JPS6256220B2 - - Google Patents

Info

Publication number
JPS6256220B2
JPS6256220B2 JP59081167A JP8116784A JPS6256220B2 JP S6256220 B2 JPS6256220 B2 JP S6256220B2 JP 59081167 A JP59081167 A JP 59081167A JP 8116784 A JP8116784 A JP 8116784A JP S6256220 B2 JPS6256220 B2 JP S6256220B2
Authority
JP
Japan
Prior art keywords
less
alloy
aluminum
sample
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59081167A
Other languages
Japanese (ja)
Other versions
JPS60224739A (en
Inventor
Shigeo Muromachi
Hisafuji Watanabe
Norio Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAEDA KEIKINZOKU KOGYO KK
Original Assignee
MAEDA KEIKINZOKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAEDA KEIKINZOKU KOGYO KK filed Critical MAEDA KEIKINZOKU KOGYO KK
Priority to JP8116784A priority Critical patent/JPS60224739A/en
Publication of JPS60224739A publication Critical patent/JPS60224739A/en
Publication of JPS6256220B2 publication Critical patent/JPS6256220B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自動車のデイスクホイール用の鋳造用
アルミニウム合金に関し、より具体的には乗用車
のデイスクホイール(以下単にホイールと称す)
に、鋳造後時効硬化した状態で使用されるAl―
7%Si―0.3%Mg系合金に関する。 自動車用ホイールは、通常Al―7%Si―0.3%
Mg系合金を通常の重力鋳造により鋳造し溶体化
処理した後約150℃の温度で時効硬化した状態で
使用する。第1図はアルミニウムホイールの形状
を代表的に示すものである。このAl―7%Si―
0.3%Mg系合金は軽量で鋳造性がよく、しかも切
削などの機械加工後の仕上がり面が美麗であり、
また機械的性質、とくに伸び衝撃値の優れた合金
であるため、各国においても太系合金がホイール
材の主流として使用され、我国では第1表のよう
にJISH5202―1982のAC―4CHとして規定されて
いる。
The present invention relates to an aluminum alloy for casting for automobile disc wheels, and more specifically for passenger car disc wheels (hereinafter simply referred to as wheels).
Al is used in an age-hardened state after casting.
Regarding 7%Si-0.3%Mg alloy. Automobile wheels are usually made of Al-7%Si-0.3%
A Mg-based alloy is cast by normal gravity casting, solution treated, and then aged hardened at a temperature of approximately 150°C before use. FIG. 1 typically shows the shape of an aluminum wheel. This Al―7%Si―
0.3%Mg alloy is lightweight and has good castability, and has a beautiful finished surface after machining such as cutting.
In addition, because it is an alloy with excellent mechanical properties, especially elongation impact value, thick alloys are used as mainstream wheel materials in many countries.In Japan, they are specified as AC-4CH of JISH5202-1982 as shown in Table 1. ing.

【表】 この合金の鋳造組織は、マトリツクスを成すア
ルミニウム側の1次固溶体αの結晶粒界に、鉄化
合物が針状粗大晶として、共晶(α+Si)ととも
に晶出する。 鋳造後に行なわれる溶体化処理によつて、共晶
中のケイ素は針状から粒状に変化して凝集する
が、前記の鉄化合物は殆んどその形状が変化せず
針状粗大晶として残留する。 溶体化処理後の時効処理によつてアルミニウム
基地は強化されるが、鉄化合物の針状粗大晶は強
化された合金のアルミニウム基地に対し切欠き効
果を及ぼし、合金全体としての機械的性質特に、
伸びと衝撃値を低下させる。 このような鉄化合物の晶出による悪影響を除く
対策としては、今日までのところ鉄化合物自体の
存在量を低減させる意図の下に、溶解時に使用す
るアルミニウム地金中の鉄分を制限する目的で、
Fe0.15%以下の高い純度の地金を使用すること
に依存し、我国の多くのホイール.メーカーは
Fe0.15%以下、通常0.13―0.14%程度のアルミニ
ウム地金を採用の基準としている。 自動車特に乗用車の生産台数の増加とアルミニ
ウム地金の高騰、アルミニウム スクラツプの有
効利用などの見地から、前記のように高純度のア
ルミニウム地金に代えて、工業用地金として広く
生産されているAl99.5〜99.7%程度のアルミニウ
ム地金を使用し、しかも現在使用中のFe0.15%
以下の高純度地金を使用したホイールと同等また
はそれ以上の機械的性質を有するホイールの開発
が要望されているが現在の所開発されていない。 本発明は、前記のホイール用アルミニウム鋳造
合金における鉄化合物の針状粗大晶による悪影響
を低減し得る新しい合金を開発することを目標と
するものである。 従つて本発明の目的は、Al99.5―99.7%程度の
アルミニウム地金を使用して、しかも自動車ホイ
ル材として十分な強度を有する鋳造用アルミニウ
ム合金を提供することである。 本発明の別の目的は、アルミニウム地金などの
配合材から導入される鉄分の悪影響を抑制し得る
添加合金元素の種類とそれらの有効成分範囲と適
切な熱処理条件を明確にしたアルミニウム合金を
提供することである。 本発明の発明者らはAl―7%Si―0.3Mg系合金
においてAl99.5―99.7%程度の地金を使用し、新
たな合金元素を添加することにより鉄の針状粗大
晶による切欠き効果の悪影響を排除し得るであろ
うとの予見のもとに試験研究を行つた。 試験研究のために作成する試料としては、Al
―7%Si―0.3%Mgに代表されるAC―4CH合金
の基本的成分であるSiとMgは配合組成としては
不変とし、Feについては現行の0.2%以下の条件
を満足する0.13%と規格の上限を超える0.35%と
0.55%を配合し、さらに改良元素としてMnとSr
の2種を単独あるいは組み合わせて添加し、上記
以外の元素であるCu,Zn,Ni,Ti,Pb,Snおよ
びCrついては、JIS AC―4CH合金の許容限と同
一の許容限とすることにより、機械的性質を劣化
させることなく自動車ホイール材として許容され
るFeの上限を決定し、同時にSrとMnの添加量の
有効範囲を決定することとした。 試験の詳細については実施例とし後述するが、
概要を述べると、試料として第2表の配合組成に
よつて示されている18種類の試料を溶解して、
JIS4号の加熱鋳型に鋳造し、所定の溶体化処理と
時効処理を行なつた後、引張強さ、耐力、伸び、
衝撃値を測定して機械的性質を判断した。 また各組成の鋳塊試料と溶体化後時効処理した
衝撃試験後の試片とについて光学顕微鏡による試
料のミクロ組織と引張試験片の破断部のミクロ組
織とを観察した。これは機械的性質の変化とミク
ロ組織の変化とがFe,Mn,Srの含有量の変化に
どのように関連づけられるかを検討するためであ
る。 これらの機械的性質とミクロ組織を検討した結
果Feについては0.35%まではSrおよびまたはMn
の添加によつて良好な結果が得られるがFeが
0.35%を超え0.55%までは引張強さ、耐力は改良
元素であるMnおよび又はSrの添加にかかわらず
減少することが判した。 また衝撃値や伸びについてもFe0.35%を超え
るとMnおよびまたはSrの添加にかかわらず靭性
が低下する事実が認められた。またMn単独の添
加や、MnとSrを併合した添加よりもSrを0.02%
単独に添加する方がむしろ有効なことが認められ
た。 このような結果からSr0.02%を単独添加するこ
とにより不純物としてのFeは、従来上限とされ
ていた0.15%を超え0.35%まで存在しても、合金
中にストロンチウム(Sr)が0.02%迄添加されれ
ば、鉄化合物による針状粗大結晶粒の生成に伴な
う切欠き効果による悪影響を排除して実用上支障
のない自動車ホイール用鋳造合金として十分使用
に耐え得ることが実証されたものである。 以下本発明による自動車ホイール用アルミニウ
ム鋳造合金についての試験研究の結果を実施例と
して説明する。 実施例: (1) 試料の選定と溶製 針状粗大晶として晶出する鉄化合物を形成する
Feの含有量上限が、その悪影響を排除するため
の添加元素であるMnとSrを、単独に又は組み合
わせて添加することによりどこまで許容されるか
を判断するため、Feの含有量を現行の0.13%
と、それよりも増加した0.35%および0.55%の3
種とし、Mnは0.3%および0.5%の2種、Srは0.02
%の1種とし試料の配合組成を第2表に示すよう
に選定した。 第2表の配合組成になるように各試料を調製し
たが配合材とその溶成法を次に示す。
[Table] In the casting structure of this alloy, iron compounds are crystallized as acicular coarse crystals together with eutectic (α+Si) at the grain boundaries of the primary solid solution α on the aluminum side of the matrix. Due to the solution treatment carried out after casting, the silicon in the eutectic changes from acicular to granular and aggregates, but the iron compound hardly changes its shape and remains as coarse acicular crystals. . Although the aluminum matrix is strengthened by aging treatment after solution treatment, the acicular coarse crystals of the iron compound have a notch effect on the aluminum matrix of the strengthened alloy, which deteriorates the mechanical properties of the alloy as a whole, especially
Reduces elongation and impact value. To date, measures to eliminate the negative effects caused by the crystallization of iron compounds include limiting the iron content in aluminum ingots used during melting, with the intention of reducing the amount of iron compounds themselves present.
Many wheels in Japan depend on using high purity metal with Fe 0.15% or less. Manufacturer is
The standard for adoption is an aluminum base metal with Fe of 0.15% or less, usually around 0.13-0.14%. In view of the increase in the production of automobiles, especially passenger cars, the soaring price of aluminum ingots, and the effective use of aluminum scrap, Al99, which is widely produced as an industrial ingot, is being used instead of high-purity aluminum ingots as mentioned above. Uses aluminum base metal of about 5 to 99.7%, and Fe 0.15%, which is currently in use.
Although there is a demand for the development of a wheel with mechanical properties equal to or better than those made of the following high-purity metals, no wheel has been developed at present. An object of the present invention is to develop a new alloy that can reduce the adverse effects of coarse acicular crystals of iron compounds in the aluminum casting alloy for wheels. Accordingly, an object of the present invention is to provide an aluminum alloy for casting that uses an aluminum base metal of approximately 99.5-99.7% Al and has sufficient strength as an automobile foil material. Another object of the present invention is to provide an aluminum alloy in which the types of additive alloying elements, their effective ingredient ranges, and appropriate heat treatment conditions are clarified to suppress the adverse effects of iron introduced from compound materials such as aluminum ingots. It is to be. The inventors of the present invention used a base metal of about 99.5-99.7% Al in an Al-7%Si-0.3Mg alloy, and by adding new alloying elements, the notch due to the coarse needle-like crystals of iron was removed. A test study was conducted with the expectation that the negative effects of the drug's effects could be eliminated. As samples prepared for test research, Al
Si and Mg, which are the basic components of AC-4CH alloy represented by -7%Si-0.3%Mg, will remain unchanged as a blend composition, and Fe will be specified at 0.13%, which satisfies the current requirement of 0.2% or less. 0.35% above the upper limit of
0.55%, and further improves Mn and Sr.
By adding these two types singly or in combination, and setting the tolerance limits for elements other than the above, such as Cu, Zn, Ni, Ti, Pb, Sn, and Cr, to be the same as the tolerance limit for JIS AC-4CH alloy, We decided to determine the upper limit of Fe that is permissible in automobile wheel materials without deteriorating mechanical properties, and at the same time determine the effective range of Sr and Mn addition amounts. The details of the test will be described later as an example.
To give an overview, 18 types of samples shown by the composition in Table 2 were dissolved,
After casting in a JIS No. 4 heating mold and performing prescribed solution treatment and aging treatment, the tensile strength, yield strength, elongation,
Mechanical properties were determined by measuring impact values. In addition, the microstructures of the ingot samples of each composition and the impact test specimens subjected to solution treatment and aging treatment and the microstructures of the fractured portions of the tensile test specimens were observed using an optical microscope. This is to examine how changes in mechanical properties and microstructure are related to changes in Fe, Mn, and Sr contents. As a result of examining these mechanical properties and microstructures, up to 0.35% of Fe is Sr and or Mn.
Good results can be obtained by adding Fe, but
It was found that tensile strength and yield strength decrease when the content exceeds 0.35% and reaches 0.55% regardless of the addition of the improving elements Mn and/or Sr. Regarding impact value and elongation, it was also observed that when Fe exceeds 0.35%, toughness decreases regardless of the addition of Mn and/or Sr. In addition, Sr is 0.02% higher than when Mn is added alone or when Mn and Sr are combined.
It was found that adding it alone was more effective. From these results, by adding 0.02% Sr alone, even if Fe as an impurity exceeds the conventional upper limit of 0.15% and is present up to 0.35%, strontium (Sr) can be reduced to 0.02% in the alloy. It has been demonstrated that when added, it can be used as a casting alloy for automobile wheels without any practical problems by eliminating the negative effects of the notch effect caused by the formation of coarse acicular grains caused by iron compounds. It is. The results of the test and research on the aluminum casting alloy for automobile wheels according to the present invention will be explained below as an example. Example: (1) Selection and melting of sample Form an iron compound that crystallizes as coarse needle-like crystals
In order to determine how far the upper limit of the Fe content can be allowed by adding Mn and Sr, which are additive elements to eliminate its negative effects, either singly or in combination, the Fe content was increased from the current 0.13. %
and an increase of 0.35% and 0.55%3.
Seed, Mn is 0.3% and 0.5%, Sr is 0.02
%, and the composition of the sample was selected as shown in Table 2. Each sample was prepared to have the compounding composition shown in Table 2. The compounding materials and their melting method are shown below.

【表】【table】

【表】 あらかじめ金属チタンで微細化処理したAC―
4CH合金(Sr6.8%―Be0.13%―Mg0.38%―
Ti0.13%残Al)4.5Kgを溶解しMn16.7%残部Alか
らなるMn母合金、並びに薄片状に圧延した鉄板
を所定の量添加し、溶湯温度を740℃に保持し溶
けおちた所で、6塩化エタン(CCl6)で脱ガス処
理を行ない、表面に浮いた酸化物を充分除去した
後、ストロンチウム(Sr)母合金(Si13.12%―
Sr9.15%―Be1.05%残Al)を添加し740℃で30分
保持後、予め150℃に予熱した4号試験用金型に
鋳込んだ、Srは塩化物の存在下では歩留りが悪
くなるので、その点充分注意した。得られた試料
の化学成分を第3表に示す。
[Table] AC that has been refined in advance with metallic titanium.
4CH alloy (Sr6.8%-Be0.13%-Mg0.38%-
After melting 4.5 kg of Ti (0.13% remaining Al), adding a Mn master alloy consisting of 16.7% Mn (16.7% remaining Al), and a predetermined amount of iron plate rolled into flakes, the temperature of the molten metal was maintained at 740°C until it melted. Then, after degassing with hexachloroethane (CCl 6 ) to thoroughly remove the oxides floating on the surface, the strontium (Sr) mother alloy (Si13.12%-
After adding Sr9.15% - Be1.05% residual Al) and holding it at 740℃ for 30 minutes, it was cast into a No. 4 test mold preheated to 150℃.Sr has a low yield in the presence of chlorides. It could get worse, so I was very careful about that. The chemical components of the obtained samples are shown in Table 3.

【表】【table】

【表】 これらの試験片を別表に示す顕微鏡組織観察用
試料を採集したのち、90本の引張り試験、90本の
衝撃試験材として、焼入れ、焼戻し処理とした。 (2) 熱処理 以上の試料を535℃9hrs.の溶体化処理後、15℃
の水中に焼入れを行つた。ただちに155℃5hrs.の
焼戻しによる時効処理を行い、引張り試験並びに
衝撃試験を行なつた。また熱処理後のミクロ組織
は衝撃試験を終了した後の試験片を切断、研摩
し、また破面部についても光学顕微鏡と一部には
電子顕微鏡により観察した。 (3) 試験方法 引張り試験はインストロン引張り試験機を使用
した。試験機の容量は25tonで引張り速度は5
mm/minとし、チヤートの送り時間は50mm/min
で荷重―伸び線図を描き、このチヤートから引張
り強さ、耐力、伸びを求めた。 衝撃試験は非鉄金属用の試験機を使用して行つ
た。また衝撃値は次式から求めた。 E=WR(cosβ―cosα) E:破断に要したエネルギー W:ハンマの重量 R:ハンマの回転軸中心から重心までの距離 α:ハンマの持上げ角度 β:試験片破断後のハンマの持上り角度 また初期断面積(0.8cm2)でEを除した値
(Kg・1cm2)を衝撃値とした。 (4) 試験結果及び考察 (4)―1 引張試験並びに衝撃試験の結果引張試
験・衝撃試験後各合金試料の引張強さ0.2%耐
力・伸び及び衝撃値を第4表に示した。またこ
れらの結果を第2―第5図に図示した。
[Table] After collecting samples for microscopic structure observation shown in the attached table, these test pieces were subjected to quenching and tempering treatments for 90 tensile tests and 90 impact tests. (2) Heat treatment After solution treatment of the above sample at 535℃ for 9 hours, 15℃
Quenching was carried out in water. Immediately an aging treatment was performed by tempering at 155°C for 5 hours, and a tensile test and an impact test were conducted. The microstructure after heat treatment was determined by cutting and polishing the test piece after the impact test, and the fractured surface was also observed using an optical microscope and partly an electron microscope. (3) Test method For the tensile test, an Instron tensile tester was used. The capacity of the testing machine is 25 tons and the tensile speed is 5
mm/min, and the chart feeding time is 50mm/min.
A load-elongation chart was drawn, and the tensile strength, yield strength, and elongation were determined from this chart. The impact test was conducted using a testing machine for non-ferrous metals. In addition, the impact value was determined from the following formula. E=WR (cosβ−cosα) E: Energy required for fracture W: Weight of hammer R: Distance from center of rotation axis of hammer to center of gravity α: Lifting angle of hammer β: Lifting angle of hammer after specimen fracture The value obtained by dividing E by the initial cross-sectional area (0.8 cm 2 ) (Kg·1 cm 2 ) was defined as the impact value. (4) Test results and considerations (4)-1 Results of tensile test and impact test Table 4 shows the tensile strength, 0.2% proof stress, elongation, and impact value of each alloy sample after the tensile test and impact test. These results are also illustrated in Figures 2-5.

【表】【table】

【表】 第4表中の各測定項目での数値はいづれも5回
の実測値の平均値であり、例として引張強さにつ
いて行つた各5回の測定結果を第5表に示した。
[Table] The numerical values for each measurement item in Table 4 are the average values of five actual measurements, and as an example, Table 5 shows the results of each five measurements of tensile strength.

【表】 第2―5図は第2表中の18種の試料No.1―18中
のFe量をそれぞれ0.15%、0.35%、0.55%をX軸
に、各測定値をY軸にブロツトしたグラフであつ
て、図中に、〇,●,△,▲……などの6種の記
号で示したが、各記号はそれぞれ配合成分中Mn
とSrが同一でFeが、0.15%、0.35%、および0.55
%の3種の含有量を代表するようにした。 これらのグラフに示され傾向と第2表の配合成
分、第3表の分析値との関係の対比参照に便利な
ように各記号とそれらに代表される試料番号との
関係を下記に示した。
[Table] Figure 2-5 shows the amounts of Fe in the 18 samples No. 1-18 in Table 2, plotted on the X-axis at 0.15%, 0.35%, and 0.55%, and the measured values on the Y-axis. This is a graph with six types of symbols such as 〇, ●, △, ▲..., and each symbol indicates the Mn in the compounded ingredients.
and Sr are the same and Fe is 0.15%, 0.35%, and 0.55
% to represent three types of content. The relationship between each symbol and its representative sample number is shown below for convenient reference of the relationship between the trends shown in these graphs, the ingredients in Table 2, and the analytical values in Table 3. .

【表】 これらのグラフに基き機械的性質とFe量、添
加したMn,Srとの関係を考察した。以下引張強
さ、耐力、伸び、衝撃値の順に検討する。 (a) 引張強さ 第2図に示した引張強さは0.15%Fe、0.02%Sr
(試料No.10)のものが最高値の31.20Kg/mm2を示し
た。またこの試料では強さの最大値と最小値の差
は約2Kg/mm2程度である。Fe量で考えた場合
0.35%Feまでは変化は少ないが、0.35%Feでは
強さは減少している。しかし0.5%Mn,0.02%Sr
にFe量を変化させたもの試料(No.12,15,18)
で0.35%Fe(No.15)は他と同程度の値を示して
いるが0.15%Fe、0.55%Feでは他と比べ低い値
となつている。またFe量の増加したものに関し
てはMn又はSrを単独に添加した場合の方がよ
く、特にSrを単独に添加したものは低い値を示
している。しかしJIS(H5202)では、AC4CH―
T6での引張強さは25Kg/mm2以上と規定されてい
るのでこの点に関してはいずれもJIS規格を満足
させる良好な値を示しているものと認めることが
できる。 (b) 耐力 第3図に示した0.2%耐力は0.35%Fe,0.02%
Sr,0.5%Mnが(試料No.15)最高値を示してい
る。Fe量で考えた場合Srを添加しないものはFe
量が増加しても引張強さ同様あまり変化していな
いが、Srを添加したもの(No.10,13;11,14;
12,15)はFe量の増加にともない0.35%Feでは
向上し0.55%Fe(No.16,17,18)では低下して
いる。以上のことにより耐力については0.35%
FeではMn,Srの複合添加が高い耐力を得ること
ができるものと思われる。 (c) 伸び 第4図に示した伸びは0.15%Fe,0%Mn,
0.02%Sr(試料No.10…記号●)の合金試料が最高
値であり13.32%を示している。この試料はFe量
が増加すると急激に低下し、0.55%Fe(試料No.
16)では最低値6.57%を示している。他の試料で
はFe量が0.35%までは変化は少ないが0.55%Fe
になるとどの試料も低下している。次にMn量で
考えた場合0.15%Feでは0%Mn,0.02%Sr(試
料No.10)が最も良好であるがMnを添加したもの
(記号△、▲、□、■)及びSrを添加しないもの
(記号〇、△、□)は低い値を示している。これ
は0.35%Feでも同じ傾向であるが0.55%Feでは
0.3%Mn、0.02%Sr添加したもの(記号▲、試料
No.17)が高い値を示し、このFe量では0.3%Mn、
0.02%Sr添加したものが良好である。 (d) 衝撃値 第5図にに示した衝撃値は0.15%Fe、0%
Mn、0.02%Sr(記号●、試料No.10)が最高値を
示していて、このMn、Sr量ではFe量が増加する
と(記号●、試料No.13.16)急激に低下してい
る。またMnを添加した場合はFe量にかかわらず
記号●で示される0%Mn,0.02%Srよりも低い
値を示していてMnを添加してもFeの改良効果は
認められなかつた。 (e) 考察 まずFe量に対して、引張強さは点在するFe針
状晶が晶出する0.35%FeまではFe化合物による
分散強化或はFeの母相への固溶による固溶強化
によりわずかに向上しているものと思われるが、
針状晶が大きく発達して晶出する0.55%Feにな
ると切欠効果が顕著となつて強さが低下すると考
えられる。また伸び・衝撃値はFe量が増加する
とFe化合物による切欠効果により大きく影響
し、伸び・衝撃値を低下させていると思われる。 次にMnに対して伸びは0.55%Feに0.3%Mn,
0.02%Srを添加したものについてはわずかに向上
している。これはMnによりFe化合物の形状が変
つたためと思われる。 Srの添加は伸び・衝撃値に対して効果が大き
く、特にFe及びMn量の少ないものについて最も
効果があり良好であつた。これはSrを添加する
ことにより共晶Siが微細化したためとこのような
結果から、Srの単独添加で顕著な改良効果が得
られるのに対し,SrとMnを複合添加しても期待
した程の効果が得られないことが示されたので、
Mnは改良元素としては添加しないことにした、
但し試験の結果から0.3%程度の存在ならば特性
を低下させるほどの影響はなく、良い結果を示す
場合もあることが判明したので、本発明のよう
に、Srを添加する場合には、不純物としてのMn
はJIS AC―4CH合金のように、0.1%以下に制限
する必要はなく、0.3%以下とすればよいことが
判つた。 (4)―2 組織観察 鋳造した合金試料と535℃で9時間溶体化処理
後15℃の水へ水焼入れ、155℃で5時間の時効処
理した合金試料について光学顕微鏡を用いて組織
観察した結果をそれぞれ、第図6―10図及び第
11―14図に示す。 まず鋳造材でSrを添加しないものは第6―8
図に示すようにFeが0.15%と低い場合でも共晶Si
が針状で晶出しており不規則で大きさもまちまち
でFeが0.35%(第7図),0.55%(第8図)では
結晶粒は小さくなるが共晶Siが針状に析出してい
ることがわかる。またSrを添加したものは第9
―10図に示すようにSrによつて共晶Siが微細と
なつていることがわかる。 次に熱処理した合金試料の組織でSrを添加し
ないものは第11図に示すように鋳造組織と比べ
て共晶Siが細かくなつておりSiの比較的大きなも
のでも先端が丸味を帯びた状態で晶出しているこ
とがわかる。またSrを添加したものは第12,
13図に示すように共晶Siの結晶粒の大きさはそ
れほど変化しないものの、より球状化しており
Srを添加しないものよりも微細である。次にFe
化合物について観察すると0.15%Feでは第12
図に示すようにわずかであるがFeの針状晶が晶
出していることがわかる。またFe量が0.35%
Fe,0.55%Feと増加するにしたがつて第13図
および第14図に示すようにFeの針状晶もふ
え、大きく発達していることがわかる。 次にMnを添加したものであるが組織的にはMn
によるFe化合物の形状の変化は認められなかつ
た。 Srを添加することは組織を観察しただけでも
機械的性質に対して良好であることがわかる。ま
たFe量はできるだけ少なくした方が良いと考え
られる。 (4)―3 各合金元素の成分範囲と限定理由 本発明合金を開発するに際しては、すでに頭初
の部分で述べたように、JIS H5202(1982)の
AC―4CHに規定される自動車ホイール用アルミ
ニウム鋳造合金の特性を改良し合金中のFe含有
量の上限を拡大することにあつたので、SiとMg
については前記規格のままとし、Siは6.5―7.5
%、Mgは0.20―0.40%とした。 本発明での改良元素としての効果の顕著なSr
の上限を0.02%としたのは第15図のAl―Si―
Sr3元状態図から、この系のAl側にはET1(Al―
13.1%Si―0.03%Sr)とET2(Al―1.1%Si―2.4
%Sr)の2つの3元共晶点があるET1は最も微細
化効果があることが判つた。従つて、Srの含有
量は上記のET1共晶点の存在と実験結果とから上
限値を0.02%以下を選ぶことにした。 Feを0.35%以下としたのは前述の試験結果か
らSrの添加によりFe0.13%では機械的性質が著
るしく改善され、Fe0.35%でも現行のAC―4CH
の特性と同等またはそれを上廻る特性が得られる
がFeが、0.35%以上では機械的性質が低下する
上に、ミクロ組織の点からも好ましくないことが
認められたからである。 本発明合金の効果と産業上の利用性 実施例としての試験結果から明らかなように、
0.02%程度の少量のSrの添加によつて全般に機械
的性質が改善され、その結果従来0.15%以下実際
には、Fe0.13%あるいは0.14%程度を要求されて
いる地金についても、製品となる鋳造品中のFe
量が0.35%迄許容されるようになることから広く
生産されているAl99.5―99.7%の地金でも自動車
ホイール材として利用可能になる。 このように地金の使用範囲の拡大、コスト低
減、スクラツプの利用度の増大に加えて、Feの
含有量が従来と同じく0.20%以下の場合は機械的
性質、特に延性と靭性を著しく向上することが可
能であり、自動車ホイールとしての用途は勿論、
鋳造性と強度ならびに靭性を要求される製品に広
く適用しうるものである。
[Table] Based on these graphs, we considered the relationship between mechanical properties, Fe content, and added Mn and Sr. Below, tensile strength, yield strength, elongation, and impact value will be examined in this order. (a) Tensile strength The tensile strength shown in Figure 2 is 0.15%Fe, 0.02%Sr.
(Sample No. 10) showed the highest value of 31.20 Kg/mm 2 . Furthermore, in this sample, the difference between the maximum and minimum strength values is approximately 2 kg/mm 2 . When considering Fe content
There is little change up to 0.35% Fe, but the strength decreases at 0.35% Fe. However, 0.5%Mn, 0.02%Sr
Samples with varying amounts of Fe (No. 12, 15, 18)
0.35%Fe (No. 15) shows a value similar to the others, but 0.15%Fe and 0.55%Fe have lower values than the others. In addition, for those with an increased amount of Fe, it is better to add Mn or Sr alone, and in particular, those with Sr added alone show a low value. However, in JIS (H5202), AC4CH-
Since the tensile strength at T6 is specified to be 25 kg/mm 2 or more, it can be recognized that all of these exhibit good values that satisfy the JIS standard in this regard. (b) Yield strength The 0.2% yield strength shown in Figure 3 is 0.35%Fe, 0.02%
Sr and 0.5%Mn (sample No. 15) show the highest values. When considering the amount of Fe, those without Sr are Fe.
Although the tensile strength did not change much even if the amount increased, the samples with added Sr (No. 10, 13; 11, 14;
12, 15) improved with 0.35% Fe and decreased with 0.55% Fe (Nos. 16, 17, 18) as the amount of Fe increased. Due to the above, the yield strength is 0.35%
For Fe, it seems possible to obtain high yield strength by adding Mn and Sr in combination. (c) Elongation The elongation shown in Figure 4 is 0.15%Fe, 0%Mn,
The alloy sample with 0.02% Sr (sample No. 10...symbol ●) has the highest value, showing 13.32%. In this sample, the amount of Fe decreased rapidly as the amount increased, and 0.55% Fe (sample no.
16) shows the lowest value of 6.57%. In other samples, there is little change in Fe amount up to 0.35%, but 0.55%Fe
When it comes to , all samples are decreasing. Next, when considering the amount of Mn, 0%Mn, 0.02%Sr (sample No. 10) is the best for 0.15%Fe, but those with Mn added (symbols △, ▲, □, ■) and those with Sr added Those that do not (symbols 〇, △, □) indicate low values. This trend is the same for 0.35%Fe, but for 0.55%Fe
Added 0.3% Mn and 0.02% Sr (symbol ▲, sample
No. 17) showed a high value, and with this amount of Fe, 0.3%Mn,
The one with 0.02% Sr added is good. (d) Impact value The impact value shown in Figure 5 is 0.15%Fe, 0%
Mn and 0.02% Sr (symbol ●, sample No. 10) show the highest values, and with these Mn and Sr contents, as the Fe amount increases (symbol ●, sample No. 13.16), it rapidly decreases. In addition, when Mn was added, the value was lower than the 0%Mn and 0.02%Sr indicated by the symbol ●, regardless of the amount of Fe, and no improvement effect on Fe was observed even when Mn was added. (e) Consideration First, tensile strength is determined by dispersion strengthening by Fe compounds or solid solution strengthening by solid solution of Fe in the matrix up to 0.35% Fe, where scattered Fe needles crystallize. It seems that there is a slight improvement due to
It is thought that at 0.55% Fe, where needle crystals are greatly developed and crystallized, the notch effect becomes significant and the strength decreases. In addition, as the amount of Fe increases, the elongation and impact values are greatly affected by the notch effect caused by the Fe compound, which seems to reduce the elongation and impact values. Next, the elongation for Mn is 0.55% Fe and 0.3% Mn,
There is a slight improvement in the one with 0.02% Sr added. This seems to be because the shape of the Fe compound changed due to Mn. The addition of Sr had a large effect on elongation and impact value, and was particularly effective and favorable for those with small amounts of Fe and Mn. This is because the eutectic Si is made finer by adding Sr, and from these results, while the addition of Sr alone produces a remarkable improvement effect, adding Sr and Mn in combination does not produce as much as expected. It was shown that the effect of
We decided not to add Mn as an improvement element.
However, from the test results, it was found that presence of about 0.3% does not have such an effect as to deteriorate the characteristics, and may even show good results. Therefore, when adding Sr as in the present invention, it is necessary to avoid impurities. Mn as
It was found that there is no need to limit the content to 0.1% or less as in the JIS AC-4CH alloy, but it is sufficient to limit the content to 0.3% or less. (4)-2 Microstructure observation Results of microstructural observation using an optical microscope of cast alloy samples and alloy samples that were solution treated at 535℃ for 9 hours, water quenched in 15℃ water, and aged at 155℃ for 5 hours. are shown in Figures 6-10 and 11-14, respectively. First of all, cast materials that do not contain Sr are No. 6-8.
As shown in the figure, even when Fe is as low as 0.15%, eutectic Si
The crystals are irregular and vary in size, and the crystal grains become smaller when Fe is 0.35% (Figure 7) and 0.55% (Figure 8), but eutectic Si is precipitated in needle shapes. I understand that. In addition, those with Sr added are
As shown in Figure 10, it can be seen that the eutectic Si becomes finer due to Sr. Next, as shown in Figure 11, in the structure of the heat-treated alloy sample without the addition of Sr, the eutectic Si is finer than in the cast structure, and even in the case of a relatively large Si, the tip is rounded. It can be seen that crystallization is occurring. In addition, the one with Sr added is the 12th,
As shown in Figure 13, the size of the eutectic Si crystal grains does not change much, but it becomes more spherical.
It is finer than the one without Sr added. Then Fe
Observing the compound, 0.15% Fe has the 12th
As shown in the figure, it can be seen that needle-like crystals of Fe are crystallized, albeit in a small amount. Also, the amount of Fe is 0.35%
It can be seen that as Fe increases to 0.55% Fe, the needle-like crystals of Fe also increase and are greatly developed, as shown in FIGS. 13 and 14. Next, Mn is added, but the structure is Mn
No change in the shape of the Fe compound was observed. It can be seen that addition of Sr improves mechanical properties just by observing the structure. It is also considered that it is better to reduce the amount of Fe as much as possible. (4)-3 Component range of each alloying element and reason for limitation When developing the alloy of the present invention, as already mentioned in the first part, JIS H5202 (1982)
The purpose was to improve the properties of aluminum casting alloys for automobile wheels specified in AC-4CH and expand the upper limit of Fe content in the alloy, so Si and Mg
The above standard remains as is, and Si is 6.5-7.5
%, Mg was 0.20-0.40%. Sr has a remarkable effect as an improving element in the present invention
The upper limit of 0.02% was set for Al―Si― in Figure 15.
From the Sr ternary phase diagram, it is clear that E T1 (Al-
13.1%Si-0.03%Sr) and E T2 (Al-1.1%Si-2.4
It was found that E T1 , which has two ternary eutectic points (%Sr), has the most refinement effect. Therefore, it was decided that the upper limit of the Sr content should be 0.02% or less based on the presence of the E T1 eutectic point mentioned above and the experimental results. The reason for setting the Fe content to 0.35% or less was based on the test results mentioned above.The addition of Sr significantly improved the mechanical properties with 0.13% Fe, and even with 0.35% Fe, the current AC-4CH
This is because it was found that although properties equal to or superior to those of Fe can be obtained, if Fe exceeds 0.35%, mechanical properties deteriorate and it is also unfavorable from the viewpoint of microstructure. Effects and industrial applicability of the alloy of the present invention As is clear from the test results as examples,
The addition of a small amount of Sr, about 0.02%, improves the mechanical properties in general, and as a result, it is possible to improve the mechanical properties of products, even for bare metals that conventionally require Fe of less than 0.15% or 0.13% or 0.14%. Fe in the cast product
Since the amount will be allowed up to 0.35%, even the widely produced Al99.5-99.7% base metal will be able to be used as automobile wheel material. In addition to expanding the range of use of ingots, reducing costs, and increasing the utilization of scrap, mechanical properties, especially ductility and toughness, are significantly improved when the Fe content is 0.20% or less, as in the past. Of course, it can be used as an automobile wheel.
It can be widely applied to products that require castability, strength, and toughness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図は自動車用デイスクホイルの正面図、
第1図bは同じくデイスクホイルの断面側面図で
あるが、理解を容易にするためスポーク部分を除
外し且つ縮尺は第1a図とは異なつている。第2
図は各試料の引張強さとFe量の関係を、第3図
は同じく0.2%耐力とFe量の関係を、第4図は同
じく伸びとFe量の関係を、第5図は同じく衝撃
値とFe量の関係を示すグラフである。第6図〜
10図は代表的な試料についての鋳造材のミクロ
組織を示す光学顕微鏡組織、第11〜14図は鋳
造後溶体化処理と時効処理した試料の、ミクロ組
織を示す光学顕微鏡写真である。第15図はAl
―Si―Sr3元系合金のAl側状態図である。
Figure 1a is a front view of an automobile disc wheel;
FIG. 1b is also a cross-sectional side view of the disc foil, but for ease of understanding, the spokes have been excluded and the scale is different from FIG. 1a. Second
Figure 3 shows the relationship between tensile strength and Fe content for each sample, Figure 3 shows the relationship between 0.2% proof stress and Fe content, Figure 4 shows the relationship between elongation and Fe content, and Figure 5 shows the impact value. It is a graph showing the relationship between the amount of Fe. Figure 6~
FIG. 10 is an optical microscopic structure showing the microstructure of a typical sample of a cast material, and FIGS. 11 to 14 are optical microscopic photographs showing the microstructure of a sample subjected to solution treatment and aging treatment after casting. Figure 15 shows Al
-Al side phase diagram of Si-Sr ternary alloy.

Claims (1)

【特許請求の範囲】 1 重量基準で6.5―7.5%のSiと,0.20―0.4%の
Mgと,0.005―0.02%のSrと,0.35%以下のFe
と、0.20%以下のTiと、0.30%以下のMnと,0.20
%以下のCuと、0.10%以下のZnと、0.05%以下
のNiと、0.05%以下のPbと、0.05%以下のSnと、
0.05%以下のCrと残部がAlとからなり、鋳造性
が良好で溶体化処理後、時効処理された状態で
Srの添加によつてα相とSiとからなる共晶中のSi
が微細化して粒状化するとともに、切欠き効果に
より基質の強度を低下させるFeの針状晶の晶出
が抑制された金属組織になつていることを特徴と
するアルミニウム基鋳造合金。 2 特許請求の範囲第1項に記載の合金におい
て、鋳造性が良好で溶体化処理後、時効処理され
た状態で引張り強さ、耐力、伸びおよび衝撃値が
良好で自動車のデイスクホイールの鋳造と使用に
適したアルミニウム基鋳造合金。
[Scope of Claims] 1. 6.5-7.5% Si and 0.20-0.4% Si by weight
Mg, 0.005-0.02% Sr, 0.35% or less Fe
, 0.20% or less Ti, 0.30% or less Mn, 0.20
% or less Cu, 0.10% or less Zn, 0.05% or less Ni, 0.05% or less Pb, 0.05% or less Sn,
Consisting of 0.05% or less Cr and the balance Al, it has good castability and can be used after solution treatment and aging treatment.
By adding Sr, Si in the eutectic consisting of α phase and Si
An aluminum-based cast alloy characterized by having a metal structure in which Fe is refined and granulated, and crystallization of needle-shaped Fe crystals that reduce the strength of the matrix due to a notch effect is suppressed. 2. The alloy according to claim 1 has good castability and good tensile strength, yield strength, elongation, and impact value after solution treatment and aging treatment, and is suitable for casting automobile disc wheels. Aluminum based casting alloy suitable for use.
JP8116784A 1984-04-24 1984-04-24 Al-7% si-0.3% mg type cast aluminum alloy Granted JPS60224739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8116784A JPS60224739A (en) 1984-04-24 1984-04-24 Al-7% si-0.3% mg type cast aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8116784A JPS60224739A (en) 1984-04-24 1984-04-24 Al-7% si-0.3% mg type cast aluminum alloy

Publications (2)

Publication Number Publication Date
JPS60224739A JPS60224739A (en) 1985-11-09
JPS6256220B2 true JPS6256220B2 (en) 1987-11-25

Family

ID=13738899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8116784A Granted JPS60224739A (en) 1984-04-24 1984-04-24 Al-7% si-0.3% mg type cast aluminum alloy

Country Status (1)

Country Link
JP (1) JPS60224739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012582A1 (en) * 2000-08-08 2002-02-14 Asahi Tec Corporation Aluminum alloy formed by precipitation hardening and method for heat treatment thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162832A (en) * 1986-12-25 1988-07-06 Hitachi Metals Ltd Aluminum alloy for casting combining high strength with high toughness
KR100493666B1 (en) * 1998-12-31 2005-08-31 한국타이어 주식회사 High Strength Aluminum Alloy Material for Automobile Wheels
CN102312137B (en) * 2011-09-09 2016-06-22 深圳市中兴康讯电子有限公司 Aluminum-silicon-magnesium Cast aluminium alloy gold and casting technique
JP2015045033A (en) * 2013-08-27 2015-03-12 日信工業株式会社 Aluminum alloy casting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413407A (en) * 1977-07-01 1979-01-31 Kobe Steel Ltd High toughness aluminum alloy for casting and heat treatment method therefor
JPS55119147A (en) * 1979-03-08 1980-09-12 Nikkei Giken:Kk Aluminym alloy for casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413407A (en) * 1977-07-01 1979-01-31 Kobe Steel Ltd High toughness aluminum alloy for casting and heat treatment method therefor
JPS55119147A (en) * 1979-03-08 1980-09-12 Nikkei Giken:Kk Aluminym alloy for casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012582A1 (en) * 2000-08-08 2002-02-14 Asahi Tec Corporation Aluminum alloy formed by precipitation hardening and method for heat treatment thereof

Also Published As

Publication number Publication date
JPS60224739A (en) 1985-11-09

Similar Documents

Publication Publication Date Title
EP3722446B1 (en) Aluminum alloy sheet for battery lids for molding integrated explosion-prevention valve, and method for producing same
EP2281909B1 (en) Manufacturing method of an aluminium alloy cast heat sink having a complex structure or a thin walled protion with excellent thermal conductivity
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
WO2011122263A1 (en) Aluminium alloy forging and method of manufacture for same
WO2005075692A1 (en) Aluminum alloy for producing high performance shaped castings
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH0372147B2 (en)
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
EP3872203A1 (en) Aluminum alloy sheet for battery lid for forming integrated explosion prevention valve, and method for producing same
EP3842558A1 (en) Aluminum alloy sheet for battery lid for molding integrated explosion-proof valve and production method therefor
CN115044810A (en) Aluminum alloy, preparation method thereof and automobile material
CA3024394A1 (en) Aluminum alloy compositions and methods of making and using the same
US11708630B2 (en) Titanium alloy with moderate strength and high ductility
CN115044809A (en) Cast aluminum-silicon alloy and preparation method thereof, and aluminum-silicon alloy for aviation or automobile castings
JP3982849B2 (en) Aluminum alloy for forging
WO2009123084A1 (en) Magnesium alloy and process for producing the same
CN114214534A (en) Modified aluminum alloy and preparation method thereof
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
JP2002348625A (en) Aluminum alloy sheet with superior warm formability, and manufacturing method therefor
JPS6256220B2 (en)
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
US20230416878A1 (en) Aluminum alloy for automobile wheels, and automobile wheel
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
CA2628229A1 (en) 6000-series aluminum extruded material superior in paint-baking hardenability and method for manufacturing the same