JPS6255955B2 - - Google Patents

Info

Publication number
JPS6255955B2
JPS6255955B2 JP56161421A JP16142181A JPS6255955B2 JP S6255955 B2 JPS6255955 B2 JP S6255955B2 JP 56161421 A JP56161421 A JP 56161421A JP 16142181 A JP16142181 A JP 16142181A JP S6255955 B2 JPS6255955 B2 JP S6255955B2
Authority
JP
Japan
Prior art keywords
welding
wide electrode
current
molten metal
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56161421A
Other languages
Japanese (ja)
Other versions
JPS5861967A (en
Inventor
Takashi Oomae
Yasuyuki Yoshida
Ikuo Wakamoto
Masazumi Nagareda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16142181A priority Critical patent/JPS5861967A/en
Publication of JPS5861967A publication Critical patent/JPS5861967A/en
Publication of JPS6255955B2 publication Critical patent/JPS6255955B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/08Arrangements or circuits for magnetic control of the arc

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は広巾電極を用いたサブマージアーク肉
盛溶接やエレクトロスラグ肉盛溶接の改良に関す
る。 石油精製プラントや肥料プラントに使用される
リアクターや熱交換器等には、耐水素浸食性、耐
腐食性、耐エロージヨン性を考慮してステンレス
鋼を肉盛り溶接するものが多い。この肉盛り溶接
を高能率に行う方法として、一般に広巾電極(巾
25mm以上、板厚0.4mm以上)を用いたサブマージ
ドアーク溶接やエレクトロスラグ溶接が採用され
ている。 従来の広巾電極溶接法は、第1図に示すように
鋼板1上に広巾電極2を配置し、この広巾電極2
に送信ローラ3及び溶接電源4と接続した給電チ
ツプ5をそれぞれ設け、広巾電極2と鋼板1との
間に電流Iを流し、広巾電極2を鋼板1方向に送
りながら溶接するものである。 なお図中6はフラツクス、7は溶接ビード、8
は凝固スラグ、9は溶融金属、10はスラグ通電
溶融部(又はアーク)をそれぞれ示す。 この広巾電極溶接方法は、広巾電極2の周囲に
回転磁界Bが生じ、溶融金属9中を流れる平行電
流により近接力が生じ、溶融金属9が溶融池側端
から内部に流動する。このため溶融池端部の溶融
金属は不足し、第2図に示すようにアンダーカツ
ト11が生じ、ぬれ角度αが増大し、重ね部の融
合不良12を生じるなどの欠点がある。 またクラツド鋼の溶接は、一般に被覆アーク溶
接で行なつているが、この方法ではビード両端部
に融合不良が発生しやすく、また融け込みが不均
一になると共に作業能率が悪い欠点がある。 本発明は、上記事情に鑑みてなされたもので、
その目的とするところは溶接時に磁気振動を与え
ることにより、融合不良、アンダーカツトを防止
することができる広巾電極肉盛溶接方法を得んと
するものである。 すなわち本発明は、広巾電極端部の周囲に励磁
コイルを配設し、該コイルに交流電流を流し、こ
の電流により生じた鋼板に対して垂直方向の交番
磁界と、溶融池を流れる電流による流動力(ロー
レンツ力)により溶融池の溶融金属に磁気振動を
与えて溶接することを特徴とする広巾電極溶接方
法である。 以下本発明を図面を参照して説明する。 本発明では、第3図に示すように母材鋼板21
上に広巾電極22を配置する。この広巾電極22
は、板厚0.4mm以上、板幅25mm以上のもので、送
給ローラ23により母材鋼板21方向に送られ、
又溶接電源24と接続した給電チツプ25と接触
している。更に広巾電極21には端部周囲に強磁
性体コア26、非磁性体リール27を介して励磁
コイル28が配置されている。この励磁コイル2
8は例えば1〜2mmφの銅線を500〜1000回巻い
たもので、励磁用可変交流電源29に接続してい
る。この場合励磁コイル28に流す交流は1〜20
Hzが好適である。なお図中30はフラツクス、3
1は溶接ビード、32は冷水銅管である。 この構成において、広巾電極22に給電チツプ
25を通して溶接電流(直流)を流すと(第5
図)、広巾電極22と母材鋼板21との間のアー
ク又はスラグ通電抵抗熱により広巾電極22が溶
融し、溶融金属33による溶融池ができる。ここ
で励磁コイル28に1〜20Hzの磁化電流(交流)
を流すと(第6図)、溶融池が第7図イ及び同図
ロに示すように交互に回転する。すなわち磁化電
流(交流)を流すと、励磁コイル28による交番
磁界Bが垂直方向に生じ(第8図イ及び同図
ロ)、溶融金属33を流れる溶接電流Iにより、
ローレンツ力Fが発生し、溶融金属33が左右に
移動して(第4図、第9図イ及び同図ロ)、振動
を生じる。 この結果溶融金属33は、偏平となつてビート
巾が広がり、ぬれ角度αを小さくするとともに、
アンダーカツトや融合不良を防止することができ
る。さらに振動によりスラグの剥離性を改善し、
結晶粒微細化の効果がある。 次に本発明の実施例につき説明する。 実施例 1 1A,10Hzの励磁電流を流して本発明溶接方法
をおこなつた。その溶接条件及び溶接結果を第1
表に表す。 また比較のために励磁電流を流さずに溶接した
従来方法につき、その溶接条件及び溶接結果を第
1表に示す。
The present invention relates to improvements in submerged arc overlay welding and electroslag overlay welding using wide electrodes. Reactors, heat exchangers, and the like used in oil refinery plants and fertilizer plants are often made of stainless steel by overlay welding in consideration of hydrogen erosion resistance, corrosion resistance, and erosion resistance. As a method for performing this overlay welding with high efficiency, a wide electrode (width
Submerged arc welding and electroslag welding are used, using plates of 25 mm or more and plate thickness of 0.4 mm or more. In the conventional wide electrode welding method, a wide electrode 2 is placed on a steel plate 1 as shown in FIG.
A power supply chip 5 connected to a transmitting roller 3 and a welding power source 4 is provided respectively, and a current I is passed between the wide electrode 2 and the steel plate 1, and the wide electrode 2 is welded while being fed in the direction of the steel plate 1. In the figure, 6 is flux, 7 is weld bead, and 8 is
9 indicates solidified slag, 9 indicates molten metal, and 10 indicates slag energized melting part (or arc). In this wide electrode welding method, a rotating magnetic field B is generated around the wide electrode 2, a parallel current flowing in the molten metal 9 generates a proximity force, and the molten metal 9 flows inward from the molten pool side end. As a result, there is a shortage of molten metal at the end of the molten pool, resulting in an undercut 11 as shown in FIG. 2, an increase in the wetting angle α, and defective fusion 12 at the overlapped portion. Clad steel is generally welded by shielded arc welding, but this method has the drawbacks that poor fusion tends to occur at both ends of the bead, uneven fusion and poor work efficiency. The present invention was made in view of the above circumstances, and
The purpose is to provide a wide electrode overlay welding method that can prevent poor fusion and undercut by applying magnetic vibration during welding. That is, in the present invention, an excitation coil is disposed around the end of a wide electrode, an alternating current is passed through the coil, an alternating magnetic field is generated by this current in a direction perpendicular to the steel plate, and a flow due to the current flowing through the molten pool is generated. This is a wide electrode welding method characterized by welding by applying magnetic vibration to molten metal in a molten pool using force (Lorentz force). The present invention will be explained below with reference to the drawings. In the present invention, as shown in FIG.
A wide electrode 22 is placed on top. This wide electrode 22
is a plate with a thickness of 0.4 mm or more and a plate width of 25 mm or more, and is sent in the direction of the base steel plate 21 by the feeding roller 23,
It is also in contact with a power supply chip 25 connected to a welding power source 24. Further, an excitation coil 28 is arranged around the end of the wide electrode 21 via a ferromagnetic core 26 and a nonmagnetic reel 27. This excitation coil 2
8 is, for example, a copper wire of 1 to 2 mmφ wound 500 to 1000 times, and is connected to a variable AC power source 29 for excitation. In this case, the alternating current flowing through the excitation coil 28 is 1 to 20
Hz is preferred. In addition, 30 in the figure is flux, 3
1 is a weld bead, and 32 is a cold water copper pipe. In this configuration, when welding current (DC) is passed through the wide electrode 22 through the power supply chip 25 (the fifth
(Figure), the wide electrode 22 is melted by the arc or slag current resistance heat between the wide electrode 22 and the base steel plate 21, and a molten pool of molten metal 33 is formed. Here, the magnetizing current (alternating current) of 1 to 20 Hz is applied to the excitation coil 28.
(Fig. 6), the molten pool rotates alternately as shown in Fig. 7A and Fig. 7B. That is, when a magnetizing current (alternating current) is passed, an alternating magnetic field B is generated by the excitation coil 28 in the vertical direction (FIGS. 8A and 8B), and due to the welding current I flowing through the molten metal 33,
A Lorentz force F is generated, and the molten metal 33 moves from side to side (FIGS. 4, 9A and 9B), causing vibrations. As a result, the molten metal 33 becomes flat and the beat width increases, reducing the wetting angle α, and
Undercuts and poor fusion can be prevented. Furthermore, the slag peelability is improved by vibration,
It has the effect of refining crystal grains. Next, examples of the present invention will be described. Example 1 The welding method of the present invention was carried out by flowing an excitation current of 1 A and 10 Hz. The welding conditions and welding results are
Express in a table. For comparison, Table 1 shows welding conditions and welding results for a conventional welding method in which no excitation current was applied.

【表】 上表から明らかなように励磁電流を流すと、溶
接ビード巾の増大、肉盛厚さの減少、ぬれ角度の
減少がみられ、融合不良、アンダーカツトを防止
できることがわかる。 実施例 2 本発明方法をクラツド鋼の継手溶接(第10
図)に適用して下記条件で溶接をおこなつた。そ
の溶接条件及び第10図に示す溶接部の寸法を第
2表に示す。
[Table] As is clear from the above table, when an excitation current is applied, the weld bead width increases, the build-up thickness decreases, and the wetting angle decreases, indicating that poor fusion and undercut can be prevented. Example 2 The method of the present invention was applied to joint welding of clad steel (No. 10)
Welding was carried out under the following conditions by applying the method shown in Fig.). Table 2 shows the welding conditions and the dimensions of the welded part shown in FIG.

【表】【table】

【表】 この溶接方法によれば、両端の融合不良は防止
されるとともに溶け込みが均一かつスムーズにな
り、また溶接能率が大巾に向上することができ
た。 以上の如く本発明によれば磁気振動を与えるこ
とにより融合不良、アンダーカツトを防止でき、
圧力容器その他ステレンス鋼、Ni合金、銅合金
等を肉盛溶接する場合又はクラツド鋼を継手溶接
する場合にきわめて有効である。
[Table] According to this welding method, poor fusion at both ends was prevented, penetration became uniform and smooth, and welding efficiency was greatly improved. As described above, according to the present invention, poor fusion and undercut can be prevented by applying magnetic vibration.
It is extremely effective when overlaying pressure vessels and other stainless steels, Ni alloys, copper alloys, etc., or when welding clad steel joints.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の広巾溶接方法を示す斜視図、第
2図は同溶接方法における欠陥を示す説明図、第
3図は本発明を炭素鋼、低合金鋼への肉盛溶接に
適用した一例を示す図、第4図は同溶接方法の作
用説明図、第5図は同溶接方法における直流の溶
接電流を示す図、第6図は磁化電流を示す図、第
7図イ及び同図ロは磁化電流の変化により変わる
溶融池の回転方向を示す図、第8図イ及び同図ロ
は、磁化電流の変化にともなつて変わる交番磁界
Bの方向を示す図、第9図イ及び同図イは交番磁
界Bの変化にともなつて変わるローレンツ力Fの
方向を示す図、第10図は本発明をクラツド鋼の
継手溶接に適用した一例を示す断面図である。 21……母材鋼板、22……広巾電極、23…
…送給ローラ、24……溶接電源、25……給電
チツプ、26……強磁性体コア、27……非磁性
体リール、28……励磁コイル、29……励磁用
可変交流電源、30……フラツクス、31……溶
接ビード、32……冷水銅管、33……溶融金
属。
Figure 1 is a perspective view showing a conventional wide width welding method, Figure 2 is an explanatory diagram showing defects in the same welding method, and Figure 3 is an example of applying the present invention to overlay welding on carbon steel and low alloy steel. Fig. 4 is an explanatory diagram of the operation of the welding method, Fig. 5 is a diagram showing the DC welding current in the welding method, Fig. 6 is a diagram showing the magnetizing current, and Fig. 7 A and B of the same figure. 8A and 8B are diagrams showing the direction of rotation of the molten pool that changes with changes in the magnetizing current, Figures 8A and 8B are diagrams that show the direction of the alternating magnetic field B that changes with changes in the magnetization current, Figure A is a diagram showing the direction of the Lorentz force F that changes with changes in the alternating magnetic field B, and Figure 10 is a sectional view showing an example in which the present invention is applied to joint welding of clad steel. 21...Base material steel plate, 22...Wide electrode, 23...
...Feeding roller, 24...Welding power source, 25...Power supply chip, 26...Ferromagnetic core, 27...Nonmagnetic reel, 28...Excitation coil, 29...Variable AC power source for excitation, 30... ... flux, 31 ... weld bead, 32 ... cold water copper pipe, 33 ... molten metal.

Claims (1)

【特許請求の範囲】[Claims] 1 広巾電極端部の周囲に励磁コイルを配設し、
該コイルに交流電流を流して溶融池の溶融金属に
磁気振動を与えながら溶接することを特徴とする
広巾電極溶接方法。
1 Place an excitation coil around the end of the wide electrode,
A wide electrode welding method characterized in that welding is performed while applying magnetic vibration to molten metal in a molten pool by passing an alternating current through the coil.
JP16142181A 1981-10-09 1981-10-09 Welding method for broad electrode Granted JPS5861967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16142181A JPS5861967A (en) 1981-10-09 1981-10-09 Welding method for broad electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16142181A JPS5861967A (en) 1981-10-09 1981-10-09 Welding method for broad electrode

Publications (2)

Publication Number Publication Date
JPS5861967A JPS5861967A (en) 1983-04-13
JPS6255955B2 true JPS6255955B2 (en) 1987-11-24

Family

ID=15734775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16142181A Granted JPS5861967A (en) 1981-10-09 1981-10-09 Welding method for broad electrode

Country Status (1)

Country Link
JP (1) JPS5861967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11109618B2 (en) 2013-03-28 2021-09-07 Philip Morris Products S.A. Smoking article including a flavour delivery member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209488A (en) * 1983-05-13 1984-11-28 Mitsubishi Heavy Ind Ltd Welding method of complete austenitic stainless steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066454A (en) * 1973-10-18 1975-06-04
JPS5419212A (en) * 1977-07-14 1979-02-13 Yamatoshi Shiyouji Kk Pipe fitting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066454A (en) * 1973-10-18 1975-06-04
JPS5419212A (en) * 1977-07-14 1979-02-13 Yamatoshi Shiyouji Kk Pipe fitting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11109618B2 (en) 2013-03-28 2021-09-07 Philip Morris Products S.A. Smoking article including a flavour delivery member

Also Published As

Publication number Publication date
JPS5861967A (en) 1983-04-13

Similar Documents

Publication Publication Date Title
JPS5811317B2 (en) Horizontal electroslag build-up welding method
JP2018001275A (en) Welding waveform for stainless steel applications
JPS6255955B2 (en)
US2170019A (en) Method of welding
JP2006130510A (en) Butt welding method for thick plate metal
Farkade et al. Modification in weld overlay for productivity and corrosion resistance
JP4975949B2 (en) Welding coating method of corrosion-resistant thin metal sheet on thick metal substrate surface
JP4975948B2 (en) Welding coating method of corrosion-resistant thin metal sheet on thick metal substrate surface
JP3256089B2 (en) Non-consumable nozzle type electroslag welding method
JPS60240377A (en) Wide electrode welding method
JPS60240386A (en) Welding method with broad electrode
JPH0557072B2 (en)
JPS62263868A (en) Narrow gap tig welding method
Jud Joining galvanized and galvannealed steels
JP2000061665A (en) Consumable nozzle type electro-slag welding method
JP4574977B2 (en) Welding coating method of corrosion-resistant thin metal sheet on thick metal substrate surface
JPH05200563A (en) Resistance welding method for galvanized steel sheets
JPS62248569A (en) Magnetism utilizing horizontal welding method
SU1442345A1 (en) Method of double-arc welding
Verma Narrow-gap improved electroslag welding for bridges
JPS6026631B2 (en) Overlay welding method
JPS62144878A (en) Magnetic agitation welding method for tube panel
JPH0214861Y2 (en)
JPS6478678A (en) Welding method for austenitic heat resistant alloy tube
JPS5877773A (en) Wide electrode welding method