.05%及びTi0.2
%以下添加した鋳物用アルミニウム合金である。 本発明の鋳物用アルミニウム合金における各成
分の限定理由は次のとおりである。 Siは、鋳造性改善のために必要不可欠の元素で
あり、そのために4%以上添加するが、6%を越
えると共晶Si量が多くなり、かつ共晶Siのサイズ
が粗くなるため靭性が低下するので4〜6%が適
当である。さらに、Sbを添加したAC4C相当のSi
量の合金を実操業の金型鋳造法を用いて720℃以
下で鋳造した場合、靭性低下の原因となる糸状ま
たは棒状のMg―Sb化合物が薄肉部、急冷部に晶
出しやすいが、本発明の範囲ではそれが比較的晶
出しにくく、高靭性が低温鋳造でも得られて好適
である。 Mgは、熱処理によりMg2Siを析出させ強度を
高める効果を有し、そのために0.3%以上添加す
るが、0.6%を越える靭性が低下するので、0.3〜
0.6%が好適である。 Sbは、合金中の共晶SiをJIS AC4C相当のSi量
を含む合金のそれよりも著しく微細化する効果を
有し、そのために0.05%以上添加するが、0.2%
より多量添加してもその効果の向上は余り望めな
いので、0.05〜0.2%が適当である。 Tiは、結晶粒を微細化させ、靭性を高める効
果を有するので、そのために添加するが、0.2%
より多量添加してもその効果の向上は望めず、か
えつてAl―Ti系の化合物が多量晶出して靭性を
低下させるので、0.2%以下が適当である。 Snは、特定発明の合金が溶体化処理・焼入れ
後直ちに焼戻し処理が行われず室温に放置される
場合に得られる強度を向上させる効果を有すると
共に、同一熱処理条件で得られる特定発明の含金
の強度を低い焼戻し温度もしくは短い焼戻し時間
で得られる効果を有するので、0.005〜0.05%添
加する。 次に本発明の実施例を示す。 実施例 1 図面は本発明合金および比較合金に対してT6
処理(530℃×X時間→水焼入れ→25℃×30分→
140℃×4時間なる熱処理)を行つた後の機械的
性質を示すグラフである。各合金番号の組成につ
いては第1表をみよ。なお、液体化時間がゼロに
おける引張強さおよび伸びはT6処理前の値を示
す。 JIS AC4C組成の合金では、鋳造材(熱処理
前)で最高の伸びを示すのはNa処理合金(合金
番号―5の合金)であり、熱処理材で最高の伸
びを示すものはSb処理合金(合金番号―3の
合金)である。 Na処理合金のうちSi4〜6%のもの(合金番号
―2)の鋳造材は大きい伸びを示しており、
Na添加の効果が認められるが、熱処理材ではNa
添加の効果はほとんど認められない。 本発明合金は、Sbを添加したことにより、鋳
造材はNa処理合金(合金番号―2、―5)
よりも高い靭性を示し、また熱処理により比較合
金(合金番号―1ないし―5)のいずれより
も、強度をほとんど低下させることなく、高い靭
性を得た。このため、AC4C組成の機械的性質を
得ようとすれば従来よりもずつと短い熱処理時間
で済む。 第4表は図面に基づいてSb添加AC4C合金の1
例としての―3合金を本発明合金(―1)と
対比して示したものである。―3合金は溶体化
処理が2時間のときに伸びが20%であるのに対し
て、―合金のそれは24%に達している。そし
て―3合金の伸びが24%に達するには最低4時
間はかかる。すなわち―合金の強度と伸びの
値が―3合金のそれと同程度を示すに要する溶
体化処理は後者の1/2で済む。 実施例 2 第2表は合金のミクロ組織(糸状Mg―Sbもし
くは棒状Mg―Sb)に及ぼす鋳造温度の影響を示
す実験結果である。合金番号―1、―2、
―3の合金の組成は第1表をみよ。鋳造条件は、
内容積で、長さ100mm、幅20mm、高さ30mm、肉厚
10mmの合金を用い、金型の内部に塗型剤をコーテ
イングし、300℃に加熱した。 第2表により、本発明合金―1および―2
は、比較合金―3に比べると、鋳造温度が低い
場合であつても、靭性低下の原因となるMg−Sb
化合物が比較的晶出しにくいことが実証されてい
る。 実施例 3 第3表は合金の機械的性質に及ぼす熱処理条件
の影響を示す。合金番号―2、―3、―4
の合金の組成は第1表をみよ。溶体化条件は530
℃で3時間加熱した。 Sn無添加の合金番号―1、―2の合金に
おいては、焼入れ後室温放置をすることにより、
引張強さ、耐力が低下し、伸びが高くなつてい
る。 一方、Sn添加の合金番号―3、―4の合
金においては、焼入れ後室温放置を行つても強度
の低下が無いため、低い焼戻し温度、短い焼戻し
時間で、室温放置を行うSn無添加合金の機械的
性質が得られる。 本発明の効果は次のとおりである。 本発明合金は、Sb添加AC4C合金の有する強
度とほぼ同程度の強度が得られると共に、その
溶体化時間がSb添加AC4C合金と同じ時間のと
きには前者の伸びが大であり、両者の伸びが同
程度を示すに要する溶体化時間は前者が後者よ
りも著しく短い。 本発明合金は720℃以下の温度で鋳造しても
糸状または棒状のMg―Sb化合物が晶出しにく
いので靭性が低下しない。 上記及びに基づき、本発明合金は溶体化
時間の大幅な短縮化及び鋳造温度を低くするこ
とが可能になつた結果、省エネルギーに貢献す
るところが大である。
The present invention provides high toughness with extremely short heat treatment time.
This invention relates to an Al--Si--Mg based foundry alloy that has a tensile strength comparable to that of AC4C alloy and contains Fe as an unavoidable non-gun material. Conventionally, Al-Si-Mg alloys, especially JIS
AC4C alloy is heat treated and modified (Sr, Na,
It is widely used in various industrial parts because it exhibits excellent strength and toughness due to the addition of Sb, etc.) and has good castability. However, in order to obtain high toughness, this alloy is usually
A solution treatment for 9 hours and a tempering treatment for 3 to 6 hours at 140 to 180°C are performed, and the cost of this heat treatment accounts for a considerable amount of the processing cost of the cast product. Therefore, shortening the heat treatment time is a major issue in order to reduce product costs and improve the working efficiency of the heat treatment furnace. In addition, the Sb-added AC4C alloy, which stably exhibits the highest toughness among the improved processed AC4C alloys, is Particularly in thin-walled parts and rapidly cooled parts, as the casting temperature decreases, especially at 720℃.
Below, there is a strong tendency for thread-like or rod-like Mg-Sb compounds of around 100 μm to crystallize, which causes a decrease in toughness. Therefore, compared to alloys that do not contain Sb, they have the disadvantage that temperature control of the molten metal is more troublesome. The object of the present invention is to provide an aluminum alloy for casting that solves the two problems mentioned above. The specified invention is Si4~6%, Mg0.3~0.6%,
It is an aluminum alloy for castings consisting of 0.05 to 0.2% Sb, Fe as an unavoidable impurity, and the balance aluminum. The second aspect of the invention is an aluminum alloy for castings in which 0.2% or less of Ti is added to the alloy of the specific invention. The third aspect of the invention is an aluminum alloy for castings in which 0.005 to 0.05% of Sn is added to the alloy of the specific invention. The fourth aspect of the invention is to add 0.005 to 0.05% Sn and 0.2% Ti to the alloy of the specific invention.
This is an aluminum alloy for castings with addition of less than %. The reasons for limiting each component in the aluminum alloy for casting of the present invention are as follows. Si is an essential element for improving castability, and for this purpose it is added in an amount of 4% or more, but if it exceeds 6%, the amount of eutectic Si increases and the size of the eutectic Si becomes coarse, resulting in poor toughness. 4 to 6% is appropriate. In addition, Si equivalent to AC4C with Sb added
When a large amount of alloy is cast at 720°C or lower using an actual die casting method, thread-like or rod-like Mg-Sb compounds, which cause a decrease in toughness, tend to crystallize in thin-walled areas and quenched areas. The range is preferable because it is relatively difficult to crystallize and high toughness can be obtained even at low temperature casting. Mg has the effect of precipitating Mg 2 Si by heat treatment and increasing strength, and for this purpose it is added in an amount of 0.3% or more, but since exceeding 0.6% toughness decreases,
0.6% is preferred. Sb has the effect of making the eutectic Si in the alloy much finer than that of an alloy containing an amount of Si equivalent to JIS AC4C, and for this purpose it is added in an amount of 0.05% or more, but 0.2%
Even if a larger amount is added, the effect cannot be improved much, so 0.05 to 0.2% is appropriate. Ti has the effect of refining crystal grains and increasing toughness, so it is added for that purpose, but 0.2%
Even if a larger amount is added, no improvement in the effect can be expected, and on the contrary, a large amount of Al--Ti based compounds will crystallize and reduce toughness, so 0.2% or less is appropriate. Sn has the effect of improving the strength obtained when the alloy of the specified invention is left at room temperature without being tempered immediately after solution treatment and quenching, and also has the effect of improving the strength of the alloy of the specified invention obtained under the same heat treatment conditions. Since it has the effect of increasing strength with a low tempering temperature or short tempering time, it is added in an amount of 0.005 to 0.05%. Next, examples of the present invention will be shown. Example 1 The drawing shows T6 for the invention alloy and comparative alloy.
Treatment (530℃ x X hours → water quenching → 25℃ x 30 minutes →
2 is a graph showing mechanical properties after heat treatment at 140° C. for 4 hours. See Table 1 for the composition of each alloy number. Note that the tensile strength and elongation at zero liquefaction time indicate the values before T6 treatment. Among alloys with JIS AC4C composition, the Na-treated alloy (alloy number -5) shows the highest elongation in the cast material (before heat treatment), and the Sb-treated alloy (alloy No. 5) shows the highest elongation in the heat-treated material. Alloy No. 3). Among the Na-treated alloys, the cast material with 4 to 6% Si (alloy number-2) shows a large elongation.
Although the effect of Na addition is recognized, Na
Almost no effect of the addition was observed. By adding Sb to the alloy of the present invention, the casting material is a Na-treated alloy (alloy numbers -2 and -5).
Furthermore, through heat treatment, higher toughness was obtained than any of the comparative alloys (alloy numbers -1 to -5) with almost no decrease in strength. Therefore, in order to obtain the mechanical properties of the AC4C composition, the heat treatment time is much shorter than that of the conventional method. Table 4 shows 1 of the Sb-added AC4C alloy based on the drawings.
The -3 alloy as an example is shown in comparison with the invention alloy (-1). The -3 alloy has an elongation of 20% after 2 hours of solution treatment, while the -3 alloy has an elongation of 24%. And it takes at least 4 hours for the -3 alloy to reach 24% elongation. In other words, in order for the strength and elongation values of the -alloy to be on the same level as those of the -3 alloy, the solution treatment required is half that of the latter. Example 2 Table 2 shows the experimental results showing the influence of casting temperature on the microstructure of the alloy (thread-like Mg-Sb or rod-like Mg-Sb). Alloy number -1, -2,
-See Table 1 for the composition of alloy 3. The casting conditions are
Internal volume: length 100mm, width 20mm, height 30mm, wall thickness
Using a 10 mm alloy, the inside of the mold was coated with a mold coating agent and heated to 300°C. According to Table 2, the present invention alloys -1 and -2
Compared to Comparative Alloy-3, Mg-Sb, which causes a decrease in toughness, even when the casting temperature is low.
It has been demonstrated that the compound is relatively resistant to crystallization. Example 3 Table 3 shows the effect of heat treatment conditions on the mechanical properties of the alloy. Alloy number -2, -3, -4
See Table 1 for the composition of the alloy. Solution condition is 530
Heated at ℃ for 3 hours. For alloys with Sn-free alloy numbers -1 and -2, by leaving them at room temperature after quenching,
Tensile strength and yield strength have decreased, and elongation has increased. On the other hand, Sn-added alloys with alloy numbers -3 and -4 do not lose their strength even if left at room temperature after quenching. Mechanical properties are obtained. The effects of the present invention are as follows. The alloy of the present invention has almost the same strength as that of the Sb-added AC4C alloy, and when the solution time is the same as that of the Sb-added AC4C alloy, the elongation of the former is greater, and the elongation of the two is the same. The solution time required to show the extent of the former is significantly shorter than the latter. Even when the alloy of the present invention is cast at a temperature of 720°C or lower, the toughness does not decrease because thread-like or rod-like Mg-Sb compounds are difficult to crystallize. Based on the above and the above, the alloy of the present invention makes it possible to significantly shorten the solution treatment time and lower the casting temperature, thereby greatly contributing to energy saving.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図面は各種の合金にT6処理を行つた場合にお
ける合金の機械的性質と溶体化時間の関係を示す
グラフである。
The drawing is a graph showing the relationship between the mechanical properties of various alloys and the solution time when T6 treatment is applied to the alloys.

Claims (1)

【特許請求の範囲】 1 Si4〜6%、Mg0.3〜0.6%、Sb0.05〜0.2%、
不可避的不純物たるFe、残部アルミニウムより
なる鋳物用アルミニウム合金。 2 Si4〜6%、Mg0.3〜0.6%、Ti0.2%以下、
Sb0.05〜0.2%、不可避的不銃物たるFe、残部ア
ルミニウムよりなる鋳物用アルミニウム合金。 3 Si4〜6%、Mg0.3〜0.6%、Sb0.05〜0.2%、
Sn0.005〜0.05%、不可避的不純物たるFe、残部
アルミニウムよりなる鋳物用アルミニウム合金。 4 Si4〜6%、Mg0.3〜0.6%、Ti0.2%以下、
Sb0.05〜0.2%、Sn0.005〜0.05%、不可避的不純
物たるFe、残部アルミニウムよりなる鋳物用ア
ルミニウム合金。
[Claims] 1 Si4-6%, Mg0.3-0.6%, Sb0.05-0.2%,
An aluminum alloy for casting, consisting of Fe as an unavoidable impurity and aluminum as the balance. 2 Si4~6%, Mg0.3~0.6%, Ti0.2% or less,
An aluminum alloy for castings consisting of 0.05-0.2% Sb, Fe which is an unavoidable non-gun material, and the balance aluminum. 3 Si4~6%, Mg0.3~0.6%, Sb0.05~0.2%,
An aluminum alloy for castings consisting of 0.005 to 0.05% Sn, Fe as an unavoidable impurity, and the balance aluminum. 4 Si4~6%, Mg0.3~0.6%, Ti0.2% or less,
An aluminum alloy for castings consisting of 0.05-0.2% Sb, 0.005-0.05% Sn, Fe as an unavoidable impurity, and the balance aluminum.
JP11276384A 1984-06-01 1984-06-01 High toughness aluminum alloy for casting Granted JPS60255949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11276384A JPS60255949A (en) 1984-06-01 1984-06-01 High toughness aluminum alloy for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11276384A JPS60255949A (en) 1984-06-01 1984-06-01 High toughness aluminum alloy for casting

Publications (2)

Publication Number Publication Date
JPS60255949A JPS60255949A (en) 1985-12-17
JPS6256221B2 true JPS6256221B2 (en) 1987-11-25

Family

ID=14594908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11276384A Granted JPS60255949A (en) 1984-06-01 1984-06-01 High toughness aluminum alloy for casting

Country Status (1)

Country Link
JP (1) JPS60255949A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156117A (en) * 1976-06-21 1977-12-26 Mitsubishi Keikinzoku Kogyo Aluminium alloy for casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156117A (en) * 1976-06-21 1977-12-26 Mitsubishi Keikinzoku Kogyo Aluminium alloy for casting

Also Published As

Publication number Publication date
JPS60255949A (en) 1985-12-17

Similar Documents

Publication Publication Date Title
EP2281909B1 (en) Manufacturing method of an aluminium alloy cast heat sink having a complex structure or a thin walled protion with excellent thermal conductivity
WO2016166779A1 (en) Aluminum alloy for die casting, and die-cast aluminum alloy using same
US5240519A (en) Aluminum based Mg-Si-Cu-Mn alloy having high strength and superior elongation
US5582659A (en) Aluminum alloy for forging, process for casting the same and process for heat treating the same
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
JPH0372147B2 (en)
JPH093610A (en) Thin aluminum diecast product excellent in dimensional accuracy and ductility and its production
JPH01225756A (en) Manufacture of high-strength al-mg-si alloy member
JPS6128739B2 (en)
JPH01247549A (en) High toughness aluminum alloy
JPH01147039A (en) Wear-resistant aluminum alloy and its manufacture
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JPH0447019B2 (en)
JPS6256221B2 (en)
JPH09296245A (en) Aluminum alloy for casting
JPS6318034A (en) Aluminum-base powder metallurgical alloy combining high strength with stress corrosion cracking resistance
US3297435A (en) Production of heat-treatable aluminum casting alloy
US2290025A (en) Aluminum alloy
US4067733A (en) High strength aluminum alloy
JP3164252B2 (en) Manufacturing method of heat-resistant magnesium alloy
JPH07258784A (en) Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging
JP3147244B2 (en) Manufacturing method of material for plastic working
JPH0759731B2 (en) Casting Al (Cu) -Mg high-strength aluminum alloy and method for producing the same
JPH0819504B2 (en) Zinc alloy for casting, dimensional change-free, cast parts and heat treatment method for cast parts