JPS60240386A - Welding method with broad electrode - Google Patents

Welding method with broad electrode

Info

Publication number
JPS60240386A
JPS60240386A JP9728384A JP9728384A JPS60240386A JP S60240386 A JPS60240386 A JP S60240386A JP 9728384 A JP9728384 A JP 9728384A JP 9728384 A JP9728384 A JP 9728384A JP S60240386 A JPS60240386 A JP S60240386A
Authority
JP
Japan
Prior art keywords
metal
welding
electrode
molten metal
groove depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9728384A
Other languages
Japanese (ja)
Inventor
Ikuo Wakamoto
郁夫 若元
Toshiro Kobayashi
敏郎 小林
Yuzuru Miura
譲 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9728384A priority Critical patent/JPS60240386A/en
Publication of JPS60240386A publication Critical patent/JPS60240386A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K25/00Slag welding, i.e. using a heated layer or mass of powder, slag, or the like in contact with the material to be joined
    • B23K25/005Welding for purposes other than joining, e.g. built-up welding

Abstract

PURPOSE:To prevent a peeling crack by applying magnetic oscillation to a molten metal by an AC excitation coil to weld a cladding metal and base metal and forming the cladding metal so as to have the same groove depth as the sheet thickness or smaller groove depth than said thickness. CONSTITUTION:A broad electrode 23 is fed by feed rollers 24 to a steel sheet 21 which is a base metal. A ferromagnetic material 27 and the excitation coil 29 are disposed around the end of the electrode 23. The molten pool of a molten metal 35 is made between the steel sheet 21 and the electrode 23 when DC welding current flows to the electrode 23. The molten metal 35 moves laterally and generates the excited flow on account of the alternating field when 1-20Hz AC magnetizing current is passed to the coil 29 in this stage. The finer crystal grains of the molten metal 35 are thus formed and the density of the grain boundary to be precipitated in the stage of a heat treatment is extremely decreased. The peeling crack of the weld metal is prevented by such decrease coupled with the formation of the cladding sheet to the small groove depth.

Description

【発明の詳細な説明】 マージアーク溶接やエレクトロスラグ溶接の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to improvements in merged arc welding and electroslag welding.

石油精製プラントや肥料プラントに使用されるリアクタ
ーや熱交換器等には、耐水素浸食性、耐腐食性、耐エロ
ージヨン性を考慮してステンレスクラツド鋼が用いられ
ている。そして、このクラツド鋼の溶接継手部の肉盛溶
接を高能率に行う方法として、一般に広幅電極(幅25
〜7 5 m )を用いたサブマージドアーク溶接やエ
レクトロスラグ溶接が採用されている。
Stainless clad steel is used for reactors, heat exchangers, etc. used in oil refining plants and fertilizer plants, taking into account its hydrogen erosion resistance, corrosion resistance, and erosion resistance. As a method for highly efficient overlay welding of welded joints of clad steel, a wide electrode (width 25 mm) is generally used.
Submerged arc welding and electroslag welding using 75 m) have been adopted.

従来、広幅電極溶接方法は、第1図に示すように母材鋼
板1上にステンレス鋼合せ材2(母材鋼板と合せ材を総
称してクラツド鋼と呼ぶ)広幅電極3を配置し、この広
幅電極3に送給ローラ4及び溶接電源5と接続した給電
チップ6を夫々設け、広幅電極3と鋼板1との間に電流
(I)を流し、広幅電極3を鋼板1方向に送シながら溶
接するものである。々お、図中の7ll−1.フラック
ス、8はステンレス鋼肉盛溶接金属、9は凝固スラグ、
10は溶融金属、llは鋼板の溶接部、12はスラグ通
電溶融部(又はアーク)を夫々示す。また、肉盛溶接の
開先形状は、第2図に示す如く鋼板1へIWa程度削シ
込んでおり、角度(θ)は30度である。
Conventionally, in the wide electrode welding method, as shown in FIG. A power supply tip 6 connected to a feed roller 4 and a welding power source 5 is provided on the wide electrode 3, and a current (I) is passed between the wide electrode 3 and the steel plate 1, while feeding the wide electrode 3 in the direction of the steel plate 1. It is to be welded. 7ll-1 in the figure. flux, 8 is stainless steel overlay weld metal, 9 is solidified slag,
10 is a molten metal, 11 is a welded part of a steel plate, and 12 is a slag energized melted part (or arc). Moreover, the groove shape of the overlay welding is cut into the steel plate 1 by about IWa, as shown in FIG. 2, and the angle (θ) is 30 degrees.

この広幅電極溶接方法は、広幅電極3の周囲に回転磁界
Bが生じ、溶融金属10中を流れる平行電流によシ近接
力が生じ、溶融金属1oが溶融池側端から内部に流動す
る。
In this wide electrode welding method, a rotating magnetic field B is generated around the wide electrode 3, a proximity force is generated by a parallel current flowing in the molten metal 10, and the molten metal 1o flows inward from the molten pool side end.

しかしながら、前述した製造方法によれば、第3図に示
す如く肉盛溶接金属8と#応1の境界部に割れ(以下、
剥離割れと呼ぶ)13が発生する。また、この剥離割れ
13は位置Pの部分に発生し易い欠点を有する。この原
因としてば、次の3点が考えられる。
However, according to the manufacturing method described above, as shown in FIG. 3, there is a crack (hereinafter referred to as
13 (referred to as peeling cracks) occurs. Further, this peeling crack 13 has a drawback that it tends to occur at the position P. There are three possible reasons for this:

■ 第4図に示す如く、母材鋼板1と肉盛溶接金属8の
境界部(肉盛溶接境界部)14近傍の肉盛溶接金属8に
粗大な結晶粒界15が存在し、溶接後熱処理に鋼板1か
ら炭素が拡散移動し、その結晶粒界1511C炭化物が
析出する。その結果、前記境界部14は水素割れ感受性
の高い組織となる。
■ As shown in Fig. 4, coarse grain boundaries 15 exist in the overlay weld metal 8 near the boundary (overlay weld boundary) 14 between the base steel plate 1 and the overlay weld metal 8, and post-weld heat treatment Carbon diffuses and moves from the steel sheet 1, and carbide 1511C is precipitated at the grain boundaries. As a result, the boundary portion 14 has a structure highly susceptible to hydrogen cracking.

■ 残留応力が存在する。■ Residual stress exists.

■ 機器の運転停止時に運転中の吸蔵水素が境界部14
に集積する。
■ When the equipment is stopped, the stored hydrogen during operation
Accumulate in

なお、第3図において、位置Pでの鋼板1と肉盛溶接金
属8との境界線の接線と水平角のなす角をαとする。
In addition, in FIG. 3, the angle between the tangent of the boundary line between the steel plate 1 and the overlay weld metal 8 at the position P and the horizontal angle is α.

しかるに、量近、各種リアクターや熱交換器の使用環境
が厳しくなり、肉盛溶接部の剥離割れを完全に防止する
ことが必要となってきている。
However, in recent years, the environments in which various reactors and heat exchangers are used have become more severe, and it has become necessary to completely prevent peeling cracks in overlay welds.

本発明はこうした事情に鑑みてなされたもので、広幅電
極端部の周辺に励磁コイルを設け、所定の条件下で溶融
金属に磁気振動を与えながら溶接を行なうことによシ、
剥離割れを防止し得る広幅電極溶接方法を提供すること
を目的とする。即ち、本発明者等は、TIG溶接やMI
G溶接における磁気振動の影響を調査した結果、結晶粒
が微細化する効果を見出し、もってこの磁気振動を広幅
電極による内盛溶接に適用し、剥離割れを防止しようと
した。
The present invention was made in view of these circumstances, and it is possible to weld by providing an excitation coil around the end of a wide electrode and applying magnetic vibration to the molten metal under predetermined conditions.
An object of the present invention is to provide a wide electrode welding method that can prevent peeling cracks. That is, the present inventors have proposed TIG welding and MI
As a result of investigating the influence of magnetic vibration on G welding, they found the effect of refining crystal grains, and tried to apply this magnetic vibration to internal welding using a wide electrode to prevent exfoliation cracking.

以下、本発明を図面を参照して説明する。Hereinafter, the present invention will be explained with reference to the drawings.

本発明では、第5図に示すように母材鋼板21上にステ
ンレス鋼合せ材22、広幅電極23を配置する。合せ材
22の開先形状は、第12図に示す如く、開先の深さが
合せ材22の厚みと同じである。この広幅電極23は、
板厚0.4瓢で、送給ローラ24によシ母材鋼板21方
向に送られ、又溶接電源25と接続した給電チップ26
と接触している。更に広幅電極23には端部周囲に強磁
性体コア27.非磁性体リール28を介して励磁コイル
29が配置されている。この励磁コイル29は励磁用可
変交流電源30に接続している。この場合励磁コイル2
9に流す交流は1〜20 Hzが好適である。なお図中
31はフラックス、32はステンレス鋼肉盛溶接金属3
3は冷水鋼管、34は溶接部である。
In the present invention, as shown in FIG. 5, a stainless steel mating material 22 and a wide electrode 23 are arranged on a base steel plate 21. The groove shape of the laminate 22 is such that the depth of the groove is the same as the thickness of the laminate 22, as shown in FIG. This wide electrode 23 is
A power supply tip 26 having a plate thickness of 0.4 mm is sent toward the base steel plate 21 by a feed roller 24, and is connected to a welding power source 25.
is in contact with. Further, the wide electrode 23 has a ferromagnetic core 27 around its end. An excitation coil 29 is arranged via a non-magnetic reel 28. This excitation coil 29 is connected to a variable AC power source 30 for excitation. In this case, exciting coil 2
9 is preferably 1 to 20 Hz. In the figure, 31 is flux, and 32 is stainless steel overlay weld metal 3.
3 is a cold water steel pipe, and 34 is a welded portion.

この構成において、広幅電極231C給電チツプ26を
通して溶接電流(直流)を流すと(第7図)、広幅電極
21と母材鋼板21との間のアーク又はスラグ通電抵抗
熱によシ広幅電極2ノが溶融し、溶融金属35による溶
融池ができる。ここで励磁コイル29に1〜20 Hz
の磁化電流(交流)を流すと(第8図)、溶融池が第9
図(イ)及び同図C口)に示すように交互に回転する。
In this configuration, when a welding current (direct current) is passed through the wide electrode 231C power supply chip 26 (Fig. 7), the arc between the wide electrode 21 and the base steel plate 21 or the slag current conduction resistance heat is applied to the wide electrode 2. is melted, and a molten pool of molten metal 35 is formed. Here, 1 to 20 Hz is applied to the excitation coil 29.
When a magnetizing current (alternating current) of
They rotate alternately as shown in Figures (A) and (C).

すなわち磁化電流(交流)を流すと、励磁コイル29に
よる交番磁界Bが垂直方向に生じ(第10図(イ)及び
同図(ロ))、溶融金属35を流れる溶接電流IKよシ
、ローレンツ力Fが発生し、溶融金属35が左右に移動
して(第4図。
That is, when a magnetizing current (alternating current) is passed, an alternating magnetic field B is generated by the excitation coil 29 in the vertical direction (FIGS. 10(a) and 10(b)), and the welding current IK flowing through the molten metal 35 causes a Lorentz force. F occurs, and the molten metal 35 moves from side to side (Fig. 4).

第11図(イ)及び同図(ロ))、励動を生じる。11(A) and 11(B)), excitation is generated.

その結果、溶融金属35の結晶粒は微細化され、溶接後
熱処理時に母材鋼板21よシ炭素が拡散移動して結晶粒
界に析出してもその密度は著しく低くなシ、剥離感受性
が低減される。
As a result, the crystal grains of the molten metal 35 are made finer, and even if carbon diffuses from the base steel plate 21 and precipitates at the grain boundaries during post-weld heat treatment, its density is significantly lower, reducing susceptibility to peeling. be done.

具体的には、第12図に示したような合せ材22の開先
形状を用いると、肉盛溶接後の溶込み形状が第13図の
ようになる。従って、剥離割れの発生し易い位置Pでの
鋼板21と溶接ビード33との境界線の接線と水平線の
なす角度αは、従来の角度αよシ小さくなる。これKよ
り、溶接後にはX方向に引張シの残留応力が存在するが
、剥離割れを助長するY方向の応力を考えた場合、第1
4図に示すよう17I:X方向の応力α工はY方向に対
してはαY(=α×詞αX)となる。以上より、角度α
の小さい本発明に係る開先形状の場合、剥離割れを防止
できる。
Specifically, if the groove shape of the mating material 22 as shown in FIG. 12 is used, the penetration shape after overlay welding will be as shown in FIG. 13. Therefore, the angle α between the tangent to the boundary line between the steel plate 21 and the weld bead 33 and the horizontal line at the position P where peeling cracks are likely to occur is smaller than the conventional angle α. From this K, there is a tensile residual stress in the X direction after welding, but when considering the stress in the Y direction that promotes peel cracking, the first
As shown in Fig. 4, 17I: The stress α in the X direction becomes αY (= α × αX) in the Y direction. From the above, the angle α
In the case of the groove shape according to the present invention having a small value, peeling cracks can be prevented.

次に、本発明の実施例につき説明する。Next, examples of the present invention will be described.

第1表に示す化学組成のクラツド鋼の母材鋼板、合せ材
及び幅25 m 、 YB347の広幅電極を用い、磁
場周波数、磁場強度を種々変化させて肉盛溶接を行なっ
た。なお、溶接試験片としては第15図(a) 、 (
b)及び第16図に示すものを用いた。ここで、第15
図(a)は平面図、同図(b)は正面図、第16図は第
15図(b)の部分拡大図であシ、図中の41は縦(L
) 200tan 、横(W)400鋼、厚み(Ts 
) 53朔の母材鋼板、42は厚み(T2)3mmの合
せ材である。また、比較のために第17図に示す如く鋼
板母材に1mm程度削り込んだ従来方法に対応した溶接
試験片も用意した。
Overlay welding was performed using a base steel plate of clad steel having the chemical composition shown in Table 1, a cladding material, and a wide electrode of YB347 with a width of 25 m while varying the magnetic field frequency and magnetic field strength. The welding test pieces shown in Fig. 15(a) and (
b) and those shown in FIG. 16 were used. Here, the 15th
Figure (a) is a plan view, Figure (b) is a front view, Figure 16 is a partially enlarged view of Figure 15 (b), and 41 in the figure is a vertical (L)
) 200tan, width (W) 400 steel, thickness (Ts
) The base material steel plate is 53 mm thick, and 42 is a laminated material with a thickness (T2) of 3 mm. For comparison, a welding test piece corresponding to the conventional method was also prepared in which the base material of the steel plate was cut down by about 1 mm, as shown in FIG.

上記肉盛溶接を行なって溶融金属の断面の金属組織を観
察したところ、第18図傾示す特性図が得られた。ここ
で、溶接条件は、溶接電流400 A (DCRP )
、溶接電圧27〜29v1溶接速度150 tea /
 mlnで帯状電極肉感溶接にょシ行なうとする。同図
よシ、結晶粒が微細化される範囲(斜線部分)が明らか
である。また、同図よシ磁場周波数5Hz、磁場強度2
50fウスの条件を選び、■従来の開先形状(第17図
)で磁気振動を可与しない場合、■従来の開先形状(第
17図)で磁気振動を付与した場合、■新しい開先形状
(第16図)で磁気撮動を付与しない場合、■新しい開
先形状(第16図)で磁気振動を付与する場合の夫々の
溶接施行法で第2表に示す溶接条件を用いクラツド鋼溶
接継手部の肉盛溶接を行なった。
When the above-mentioned overlay welding was carried out and the metallographic structure of the cross section of the molten metal was observed, a characteristic diagram shown in FIG. 18 was obtained. Here, the welding conditions are welding current 400 A (DCRP)
, welding voltage 27~29v1 welding speed 150 tea/
Suppose you want to perform strip-shaped electrode tactile welding with mln. As shown in the figure, the range where crystal grains are refined (shaded area) is clear. In addition, as shown in the same figure, the magnetic field frequency is 5 Hz, and the magnetic field strength is 2.
Selecting the conditions of 50 fus, ■ When magnetic vibration is not applied with the conventional groove shape (Fig. 17), ■ When magnetic vibration is applied with the conventional groove shape (Fig. 17), ■ When the magnetic vibration is applied with the conventional groove shape (Fig. 17), ■ New groove Clad steel using the welding conditions shown in Table 2 for each welding method when magnetic vibration is not applied with the new groove shape (Fig. 16), and when magnetic vibration is applied with the new groove shape (Fig. 16). Overlay welding was performed on the welded joint.

そして、肉盛溶接を行った療接鋼板よシ第19図(a3
 、 (h)に示す形状の試験片を切シ出し、691℃
×24時間の溶接を行い、熱処理した後、種々の温度、
水素圧で48時間水素暴露し、2001::/hrの冷
却速度後、超音波探傷によシ剥離割れの有無を調査した
。なお、図中の51は母材鋼板、52は縦(L) 1o
 otten 、横(W)40WIII+のステンレス
鋼合せ材、53はステンレス鋼肉盛溶接金属であシ、全
体の高さくH)は50mmである。その結果を第3表に
示す。
Figure 19 (a3
, Cut out a test piece with the shape shown in (h), and heat it at 691°C.
× After 24 hours of welding and heat treatment, various temperatures,
After exposure to hydrogen under hydrogen pressure for 48 hours and a cooling rate of 2001:/hr, the presence or absence of exfoliation cracks was investigated by ultrasonic flaw detection. In addition, 51 in the figure is the base material steel plate, and 52 is the vertical (L) 1o
otten, width (W) 40WIII+ stainless steel laminated material, 53 is stainless steel overlay weld metal, overall height H) is 50 mm. The results are shown in Table 3.

同表によυ、磁気振動のみ付与する方法、開先形状のみ
改善する方法共に剥離割れ防止効果は見られるが、磁気
振動を付与し開先形状を改善した本発明による方法では
、更に厳しい水素暴露条件でも剥離割れは発生せず、剥
離割れ防止に有効であることが確認できる。これは、以
下の2点によるものと考えられる。
According to the same table, the method of applying only magnetic vibration and the method of improving only the groove shape are effective in preventing peeling cracks, but the method according to the present invention, which improves the groove shape by applying magnetic vibration, has a more severe hydrogen No peeling cracks occurred even under exposure conditions, confirming that it is effective in preventing peeling cracks. This is considered to be due to the following two points.

■ 従来法(磁気振動無し)及び本発明法(磁気搗動有
シ)に夫々対応した試験片の断面の金属組織の顕微鏡写
真図は、第20図(a) 、 (b)に示す通シである
。同図によシ、磁気撮動を加えることによってステンレ
ス鋼肉盛溶接金属53の結晶粒が微細化されることが確
認できる。
■ The micrographs of the metal structures of the cross-sections of the test pieces corresponding to the conventional method (without magnetic vibration) and the method of the present invention (with magnetic vibration) are shown in Figures 20 (a) and (b). It is. As shown in the figure, it can be confirmed that the crystal grains of the stainless steel overlay weld metal 53 are made finer by adding magnetic imaging.

その結翳、溶接後熱処理時に母材よシ炭素が拡散移動し
て結晶粒界に析出してもその密度は著しく低くなシ、割
れ感受性が低減する。
Even if carbon diffuses through the base metal during heat treatment after welding and precipitates at grain boundaries, its density is extremely low, reducing cracking susceptibility.

■ 従来法(磁気振動無し)及び本発明法(磁気振動有
シ)に夫々対応した試験片の肉盛溶接金属53の断面の
マクロ写真図は、第21図(a) 、 (b) K示す
通りである。同図によシ、本発明法の場合(同図fb)
) 、既述の位置Pでの角度αを従来法の場合(同図(
a))と比べ小さく出来、剥離を助長するY方向の応力
を緩和できることを確認できる。
■ Macrophotographs of cross-sections of overlay weld metal 53 of test pieces corresponding to the conventional method (without magnetic vibration) and the method of the present invention (with magnetic vibration) are shown in FIGS. 21(a) and (b) K. That's right. In the case of the method of the present invention (fb in the same figure)
), the angle α at the position P described above is calculated using the conventional method (the same figure (
It can be confirmed that the stress in the Y direction, which promotes peeling, can be reduced by making it smaller than in a)).

以上詳述した如く本発明によれば、磁気振動を与えると
ともに、クラ、ド鋼の合せ材の開先の深さをその厚み以
下とすることによシ、肉盛溶接金属の剥離割れを防止し
得、圧力容器その他ステンレス鋼等を使用する場合にき
わめて有効な広幅電極溶接方法を提供できるものである
As detailed above, according to the present invention, peeling cracks in overlay weld metal are prevented by applying magnetic vibration and by making the depth of the groove of the composite material of cracked steel to be equal to or less than its thickness. Therefore, it is possible to provide a wide electrode welding method that is extremely effective when using stainless steel or other materials such as pressure vessels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の広幅電極溶接方法を示す斜視図、第2図
は同溶接方法の肉盛溶接の開先形状を示す説明図、第3
図及び第4図は同溶接方法における剥離割れを示す説明
図、第5図は本発明の一実施例に係る広幅電極溶接方法
を示す説明図、第6図は同溶接方法の作用説明図、第7
図は同溶接方法における直流の溶接電流を示す図、第8
図は磁化電流を示す図、第9図(イ)及び同図C口)は
磁化電流の変化によシ変わる溶融池の回転方向を示す図
、第10図(イ)1及び同図(ロ)は、磁化電流の変化
にともなって変わる交番磁界Bの方向を示す図、第11
図(イ)及び同図(ロ)は交番磁界Bの変化にともなっ
て変わるローレンツ力Fの方向を示す図、第12図は本
発明方法忙係るクラツド鋼溶接継手の肉盛溶接の開先形
状を示す説明図、第13図は肉盛溶接後の溶込み形状を
示す説明図、第14図は本発明方法による剥離割れの発
生し易い位置PでのX、Y方向の応力を示す説明図、第
15図(a)は本発明の実施例に係る溶接試験片の平面
図、同図(b)は同溶接試験片の正面図、第16図は第
15図(b)の拡大図、第17図は従来法に対応した溶
接試験片の正面図、第18図は磁場周波数と磁場強度と
の関係を示す特性図、第19図(a)は本発明方法に係
る試験片の側面図、同図(b)は同試験片の正面図、第
20図(a)は従来法に係る試験片の断面の金属組織の
顕微鏡写真図、同図(b)は本発明方法に係る試験片の
断面の金属組織の顕微鏡写真図、第21図(、)は従来
法に係る試験片の肉盛溶接金真図である。 21.41.51・・・母材鋼板、22,42゜52・
・・ステンレス鋼合せ材、23・・・広幅電極、24・
・・送給ローラ、25・・・溶接電源、26・・・給電
チップ、27・・・強磁性体コア、28・・・非磁性体
リール、29・・・励磁コイル、30・・・励磁用可変
交流電源、31・・・フラックス、J 2 、5 ;?
・・・ステンレス鋼肉盛溶接金属、33・・・冷水鋼管
、34・・・溶接部、35・・・溶融金属。 出願人復代理人 弁理士 鈴 江 武 彦第 1 目 第4図 第7図 第9図 (イ) (ロ) 第10図 (イ) (0) 第11図 (イ) (0) 第12図 第13図 第14図 第16囚 第17図 41 、41 第18図
Figure 1 is a perspective view showing the conventional wide electrode welding method, Figure 2 is an explanatory diagram showing the groove shape of overlay welding in the same welding method, and Figure 3 is a perspective view showing the conventional wide electrode welding method.
4 and 4 are explanatory views showing exfoliation cracks in the welding method, FIG. 5 is an explanatory view showing a wide electrode welding method according to an embodiment of the present invention, and FIG. 6 is an explanatory view of the action of the welding method, 7th
Figure 8 shows the DC welding current in the same welding method.
The figure shows the magnetizing current, Figure 9 (A) and Figure C) show the rotational direction of the molten pool that changes depending on the magnetizing current, Figure 10 (A) 1 and Figure 10 (B). ) is a diagram showing the direction of the alternating magnetic field B that changes as the magnetizing current changes, No. 11
Figures (a) and (b) are diagrams showing the direction of the Lorentz force F that changes with changes in the alternating magnetic field B, and Figure 12 is the groove shape of overlay welding of a clad steel welded joint using the method of the present invention. FIG. 13 is an explanatory diagram showing the penetration shape after overlay welding, and FIG. 14 is an explanatory diagram showing the stress in the X and Y directions at a position P where exfoliation cracking is likely to occur by the method of the present invention. , FIG. 15(a) is a plan view of a welded test piece according to an example of the present invention, FIG. 15(b) is a front view of the same welded test piece, and FIG. 16 is an enlarged view of FIG. 15(b). Fig. 17 is a front view of a welding test piece corresponding to the conventional method, Fig. 18 is a characteristic diagram showing the relationship between magnetic field frequency and magnetic field strength, and Fig. 19 (a) is a side view of a test piece according to the method of the present invention. , FIG. 20(b) is a front view of the same test piece, FIG. 20(a) is a microscopic photograph of the cross-sectional metal structure of the test piece according to the conventional method, and FIG. 20(b) is a test piece according to the method of the present invention. FIG. 21 ( ) is a true view of overlay weld metal of a test piece according to the conventional method. 21.41.51...Base material steel plate, 22,42°52.
・・Stainless steel cladding material, 23・・Wide electrode, 24・
... Feed roller, 25... Welding power source, 26... Power supply chip, 27... Ferromagnetic core, 28... Non-magnetic material reel, 29... Excitation coil, 30... Excitation Variable AC power supply for, 31...Flux, J 2, 5;?
... Stainless steel overlay weld metal, 33... Cold water steel pipe, 34... Welded part, 35... Molten metal. Applicant Sub-Agent Patent Attorney Takehiko Suzue Item 1 Figure 4 Figure 7 Figure 9 (A) (B) Figure 10 (A) (0) Figure 11 (A) (0) Figure 12 Fig. 13 Fig. 14 Fig. 16 Prisoner Fig. 17 Fig. 41, 41 Fig. 18

Claims (1)

【特許請求の範囲】[Claims] クラツド鋼溶接継手部を肉盛溶接する広幅電極溶接方法
において、広幅電極端部の周囲に励磁コイルを配設し、
該コイルに交流電流を流して溶融池の溶融金属に磁気振
動を与えながら溶接するとともに、クラツド鋼の合せ材
の開先深さを該合せ材の厚みと同じあるいはそれよセも
小さくすることを特徴とする広幅電極溶接方法。
In the wide electrode welding method for overlay welding of clad steel weld joints, an excitation coil is placed around the end of the wide electrode,
Welding is performed while applying magnetic vibration to the molten metal in the molten pool by passing an alternating current through the coil, and the groove depth of the clad steel laminate is made equal to or smaller than the thickness of the clad steel. Characteristic wide electrode welding method.
JP9728384A 1984-05-15 1984-05-15 Welding method with broad electrode Pending JPS60240386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9728384A JPS60240386A (en) 1984-05-15 1984-05-15 Welding method with broad electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9728384A JPS60240386A (en) 1984-05-15 1984-05-15 Welding method with broad electrode

Publications (1)

Publication Number Publication Date
JPS60240386A true JPS60240386A (en) 1985-11-29

Family

ID=14188181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9728384A Pending JPS60240386A (en) 1984-05-15 1984-05-15 Welding method with broad electrode

Country Status (1)

Country Link
JP (1) JPS60240386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598104A1 (en) * 1986-05-05 1987-11-06 Usinor Chatillon METHOD FOR MANUFACTURING A POLYMETALLIC COMPOSITE SHEET, IN PARTICULAR A THIN COMPOSITE SHEET BASED ON STEEL AND ARTICLES OBTAINED FROM SUCH SHEET

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598104A1 (en) * 1986-05-05 1987-11-06 Usinor Chatillon METHOD FOR MANUFACTURING A POLYMETALLIC COMPOSITE SHEET, IN PARTICULAR A THIN COMPOSITE SHEET BASED ON STEEL AND ARTICLES OBTAINED FROM SUCH SHEET

Similar Documents

Publication Publication Date Title
Yilmaz et al. Microstructure characterization of SS308LSi components manufactured by GTAW-based additive manufacturing: shaped metal deposition using pulsed current arc
Layus et al. Multi-wire SAW of 640 MPa Arctic shipbuilding steel plates
Ramkumar et al. Experimental investigations on the SiO 2 flux-assisted GTA welding of super-austenitic stainless steels
US4817859A (en) Method of joining nodular cast iron to steel by means of fusion welding
Kulkarni et al. Effect of backing plate material diffusivity on microstructure, mechanical properties of friction stir welded joints: A Review
Dwivedi Fundamentals of metal joining
JPS60240386A (en) Welding method with broad electrode
CN110405316B (en) Method for improving tensile property of aging-strengthened aluminum alloy melt welding joint
JPH06320277A (en) Welding method for high purity ferritic stainless steel
US2772963A (en) Inert-gas shielded-arc welding of 90-10 type copper-nickel material
JP4514098B2 (en) Method of joining iron-based material and aluminum-based material and joint
Niknamian Investigation of microstructure and corrosion resistance of dissimilar welded joint between 304 stainless steel and pure copper
Kovalenko et al. Adequacy of thermohydrodynamic model of through penetration in TIG and A-TIG welding of Nimonic-75 Nickel alloy
JP2006205183A (en) Multi-layer welding structure of stainless steel
JPS6255955B2 (en)
JPS60240377A (en) Wide electrode welding method
Kuchuk-Yatsenko et al. Methodology for control of fitness for purpose of flash butt welded joints in pipelines
JPH04157072A (en) Different material joining method
Poklyatsky et al. Properties of butt joints of fine-sheet aluminum-lithium 1460 alloy, produced by friction stir and TIG welding
Gurevitch et al. Metallurgical and technological features of titanium alloy welding when using fluxes
JPH01202390A (en) Welding method for austenitic stainless steel welding structure
JPS59163094A (en) Method for preventing weld cracking in heat and corrosion resistant alloy steel
Ball The welding of Monel & K-Monel
Dickerson Quality control in aluminum arc welding
Lau et al. Fusion welding of stainless steels