JPS62144878A - Magnetic agitation welding method for tube panel - Google Patents

Magnetic agitation welding method for tube panel

Info

Publication number
JPS62144878A
JPS62144878A JP28443285A JP28443285A JPS62144878A JP S62144878 A JPS62144878 A JP S62144878A JP 28443285 A JP28443285 A JP 28443285A JP 28443285 A JP28443285 A JP 28443285A JP S62144878 A JPS62144878 A JP S62144878A
Authority
JP
Japan
Prior art keywords
welding
molten metal
magnetic field
tube
alternating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28443285A
Other languages
Japanese (ja)
Other versions
JPH0569635B2 (en
Inventor
Ikuo Wakamoto
郁夫 若元
Masazumi Nagareda
流田 正純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28443285A priority Critical patent/JPS62144878A/en
Publication of JPS62144878A publication Critical patent/JPS62144878A/en
Publication of JPH0569635B2 publication Critical patent/JPH0569635B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Abstract

PURPOSE:To uniformly weld both faces of the deformed material of a tube and fin, etc. and to obtain a good back bead by generating an alternating magnetic field by passing the alternating current in the limited frequency by fitting a magnetized coil to a welding torch and by welding a molten metal with performing its magnetic agitation. CONSTITUTION:An alternating magnetic field is generated on the weld zone when 0.5-20Hz alternating current is passed to a magnetized coil 13 from an alternating current rectangular wave power source 17. Then, a molten metal 14 is produced when DC welding current is passed with feeding a welding electrode 12 overthere. Lorentz's force is then caused between the welding current passing inside the molten metal 14 and alternating magnetic field, the molten metal 14 is smoothly melted and solidified with molten metal 14 being stirred and a good penetration shape is obtd. Also, the arc force and heat concentration in the vertical direction are relaxed by the agitation and the burning breakdown onto a water cooling copper strap 4 is prevented as well. The similar effect is obtainable by fitting a magnetized coil 13 to the water cooling copper strap 4 as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチューブパネルのti磁気攪拌溶接方法関し、
特に発電用、その他のボイラーのチューブパネルの製作
に係わるものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a Ti magnetic stir welding method for tube panels;
This is particularly relevant to the production of tube panels for power generation and other boilers.

〔従来の技術〕[Conventional technology]

従来、ボイラー用のチューブパネルとしては、例えば第
5図に示すものが知られている。図中の1は、多数の長
尺のチューブである。これらのチュー71間には、多数
の長尺なフィン2が配設され、前記チューブ1とフィン
2は溶接ビード3により接続されている。以下、上記チ
ューブ1とフィン2との溶接方法について説明する。
Conventionally, as a tube panel for a boiler, one shown in FIG. 5, for example, is known. 1 in the figure is a large number of long tubes. A large number of long fins 2 are arranged between these tubes 71, and the tubes 1 and fins 2 are connected by weld beads 3. Hereinafter, a method of welding the tube 1 and the fin 2 will be explained.

従来法1 第6図を参照する。同図はチューブパネルの断面の一部
を示すものである。但し、図中の3a、3b、3C13
dは夫々異なる箇所の溶接ビードを示す。即ち、従来法
1は、まず溶接ビード3a、3bを順次形成した後、チ
ューブ1、フィン2を反転し、更に溶接ビード3C13
dを形成することにより溶接を完了する方法である。
Conventional method 1 See FIG. 6. The figure shows a part of the cross section of the tube panel. However, 3a, 3b, 3C13 in the figure
d shows weld beads at different locations. That is, in conventional method 1, after first forming weld beads 3a and 3b in sequence, the tube 1 and fin 2 are reversed, and then weld bead 3C13 is formed.
In this method, welding is completed by forming d.

従来法2 第7図を参照する。但し、図中の4は水冷銅当金を示し
、5は冷却水入口、6は冷却水出口を示す。即ち、従来
法2は、上部からアーク溶接される溶融金属の溶落ちを
水冷銅当金4で受止めると同時に、裏波ビード形状を成
形しながらチューブ1とbフィン2を接合させる方法で
ある。
Conventional method 2 Refer to FIG. 7. However, in the figure, 4 indicates a water-cooled copper dowel, 5 indicates a cooling water inlet, and 6 indicates a cooling water outlet. That is, conventional method 2 is a method in which the burn-through of molten metal arc-welded from above is caught by the water-cooled copper dowel 4, and at the same time, the tube 1 and the b-fin 2 are joined while forming the Uranami bead shape. .

従来法3 第8図を参照する。即ち、従来法3は、固定式の裏当材
7を溶接線全長にわたってって設置する方法である。な
お、裏当材7の材料としては銅当金、裏当用フラックス
バッキング等が用いられる。
Conventional method 3 Refer to FIG. That is, conventional method 3 is a method in which a fixed backing material 7 is installed over the entire length of the weld line. In addition, as a material for the backing material 7, copper dowel, flux backing for backing, etc. are used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来技術によれば、以下に示す問題点を
有する。
However, the conventional technology has the following problems.

(1)従来法1の場合、溶接ビード3a〜3dの形成の
箇所が多い。また、チューブ1、フィン2を反転しなけ
ればならないため、作業性が低下する。
(1) In the case of conventional method 1, weld beads 3a to 3d are formed in many locations. Further, since the tube 1 and the fins 2 must be reversed, work efficiency is reduced.

(2)従来法2の場合、従来法1と比べ溶接工数は軽減
される。しかしながら、溶接ビードの裏波は水冷銅当金
4に左右されるとともに、アーク力により水冷銅当金4
の損傷が激しいため、良好な裏波ビードが得られない。
(2) In the case of conventional method 2, welding man-hours are reduced compared to conventional method 1. However, the back wave of the weld bead is influenced by the water-cooled copper weld 4, and the arc force causes the water-cooled copper weld 4 to
Since the damage is severe, it is not possible to obtain a good Uranami bead.

また、溶接電極のねらい位置の変動により、チューブ1
が溜込過大、溜込不良を起こし易い等の欠点がある。
In addition, due to fluctuations in the aiming position of the welding electrode, tube 1
However, there are drawbacks such as excessive accumulation and a tendency to cause insufficient accumulation.

(3)従来法3の場合、片面溶接のために使用する裏当
材として銅当金ではアーク力のため損傷が激しい。また
、その他の裏当材ではコスト高となる。
(3) In the case of Conventional Method 3, the copper backing material used for single-sided welding is severely damaged due to the arc force. In addition, other backing materials are expensive.

本発明は上記事情に鑑みてなされたもので、チューブの
溶込み過ぎや溶込み不足、及び裏当材の損傷を回避して
良好な裏波ビードを得ることができるチューブパネルの
磁気攪拌溶接方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is a method for magnetic stirring welding of tube panels, which can avoid excessive or insufficient penetration of the tube and damage to the backing material and obtain a good uranami bead. The purpose is to provide

〔問題点を解決するための手段] 本発明は、溶接トーチ又は裏当材に磁化コイルを付設し
、この磁化コイルに0.5〜20Hzの交番電流を流し
て交番磁場を発生させ、かつ溶融金属を磁気攪拌しなが
ら溶接することにより、良好な裏波ビードの形成を図っ
たものである。
[Means for Solving the Problems] The present invention involves attaching a magnetizing coil to a welding torch or backing material, passing an alternating current of 0.5 to 20 Hz through the magnetizing coil to generate an alternating magnetic field, and melting. By welding the metal while magnetically stirring, it is possible to form a good uranami bead.

〔作用〕[Effect]

本発明によれば、溶融金属を磁気攪拌することにより異
形材(熱容量の違い)の両面を均等に溶融し均一で良好
な溶込み、裏波ビードを得ることができる。また、アー
クの集中による裏当材(銅当金)の損傷を防止すること
によっても、良好な裏波ビードが得られる。
According to the present invention, by magnetically stirring the molten metal, it is possible to evenly melt both sides of the profiled material (different heat capacities), thereby achieving uniform and good penetration and a Uranami bead. In addition, a good Uranami bead can also be obtained by preventing damage to the backing material (copper pad) due to arc concentration.

〔実施例〕〔Example〕

以下、本発明の実施例を図を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図を参照する。同図は、潜弧溶接による1実施状況
を示すものである。ここで、従来と同部材は同符号を付
して説明を省略する。
Example 1 Please refer to FIG. The figure shows one implementation situation using submerged arc welding. Here, the same members as those in the prior art are given the same reference numerals and the description thereof will be omitted.

図中の11は、内部から溶接箇所に溶接ノズル12を送
給する溶接ノズルである。この溶接ノズル12の先端に
は、磁化コイル13が設けられている。この磁化コイル
13により、チューブ1とフィン2の間の溶融金属14
が磁気攪拌溶接される。前記溶接ノズル11には、溶接
用電線15を介して溶接電源16が電気的に接続されて
いる。
11 in the figure is a welding nozzle that feeds the welding nozzle 12 from the inside to the welding location. A magnetizing coil 13 is provided at the tip of this welding nozzle 12 . This magnetizing coil 13 causes the molten metal 14 between the tube 1 and the fin 2 to
is magnetically stir welded. A welding power source 16 is electrically connected to the welding nozzle 11 via a welding electric wire 15.

なお、チューブ1と溶接電源16間も溶接用電線15に
より電気的に接続されている。前記磁化コイル13には
、交流矩形波電源電!17が電気的に接続されている。
Note that the tube 1 and the welding power source 16 are also electrically connected by a welding wire 15. The magnetizing coil 13 is connected to an AC rectangular wave power source! 17 are electrically connected.

次に、第1図を用いて磁気攪拌溶接の原理について述べ
る。
Next, the principle of magnetic stir welding will be described using FIG. 1.

まず、交流矩形波電源17がら矩形波電流が磁化コイル
13に流れると、磁化コイル13の下部の溶接部には交
番磁界が発生する。ここで、そこに溶接電極12を送給
7しながら直流溶接電流を流すと、溶融金属14ができ
る。そして、溶融金兄14内を放射状に流れる溶接電流
と交番磁界との間にローレンツ力が発生し、溶融金属1
5は攪される。従って、被溶接材のチューブ1表面とフ
ィン2の端面は、攪拌される溶融金属14によって平滑
に溶融、凝固し良好な溶は込み形状が得られる。また、
攪拌により垂直方向へのアーク力、熱集中が層相される
ため、水冷銅当金4への焼付損傷も防止される。
First, when a rectangular wave current flows through the magnetizing coil 13 from the AC rectangular wave power source 17, an alternating magnetic field is generated at the welded portion of the lower part of the magnetizing coil 13. Here, when a DC welding current is applied thereto while feeding 7 the welding electrode 12, molten metal 14 is formed. Then, a Lorentz force is generated between the welding current flowing radially within the molten metal 14 and the alternating magnetic field, and the molten metal 1
5 is stirred. Therefore, the surface of the tube 1 and the end surface of the fin 2 of the material to be welded are smoothly melted and solidified by the stirred molten metal 14, and a good welded shape is obtained. Also,
Since the arc force and heat concentration in the vertical direction are layered by stirring, seizure damage to the water-cooled copper pad 4 is also prevented.

従って、実施例1によれば、チューブ1の溜込過大、溜
込不良の軽減、及び水冷銅当金(裏当材)4のアーク力
、熱集中による損(セ防止により、良好な裏波ビードが
得られる。また、片面溶接による高能率溶接が可能であ
る。更に、従来法1のようにチューブやフィンの反転作
業がないため、作業性が良い。
Therefore, according to the first embodiment, by reducing excessive accumulation and insufficient accumulation in the tube 1, and preventing loss due to arc force and heat concentration of the water-cooled copper butt (backing material) 4, good back wave can be achieved. A bead can be obtained.Also, high efficiency welding is possible by single-sided welding.Furthermore, unlike conventional method 1, there is no need to reverse the tube or fin, so workability is good.

事実、磁気攪拌効果について調べたところ、第9図〜第
14図に示す結果を得た。
In fact, when the magnetic stirring effect was investigated, the results shown in FIGS. 9 to 14 were obtained.

第9図は、磁場強度と磁場周波数(交流矩形波)との関
係を示す特性図である。同図において、O印はビード形
状が偏平化した場合、X印は同上効果がない場合を示す
。但し、溶接条件は、溶接法;潜弧溶接(ヒートオンプ
レート)、溶接電流二650A、溶接電圧;32V、溶
接速度;300tm / m i nとした。
FIG. 9 is a characteristic diagram showing the relationship between magnetic field strength and magnetic field frequency (AC rectangular wave). In the figure, the O mark indicates a case where the bead shape is flattened, and the X mark indicates a case where the same effect does not exist. However, the welding conditions were: welding method: latent arc welding (heat-on-plate), welding current: 2650 A, welding voltage: 32 V, and welding speed: 300 tm/min.

第10図及び第11図は夫々溶接ビードの断面の金属組
織の顕微鏡写真図を示すもので、第10図は磁気攪拌が
ない場合、第11図は磁気攪拌がある場合(300ガウ
ス、5Hz)である。第11図により、磁気攪拌がある
場合、溶接ビードは浅落込みとなることが明らかである
。従って、水冷銅当金への焼付は損傷は軽減されるとと
もに、溶融金属が攪拌されながら凝固するため良好な裏
波ビードが得られることがわかる。
Figures 10 and 11 show microscopic photographs of the metal structure of a cross section of a weld bead, respectively. Figure 10 shows the case without magnetic stirring, and Figure 11 shows the case with magnetic stirring (300 Gauss, 5 Hz). It is. It is clear from FIG. 11 that when magnetic stirring is present, the weld bead becomes shallowly depressed. Therefore, it can be seen that the damage caused by seizure to the water-cooled copper dowel is reduced, and that a good Uranami bead can be obtained because the molten metal is solidified while being stirred.

第12図〜第14図は夫々チューブパネルの溶接部の断
面の金属組織の顕微鏡写真図を示す。具体的には、第1
2図及び第13図は従来法(11気)!拌がない場合)
、第14図は本発明法による磁気攪拌がある場合(磁場
強度;150ガウス、5Hz)を示す。これらの図より
、従来の場合、裏波不良(第12図図示)、チューブの
溜込過大による不良(第13図図示)が確認されたが、
本発明の場合は溶込み良好で裏波ビードも良好であった
(第14図図示)。
12 to 14 each show a microscopic photograph of the metal structure of a cross section of a welded portion of a tube panel. Specifically, the first
Figures 2 and 13 are the conventional method (11 ki)! (if there is no stirring)
, and FIG. 14 shows the case where there is magnetic stirring according to the method of the present invention (magnetic field strength: 150 Gauss, 5 Hz). From these figures, it was confirmed that in the conventional case, Uranami failure (as shown in Figure 12) and failure due to excessive accumulation in the tube (as shown in Figure 13) were confirmed.
In the case of the present invention, penetration was good and the underwave bead was also good (as shown in Figure 14).

実施例2 第2図〜第4図を参照する。ここで、第2図は、第1図
の溶接方法において磁化コイル13を溶接ノズル11の
反対側、即ち水冷銅当金4と一体化したものである。第
3図は第2図の部分拡大図、第4図は第3図の側面図で
ある。
Example 2 Please refer to FIGS. 2 to 4. Here, FIG. 2 shows the welding method shown in FIG. 1 in which the magnetizing coil 13 is integrated with the opposite side of the welding nozzle 11, that is, with the water-cooled copper dowel 4. 3 is a partially enlarged view of FIG. 2, and FIG. 4 is a side view of FIG. 3.

図中の21は、電磁極である。なお、磁気攪拌溶接の原
理及び効果は、実施例1と同様である。
21 in the figure is an electromagnetic pole. Note that the principle and effects of magnetic stir welding are the same as in Example 1.

〔発明の効果〕〔Effect of the invention〕

上詳述した如く本発明によれば、チューブの溶込み過ぎ
や溶込み不足、及び裏当材の損傷を回避して良好な裏波
ビードを形成できる高信頼性のチューブパネルの磁気攪
拌溶接方法を提供できる。
As detailed above, according to the present invention, there is provided a highly reliable magnetic stirring welding method for tube panels that can form a good uranami bead while avoiding excessive or insufficient penetration of the tube and damage to the backing material. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1に係るチューブパネルの磁気
攪拌溶接方法の説明図、第2図は本発明の実施例2に係
るチューブパネルの磁気攪拌溶接方法の説明図、第3図
は第2図の部分拡大図、第4図は第3図の側面図、第5
図はボイラー用のチューブパネルの斜視図、第6図〜第
8図は夫々従来の溶接施工法を示す断面図、第9図は本
発明法による磁場強度と磁場周波数との関係を示す特性
図、第10図は磁気攪拌がない場合の溶接ビードの断面
の金属組織の顕微鏡写真図、第11図は磁気攪拌がある
場合の溶接ビードの断面の金属組織の顕微鏡写真図、第
12図及び第13図は夫々従来法による磁気攪拌がない
場合のパネルチューブ溶接部の断面の金属組織の顕微鏡
写真図、第14図は本発明法による磁気攪拌がある場合
のパネルチューブ溶接部の断面の金属組織の顕微鏡写真
図である。 1・・・チューブ、2・・・フィン、4・・・水冷銅当
金、5・・・冷却水入口、6・・・冷却水出口、11・
・・溶接ノズル、12・・・溶接電極、13・・・磁化
コイル、14・・・溶融金属、16溶接電源、17・・
・交流矩形波発生電源、21・・・電磁極。 出願人復代理人 弁理士 鈴江武彦 第 5 図 第6 國 第7rXJ 第8因 石1T易 独笈(ガ′ウス ) 19図 J、−ゝゝ− ゝrゾA+ )パ禮、・−信10図 、′? へ11フ高 Iざ 171−・コ ニ=1gコ、
FIG. 1 is an explanatory diagram of the magnetic stirring welding method for tube panels according to Example 1 of the present invention, FIG. 2 is an explanatory diagram of the magnetic stirring welding method for tube panels according to Example 2 of the present invention, and FIG. Figure 2 is a partially enlarged view, Figure 4 is a side view of Figure 3, Figure 5 is a side view of Figure 3, and Figure 5 is a side view of Figure 3.
The figure is a perspective view of a tube panel for a boiler, Figures 6 to 8 are cross-sectional views showing conventional welding methods, and Figure 9 is a characteristic diagram showing the relationship between magnetic field strength and magnetic field frequency according to the method of the present invention. , Fig. 10 is a microscopic photograph of the metal structure of a cross section of a weld bead without magnetic stirring, Fig. 11 is a microscopic photograph of a metal structure of a cross section of a weld bead with magnetic stirring, Figs. Figure 13 is a microscopic photograph of the metallographic structure of a cross section of a panel tube welded area when there is no magnetic stirring by the conventional method, and Figure 14 is a metallographic structure of a cross section of a panel tube welded area when there is magnetic stirring by the method of the present invention. FIG. DESCRIPTION OF SYMBOLS 1...Tube, 2...Fin, 4...Water-cooled copper dowel, 5...Cooling water inlet, 6...Cooling water outlet, 11...
... Welding nozzle, 12... Welding electrode, 13... Magnetizing coil, 14... Molten metal, 16 Welding power source, 17...
- AC square wave generation power supply, 21...electromagnetic pole. Applicant Sub-Agent Patent Attorney Takehiko Suzue No. 5 Figure 6 Country No. 7 r figure,'? To 11f high Iza 171- Koni = 1g Ko,

Claims (1)

【特許請求の範囲】[Claims] ボイラー等に使用されるチューブとフィン等の異形材同
志を溶接するチューブパネルの磁気攪拌溶接方法におい
て、溶接トーチ又は裏当材に磁化コイルを付設し、この
磁化コイルに0.5〜20Hzの交番電流を流して交番
磁場を発生させ、かつ溶融金属を磁気攪拌しながら溶接
することを特徴とするチューブパネルの磁気撹拌溶接方
法。
In the magnetic stirring welding method for tube panels used in boilers, etc., which welds together irregularly shaped materials such as tubes and fins, a magnetizing coil is attached to the welding torch or backing material, and this magnetizing coil is heated at an alternating frequency of 0.5 to 20 Hz. A magnetic stirring welding method for tube panels, which is characterized in that a current is passed to generate an alternating magnetic field, and molten metal is welded while being magnetically stirred.
JP28443285A 1985-12-19 1985-12-19 Magnetic agitation welding method for tube panel Granted JPS62144878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28443285A JPS62144878A (en) 1985-12-19 1985-12-19 Magnetic agitation welding method for tube panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28443285A JPS62144878A (en) 1985-12-19 1985-12-19 Magnetic agitation welding method for tube panel

Publications (2)

Publication Number Publication Date
JPS62144878A true JPS62144878A (en) 1987-06-29
JPH0569635B2 JPH0569635B2 (en) 1993-10-01

Family

ID=17678474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28443285A Granted JPS62144878A (en) 1985-12-19 1985-12-19 Magnetic agitation welding method for tube panel

Country Status (1)

Country Link
JP (1) JPS62144878A (en)

Also Published As

Publication number Publication date
JPH0569635B2 (en) 1993-10-01

Similar Documents

Publication Publication Date Title
JP3530322B2 (en) Upward / vertical welding method
JPS5811317B2 (en) Horizontal electroslag build-up welding method
JPS62144878A (en) Magnetic agitation welding method for tube panel
JP2778920B2 (en) Lateral welding method and lateral welding device
JP2001205435A (en) Magnetically controlled welding method for narrow bevel and device therefor
JPS5913577A (en) T-joint welding method
JPS61279365A (en) Narrow groove horizontal welding method
US3291961A (en) Means and methods for arc welding with a non-consumable rod electrode
JPH0532154B2 (en)
JPS6045034B2 (en) DC TIG weaving welding method
JPS62248569A (en) Magnetism utilizing horizontal welding method
US3710066A (en) Method of electric-arc welding of tubular products with magnetic control of the arc
JPH07102458B2 (en) Control method for arc and plasma
JPS6390366A (en) Build-up welding method to shaft end
JPH0221909B2 (en)
JPS6218264B2 (en)
JPS60255269A (en) First layer uranami welding method of steel pipe
JPS62144877A (en) Spot welding method
JPS5927773A (en) Single side welding method
JPS5950973A (en) Two electrode latent arc welding method
JPS58138570A (en) Arc welding method
JP2001300775A (en) Backing strip for welding
JPS63108973A (en) Magnetic stirring horizontal welding method
JPS62124077A (en) Filter wire type magnetic control mig welding method
JPH0359785B2 (en)