JPS625604Y2 - - Google Patents

Info

Publication number
JPS625604Y2
JPS625604Y2 JP1977130053U JP13005377U JPS625604Y2 JP S625604 Y2 JPS625604 Y2 JP S625604Y2 JP 1977130053 U JP1977130053 U JP 1977130053U JP 13005377 U JP13005377 U JP 13005377U JP S625604 Y2 JPS625604 Y2 JP S625604Y2
Authority
JP
Japan
Prior art keywords
pulse
measured
counter
output
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977130053U
Other languages
Japanese (ja)
Other versions
JPS5457049U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1977130053U priority Critical patent/JPS625604Y2/ja
Publication of JPS5457049U publication Critical patent/JPS5457049U/ja
Application granted granted Critical
Publication of JPS625604Y2 publication Critical patent/JPS625604Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【考案の詳細な説明】 本考案は光電的な測寸装置に関する。[Detailed explanation of the idea] The present invention relates to a photoelectric measuring device.

多数の光電素子を一列に並べ、その上に被測定
物体の陰影を投影して受光している又はしていな
い受光素子の数を数計して被測定物の寸法を測定
する装置がある。本考案はこの種の装置を対象と
したもので被測定物が動いていても正しい寸法が
測れるようにすることを目的としている。
2. Description of the Related Art There is an apparatus that measures the dimensions of an object by arranging a large number of photoelectric elements in a line, projecting the shadow of the object to be measured onto the photoelectric elements, and counting the number of light-receiving elements that are receiving or not receiving light. The present invention is aimed at this type of device, and aims to enable correct dimensions to be measured even when the object to be measured is moving.

第1図は本考案の一実施例を示すものである
が、同図を借りてまず一般的な説明を行う。第1
図で1は直径を測定すべき丸棒で図の紙面に垂直
の方向に移送されており、移送中に直径を測定す
る。2,3は光源であり、4,5はコリメータレ
ンズであつて光源2,3から出た光を平行光束に
して丸棒1に投射する。6,7は結像レンズで丸
棒1の側線の像を光電受光体8,9の上に結ぶ。
従つて受光体8,9上には丸棒のシルエツトが映
つている。受光体8,9は多数の光電素子を一列
に並べて、それらの素子を走査して順次光電出力
を取出すようになつているもので、3cmの間に千
数百個の光電素子を並べ一回の走査所要時間が
700μS程度のものが市販されている(例えば
CCD素子等と呼ばれているもの)。受光体8,9
を走査すると各受光素子の出力が順に取出されて
パルス列より成る出力が得られる。各受光素子で
受光していないものは出力が0(或は小さい)で
あるからレベル選別により或るレベル以上のパル
スの数を計数すると受光体8,9の間隔と上記計
数値とから丸棒1の直径が算出される。
FIG. 1 shows one embodiment of the present invention, and a general explanation will first be given with reference to FIG. 1st
In the figure, 1 is a round bar whose diameter is to be measured, and it is being transported in a direction perpendicular to the plane of the figure, and the diameter is measured while being transported. 2 and 3 are light sources, and 4 and 5 are collimator lenses that convert the light emitted from the light sources 2 and 3 into a parallel beam of light and project it onto the round bar 1. 6 and 7 are imaging lenses that form images of the side lines of the round rod 1 onto photoelectric photoreceptors 8 and 9.
Therefore, the silhouette of a round bar is reflected on the photoreceptors 8 and 9. The photoreceptors 8 and 9 are constructed by arranging a large number of photoelectric elements in a line and scanning the elements to sequentially extract the photoelectric output. The scanning time is
Products with a speed of about 700 μS are commercially available (for example,
(What are called CCD elements, etc.) Photoreceptor 8, 9
When scanned, the output of each light receiving element is taken out in order, and an output consisting of a pulse train is obtained. If each light receiving element does not receive light, the output is 0 (or small), so when the number of pulses above a certain level is counted by level selection, a round bar is determined from the distance between the light receiving elements 8 and 9 and the above counted value. 1 diameter is calculated.

所で丸棒は移送されており上下に多少揺動し、
又太さも変化しているので、丸棒の側線(軸方向
の表面の一線)は図の紙面で上下方向に動いてい
る。この動きの速度を仮に1m/sとする。この
位の速度はおそい速度であるが、1mSの間に1mm
の移動となる。従つて受光体8,9の走査をまず
8を走査し引続き9を走査すると云うことにする
と8,9上に投ぜられている丸棒のシルエツトの
境界が走査される時刻には最大0.7mSのずれがあ
り側線は0.7mm移動していることになつて測定に
0.7mmの誤差が生ずる。本考案はこのようにして
生ずる測寸誤差をなくすことを目的としている。
By the way, the round bar is being transported and is slightly swaying up and down.
Also, since the thickness is changing, the side line (one line on the surface in the axial direction) of the round bar is moving up and down in the plane of the figure. Assume that the speed of this movement is 1 m/s. This speed is slow, but 1mm in 1mS
will be moved. Therefore, if we decide to scan the photoreceptors 8 and 9 by first scanning 8 and then scanning 9, it will take a maximum of 0.7 mS at the time when the boundary of the silhouette of the round bar projected on 8 and 9 is scanned. There was a misalignment and the lateral line had moved by 0.7mm, which led to the measurement.
There will be an error of 0.7mm. The purpose of the present invention is to eliminate measurement errors that occur in this way.

上記目的を達成するには受光体8,9を同時に
走査すればよい。そのためには二つの受光体に共
通の走査用パルス信号を与えればよいのである。
しかしこのようにすると二つの受光体の出力であ
る二つのパルス列の信号はパルス位相が一致する
のでこれを単純に加算して一つのカウンタで計数
することができない。即ち第2図でaは受光体8
の出力パルス、bは受光体9の出力パルスで区間
Tが一回の走査に対応している。測寸はこれら
a,bの両パルス列のパルスを各別に計数して加
算した値を或る定数から引いたものを丸棒1の直
径とするものである。所で二つのパルス列a,b
を各別に計数して加算するとするとカウンタ2
個、デイジタル加算器1個が必要となる。カウン
タを1個とし、デイジタル加算器を不要とするた
めに二つのパルス列a,bをオア回路を通して一
つのカウンタに入力させると第2図で云えばパル
スイロハとニホヘとが重なつてしまつて正しい計
数ができない。本考案の第2の目的はカウンタ1
個、加算器なしでしかも二つの受光体の同時走査
を可能にすることである。以下実施例によつて本
考案を説明する。
To achieve the above object, the photoreceptors 8 and 9 may be scanned simultaneously. For this purpose, it is sufficient to apply a common scanning pulse signal to the two photoreceptors.
However, in this case, since the pulse phases of the two pulse train signals output from the two photoreceptors match, it is not possible to simply add them and count them with one counter. That is, in FIG. 2, a is the photoreceptor 8.
The output pulse b is the output pulse of the photoreceptor 9, and the section T corresponds to one scan. The diameter of the round bar 1 is determined by counting the pulses of both pulse trains a and b separately and subtracting the sum from a certain constant. Now, two pulse trains a and b
If we count and add each separately, counter 2
, one digital adder is required. If we use one counter and input two pulse trains a and b into one counter through an OR circuit in order to eliminate the need for a digital adder, the pulses ABC and Ni will overlap in Figure 2, which is correct. Unable to count. The second purpose of this invention is to
The object of the present invention is to enable simultaneous scanning of two photoreceptors without an adder. The present invention will be explained below with reference to Examples.

第1図において12はクロツクパルス発生器で
あり、10,11は受光体8,9の駆動回路であ
り、12からクロツクパルスを受けて受光体8,
9を走査する。10,11は共通のクロツクパル
スを受けているので、8,9は全く同期的に走査
される。13,14はレベル比較器で8,9の出
力パルスより一定レベル以上のもの(丸棒のシル
エツトの外になつている受光素子の出力に相当す
る)だけを取出す。8,9は相互同期して走査さ
れているので、上記比較器13,14の出力は
夫々第2図a及びbのようになる。15,16は
微分回路を主体とした変換回路で15は比較器1
3の出力パルス(第2図a)を微分してその立上
り部分のみを正のパルスとして取出すものであ
り、その出力は第2図cのようになり、各パルス
の前縁が第2図aの各パルスの前縁と一致してい
る。変換回路16は比較器14の出力パルス(第
2図b)を微分しその立下り部分のみを反転して
出力する回路であり、その出力パルスは第2図d
に示すようにその前縁が第2図bの各パルスの後
縁と一致している。従つて変換回路15,16の
出力パルスは互に移相がずれている。もちろん変
換回路15,16の出力パルスの幅は同回路への
入力パルスの幅よりせまくしてある。より詳細に
は変換回路15,16の正の出力(これは鋭いス
パイク状の信号)でモノマルチ回路17,18を
トリガして17,18の出力として第2図c,d
に示すパルスを得ている。19はオア回路でこれ
を通して第2図c,dに示すパルスを共にカウン
タ20に入力する。この入力パルスを第2図eに
示す。カウンタの計数は受光体8,9における受
光している素子の総数であり、或る一定数からこ
れを引いたものが丸棒1の直径になり、これが表
示器21により表示される。
In FIG. 1, 12 is a clock pulse generator, 10 and 11 are driving circuits for the photoreceptors 8 and 9, and the photoreceptors 8 and 9 receive clock pulses from 12.
Scan 9. Since 10 and 11 receive a common clock pulse, 8 and 9 are scanned completely synchronously. Reference numerals 13 and 14 indicate level comparators, which extract only those output pulses having a certain level or higher (corresponding to the output of the light-receiving element outside the silhouette of the round bar) from the output pulses 8 and 9. 8 and 9 are scanned in synchronization with each other, the outputs of the comparators 13 and 14 are as shown in FIG. 2a and b, respectively. 15 and 16 are conversion circuits mainly composed of differentiating circuits, and 15 is a comparator 1.
The output pulse of 3 (Figure 2a) is differentiated and only its rising portion is extracted as a positive pulse, and the output is as shown in Figure 2c, and the leading edge of each pulse is as shown in Figure 2a. coincides with the leading edge of each pulse. The conversion circuit 16 is a circuit that differentiates the output pulse of the comparator 14 (FIG. 2b), inverts only the falling part, and outputs the inverted signal, and the output pulse is as shown in FIG. 2d.
As shown in FIG. 2b, its leading edge coincides with the trailing edge of each pulse in FIG. 2b. Therefore, the output pulses of the conversion circuits 15 and 16 are out of phase with each other. Of course, the width of the output pulses of the conversion circuits 15 and 16 is narrower than the width of the input pulses to the same circuits. More specifically, the positive outputs of the conversion circuits 15 and 16 (this is a sharp spike-like signal) trigger the monomulti circuits 17 and 18, and the outputs of the converters 17 and 18 are shown in Figures 2c and d.
The pulse shown in is obtained. Reference numeral 19 denotes an OR circuit through which both the pulses shown in FIG. 2c and d are input to the counter 20. This input pulse is shown in FIG. 2e. The count on the counter is the total number of light-receiving elements in the photoreceptors 8 and 9, and the diameter of the round bar 1 is obtained by subtracting this from a certain constant number, which is displayed on the display 21.

上述した実施例では多数の受光素子を一列に並
べた受光体を走査して受光範囲の長さをパルス数
に変換しているが、細い光束を横方向に移動さ
せ、被測定体のシルエツトの像面において上記光
束が被測定体により遮ぎられている時間(受光で
きない時間)を一定周期のパルス列のパルス数で
測つて長さを求めると云つた原理を用いる場合で
も本考案が適用できることは云うまでもない。ま
た受光体にしても二個に限定されるものではなく
被測定体の大きさによつては三個或はそれ以上の
場合も含まれる。
In the embodiment described above, a photoreceptor with a large number of photodetectors arranged in a row is scanned and the length of the light receiving range is converted into the number of pulses. The present invention can be applied even when using the principle of determining the length by measuring the time during which the above-mentioned light beam is blocked by the object to be measured (the time during which light cannot be received) in the image plane by the number of pulses in a pulse train of a constant period. Needless to say. Further, the number of photoreceptors is not limited to two, but may include three or more depending on the size of the object to be measured.

本考案は上述したような構成であるから、被測
定体が動いているような場合に対して良好な精度
の測定ができるのである。
Since the present invention has the above-described configuration, it is possible to perform measurements with good accuracy even when the object to be measured is moving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示すブロツク図、
第2図は同実施例の動作を示す信号のタイムチヤ
ートである。 1……被測定体、8,9……受光体、12……
クロツクパルス発生器、19……オア回路、20
……カウンタ。
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a time chart of signals showing the operation of the same embodiment. 1...Object to be measured, 8, 9...Photoreceptor, 12...
Clock pulse generator, 19...OR circuit, 20
……counter.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測定体に光を当て被測定体の背後において光
の当つている部分又は光の当つていない部分の長
さをパルス列の信号に変換して計数する構成にお
いて、被測定体の一方の縁の影の部分と他方の縁
の影の部分とを各別に走査し夫々の走査において
得られるパルスの個数の和を求めるに当り、上記
二部分の走査を相互同期して行い、一方の部分の
走査に基き得られるパルス列信号の立上りを検出
してパルスを出す装置と他方の部分の走査に基き
得られるパルス列信号の立下りを検出してパルス
を出す装置とこれら両装置の出力パルスをオア回
路を通して印加されるカウンタを設け同カウンタ
の出力により被測定体の寸法を算出表示するよう
にした測寸装置。
In a configuration in which light is applied to an object to be measured and the length of a portion of the object to be measured that is illuminated or not illuminated by light is converted into a pulse train signal and counted, one edge of the object to be measured is used. In order to calculate the sum of the number of pulses obtained in each scan by scanning the shaded part of the edge and the shaded part of the other edge separately, scan the above two parts in synchronization with each other, and A device that detects the rising edge of the pulse train signal obtained by scanning and outputs a pulse, a device that detects the falling edge of the pulse train signal obtained by scanning the other part and outputs the pulse, and an OR circuit for the output pulses of both devices. A dimension measuring device that is equipped with a counter that applies voltage through the counter, and calculates and displays the dimensions of an object to be measured based on the output of the counter.
JP1977130053U 1977-09-27 1977-09-27 Expired JPS625604Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977130053U JPS625604Y2 (en) 1977-09-27 1977-09-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977130053U JPS625604Y2 (en) 1977-09-27 1977-09-27

Publications (2)

Publication Number Publication Date
JPS5457049U JPS5457049U (en) 1979-04-20
JPS625604Y2 true JPS625604Y2 (en) 1987-02-09

Family

ID=29095297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977130053U Expired JPS625604Y2 (en) 1977-09-27 1977-09-27

Country Status (1)

Country Link
JP (1) JPS625604Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011457A (en) * 1973-06-01 1975-02-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011457A (en) * 1973-06-01 1975-02-05

Also Published As

Publication number Publication date
JPS5457049U (en) 1979-04-20

Similar Documents

Publication Publication Date Title
GB1449050A (en) Device for determining the location of orientation of an object in a designated environment
US3899251A (en) Apparatus and method for measuring the relative distance and optionally the relative velocity of an object
US5473436A (en) Surface shape measurement device with slit plate and single photoelectric converter
JPS636483A (en) Time interval measuring instrument
JPS625604Y2 (en)
US4332475A (en) Edge timing in an optical measuring apparatus
JPH0342611B2 (en)
JPH0143243B2 (en)
SU1067352A1 (en) Method and device for measuring object position
SU486216A1 (en) Displacement measurement method
JPS5618711A (en) Device for measuring distance
JPS5912961B2 (en) Laser position detection device
JPH0968414A (en) Dimension measuring apparatus
JPS61221616A (en) Optical measuring method for fine displacement
JP2903220B2 (en) Distance measurement method for lightwave distance meter
JPS6125363A (en) Beam position detector
JP4230244B2 (en) Shape measuring device
RU2149355C1 (en) Device automatically determining changes of angular coordinate of object
SU1539525A1 (en) Method and apparatus for measuring position of object
SU384006A1 (en) PHOTO-IMPULSE DEVICE FOR MEASURING THE HOT WIDTH WIDTH
SU651390A1 (en) Photoelectric shaft angular position-to-code converter
SU1383417A1 (en) Device for reading out images
SU949810A1 (en) Pulse amplitude to code converter
SU1265476A1 (en) Optoelectronic device for measuring linear and angular displacements
SU1551984A1 (en) Device for measuring shift in achromatic band in interferometer