JPH0532154B2 - - Google Patents

Info

Publication number
JPH0532154B2
JPH0532154B2 JP59137830A JP13783084A JPH0532154B2 JP H0532154 B2 JPH0532154 B2 JP H0532154B2 JP 59137830 A JP59137830 A JP 59137830A JP 13783084 A JP13783084 A JP 13783084A JP H0532154 B2 JPH0532154 B2 JP H0532154B2
Authority
JP
Japan
Prior art keywords
welding
current
molten metal
magnetic field
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59137830A
Other languages
Japanese (ja)
Other versions
JPS6117372A (en
Inventor
Koichi Wada
Kisaburo Tanaka
Nagio Minami
Ikuo Wakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13783084A priority Critical patent/JPS6117372A/en
Publication of JPS6117372A publication Critical patent/JPS6117372A/en
Publication of JPH0532154B2 publication Critical patent/JPH0532154B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/08Arrangements or circuits for magnetic control of the arc

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は横向姿勢溶接の改良に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in lateral position welding.

〔従来の技術〕[Conventional technology]

第2図および第3図を参照して従来の横向姿勢
溶接方法を説明する。
A conventional horizontal position welding method will be explained with reference to FIGS. 2 and 3.

横向姿勢溶接は、第2図Aに示すような横方向
に拡開した開先部を溶接する際に行なわれる。こ
のような横向溶接では重力により溶接金属が垂れ
下がる傾向があり、一般に品質および能率の点で
下向溶接よりも劣つている。即ち、第2図Aに示
した母材1の開先を横向溶接する際、入熱を高く
して一回当りの溶着量の多い高能率溶接を行なう
と、第1図Bに示すように溶接金属が垂れ下が
り、ビード2…の形状不良や融合不良等の溶接欠
陥3が発生し易い。
Lateral position welding is performed when welding a groove portion that widens laterally as shown in FIG. 2A. Such horizontal welding tends to cause the weld metal to sag due to gravity and is generally inferior to downward welding in terms of quality and efficiency. That is, when horizontally welding the groove of the base metal 1 shown in Fig. 2A, if high heat input is performed to perform high efficiency welding with a large amount of welding per weld, as shown in Fig. 1B. Weld metal sag, and welding defects 3 such as poor shape of beads 2 and poor fusion are likely to occur.

そこで、上記のような横向姿勢溶接に際して
は、小入熱および小溶着量の条件で第2図Cに示
すような多層溶接をする方法が従来行なわれてい
る。
Therefore, when welding in a horizontal position as described above, a method of performing multilayer welding as shown in FIG. 2C under conditions of small heat input and small amount of welding has been conventionally used.

また、第3図Aに示すように溶接すべき母材の
下板と上板とで開先角度を異ならせ、特に下板側
の開先角度を水平に近くすることにより開先内の
溶接は比較的高い入熱で溶接を行なう一方、表層
の仕上げビードの小入熱、小溶着量で溶接する方
法が用いられている。
In addition, as shown in Figure 3A, by making the groove angle different between the lower plate and the upper plate of the base material to be welded, and making the groove angle on the lower plate side close to horizontal, welding within the groove can be achieved. While welding is performed with a relatively high heat input, a method is used in which welding is performed with a small heat input and a small amount of welding of the finishing bead on the surface layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第2図Cのような小入熱、小溶着量による多層
溶接を用いれば溶接金属の垂れ下がりを抑制する
ことはできるが、溶接能率が大幅に低下するとい
う別の問題が生じる。
Using multilayer welding with a small heat input and a small amount of welding as shown in FIG.

また、第3図A,Bの溶接方法でも溶接能率は
十分でなく、更に開先内部と表層部で溶接の施工
条件を変える必要があることから、溶接作業にお
ける操作が困難であるという問題があつた。
Furthermore, the welding methods shown in Figure 3A and B do not have sufficient welding efficiency, and furthermore, it is necessary to change the welding conditions between the inside of the groove and the surface layer, so there is a problem that operation during welding work is difficult. It was hot.

本発明は従来の横向姿勢溶接における上記問題
の解決を技術的課題とし、融合不良やビード形状
不良等の溶接欠陥を生じず、しかも溶接作業の操
作が容易で高能率の溶接が可能な横向姿勢溶接方
法を目的としてなされたものである。
The present invention aims to solve the above-mentioned problems in conventional horizontal position welding.The present invention aims to solve the above-mentioned problems in conventional horizontal position welding, and does not cause welding defects such as poor fusion or bead shape defects, and also allows for easy welding operations and high efficiency welding. It was developed for the purpose of welding.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では上記の目的を達成するため溶融池内
を流れる溶接電流に着目して該溶接電流に特定の
方向性を有する磁力を作用させ、両者間の電磁誘
導で溶融池の溶融金属を上方に押し上げるような
力を生起させることによつて溶融金属の垂れ下が
り防止を図つた。
In order to achieve the above object, the present invention focuses on the welding current flowing in the molten pool, applies a magnetic force having a specific direction to the welding current, and pushes the molten metal in the molten pool upward by electromagnetic induction between the two. By generating such a force, the molten metal was prevented from sagging.

即ち、本発明による磁気攪拌横向姿勢溶接方法
は、通電チツプと、該通電チツプの外周部を巻回
するコイルとを具備した溶接装置によつて、溶接
後方溶融池内を流れる溶接電流と交差して溶融金
属を押し上げる方向の攪拌力を生起せしめる特定
方向の磁界、或いは溶融金属を押し上げる磁気ま
たは力の方が溶融金属を押し下げる磁気または力
よりも大きくなる交番磁界を与えながら溶接する
ことを特徴とするものである。
That is, the magnetic stirring horizontal position welding method according to the present invention uses a welding device equipped with an energizing tip and a coil wound around the outer periphery of the energizing tip to intersect with the welding current flowing in the molten pool after welding. Welding is performed while applying a magnetic field in a specific direction that generates a stirring force in the direction of pushing up the molten metal, or an alternating magnetic field in which the magnetism or force that pushes up the molten metal is greater than the magnetism or force that pushes down the molten metal. It is something.

〔作用〕[Effect]

第1図Aは本発明を実施するための溶接装置1
0の一例と、該装置を用いた横向姿勢溶接の状態
を示している。同図において、11は通電チツ
プ、12は溶接ワイヤ、13はワイヤ送給ロール
である。通電チツプ11の胴部には絶縁板14を
介して磁性体芯15が被覆され、更にその上には
コイル16が巻付けられている。そして、該コイ
ル16は磁界発生電源17に接続されている。
FIG. 1A shows a welding device 1 for carrying out the present invention.
0 and the state of welding in a horizontal position using the device. In the figure, 11 is a current-carrying chip, 12 is a welding wire, and 13 is a wire feeding roll. The body of the current-carrying chip 11 is covered with a magnetic core 15 via an insulating plate 14, and a coil 16 is further wound on top of the magnetic core 15. The coil 16 is connected to a magnetic field generating power source 17.

上記第1図に基づいて本発明の作用を説明する
と、まず通電チツプ11と母材1との間に溶接電
流を流し、溶接ワイヤ12の先端と母材1との間
にアーク18を発生させる。該アーク18により
溶接ワイヤ12の溶融で溶融池が形成され、送給
ロール13で連続的に溶接ワイヤ12を送給する
ことにより連続して溶接が行なわれる。他方、こ
れと同時に磁界発生電源17からコイル16に通
電することにより、第1図Bに破線で矢印で示す
方向の磁界21が発生する。なお、同図中には溶
接電流が実線矢印22で示してある。
The operation of the present invention will be explained based on FIG. 1 above. First, a welding current is passed between the current-carrying chip 11 and the base metal 1, and an arc 18 is generated between the tip of the welding wire 12 and the base metal 1. . A molten pool is formed by melting the welding wire 12 by the arc 18, and welding is performed continuously by continuously feeding the welding wire 12 with the feeding roll 13. On the other hand, at the same time, by energizing the coil 16 from the magnetic field generating power supply 17, a magnetic field 21 is generated in the direction indicated by the dashed arrow in FIG. 1B. Note that the welding current is indicated by a solid arrow 22 in the figure.

ところで溶接電流22は、第1図Cに示すよう
に溶接ワイヤ12の位置を中心として溶融金属3
0および母材1内を放射状に流れる。このため溶
接電流22と磁界21とが交差し、フレミングの
左手の法則により運動力が与えられる結果、溶融
金属30は図中矢印31で示すように撹拌される
ことになる。なお、Pは溶融池、Qはビードを
夫々示している。
By the way, the welding current 22 is applied to the molten metal 3 centered at the position of the welding wire 12, as shown in FIG. 1C.
0 and the base material 1 in a radial manner. Therefore, the welding current 22 and the magnetic field 21 intersect, and a kinetic force is applied according to Fleming's left-hand rule, so that the molten metal 30 is stirred as shown by an arrow 31 in the figure. Note that P indicates a molten pool and Q indicates a bead.

当然ながら、上記のようにして生じる撹拌力3
1の方向は磁界21の方向、即ち磁界発生電源1
7から供給される磁化電流の方向によつて変化
し、従つてビードQの形状も変化する。そこで、
磁化電流の方向と、撹拌力31およびビードQの
形状との関係を示せば第4図〜第6図の通りであ
る。この何れの場合にも、図Aは第1図のと同じ
方向の磁界を生じる向きを+として示す磁化電流
の方向、図Bは撹拌力31の方向、図Cはビード
Qの形状を示している。なお、溶接電流は直流逆
極性(溶接ワイヤ12が+、母材1が−)として
考察している。
Naturally, the stirring force 3 generated as described above
1 is the direction of the magnetic field 21, that is, the direction of the magnetic field generating power source 1
The shape of the bead Q changes depending on the direction of the magnetizing current supplied from the magnetizing current 7, and therefore the shape of the bead Q also changes. Therefore,
The relationship between the direction of the magnetizing current, the stirring force 31, and the shape of the bead Q is shown in FIGS. 4 to 6. In either case, Figure A shows the direction of the magnetizing current, with + being the direction that produces the magnetic field in the same direction as in Figure 1, Figure B shows the direction of the stirring force 31, and Figure C shows the shape of the bead Q. There is. Note that the welding current is considered as a direct current with reverse polarity (+ for the welding wire 12 and - for the base metal 1).

第4図は第1図Bと同じ方向の磁化電流を流し
た場合である。同図Bで溶接が左から右に進行す
る場合、溶融金属30で形成される溶融池Pは溶
接ワイヤ12による溶接位置の後方に形成される
ため、この溶接池P内の溶接金属30には反時計
方向の撹拌力31が作用する。該撹拌力31が溶
融金属30を垂れ下がらせる重力Wに抗する結
果、ビードQは同図Cに示すように上下略均一と
なり、良好な溶接が行なわれる。
FIG. 4 shows the case where a magnetizing current is passed in the same direction as in FIG. 1B. When welding progresses from left to right in Figure B, the molten pool P formed by the molten metal 30 is formed behind the welding position by the welding wire 12. A counterclockwise stirring force 31 acts. As a result of the stirring force 31 resisting the gravity W that causes the molten metal 30 to hang down, the bead Q becomes substantially uniform vertically as shown in FIG.

第5図は、同図Aから明らかなように、第4図
のとは逆方向の磁化電流を流した場合を示してい
る。この場合には溶接金属30に作用する撹拌力
31が時計方向となり、重力Wと重複するため、
ビードQには更に顕著な垂れ下がりが生じてしま
う。
As is clear from FIG. 5A, FIG. 5 shows the case where a magnetizing current is applied in the opposite direction to that shown in FIG. In this case, the stirring force 31 acting on the weld metal 30 is clockwise and overlaps with the gravity W, so
A more significant sagging occurs in the bead Q.

第6図は、同図A1,A2に示すように磁化電流
を交番電流とした場合を示している。この場合、
同図Bに示すように反時計方向の撹拌力31と時
計方向の撹拌力31′が交互に作用することにな
る。しかし、同図A1のように交番電流の幅を変
えたり、また同図A2に示すように交番電流の強
度を変えて反時計方向の撹拌力31の方を大きく
することにより、同図Cに示すように上下均一な
ビードQを得ることができる。更に、この場合に
は結晶の微細化や溶湯中のガス浮上を促進する作
用をも生じることになる。
FIG. 6 shows the case where the magnetizing current is an alternating current as shown in A 1 and A 2 of the figure. in this case,
As shown in Figure B, the counterclockwise stirring force 31 and the clockwise stirring force 31' act alternately. However, by changing the width of the alternating current as shown in A 1 of the same figure, or by changing the intensity of the alternating current as shown in A 2 of the same figure to increase the stirring force 31 in the counterclockwise direction, As shown in C, it is possible to obtain a bead Q that is uniform from top to bottom. Furthermore, in this case, the effect of accelerating the miniaturization of crystals and the floating of gas in the molten metal also occurs.

〔発明の効果〕〔Effect of the invention〕

上記作用の説明から理解されるように、本発明
の磁気撹拌横向姿勢溶接方法によれば、ビードの
垂れ下がりを生じることなく高入熱で横向溶接を
行なうことができる。従つて、高品質且つ高能率
の横向姿勢溶接が可能となり、繁雑な操作も不要
である等、顕著な効果が得られる。
As can be understood from the above explanation of the operation, according to the magnetic stirring horizontal position welding method of the present invention, horizontal welding can be performed with high heat input without causing bead sagging. Therefore, high quality and highly efficient horizontal position welding is possible, and significant effects such as no need for complicated operations can be obtained.

〔実施例〕〔Example〕

第1図A,B,Cで説明した方法で磁気撹拌横
向姿勢溶接を行なつた。なお、溶接装置10にお
ける磁性体芯15には軟鉄、コイル16としては
直径1.2mmの耐熱電線で200回巻きのものを用い、
磁化電流は4Aとした。この場合、溶接部直下で
の磁界強度は100ガウスであつた。他方、溶接条
件は直径2mmのフラツクス入り溶接ワイヤを用
い、溶接電流250A、電圧25V、速度30cm/分と
し、既述の方法で横向姿勢溶接を行なつたとこ
ろ、上下均一な溶接ビードが得られた。
Magnetic stirring horizontal position welding was performed by the method explained in FIGS. 1A, B, and C. In addition, the magnetic core 15 in the welding device 10 was made of soft iron, and the coil 16 was made of a heat-resistant wire with a diameter of 1.2 mm and wound 200 times.
The magnetizing current was 4A. In this case, the magnetic field strength directly below the weld was 100 Gauss. On the other hand, when the welding conditions were 2 mm diameter flux-cored welding wire, a welding current of 250 A, a voltage of 25 V, and a speed of 30 cm/min, welding was performed in a horizontal position using the method described above, and a uniform weld bead was obtained on the top and bottom. Ta.

次に、第6図Aの交番磁化電流(+側と−側の
時間比率は2:1、周波数は3Hz)を用い、上記
と同様の横向姿勢溶接を行なつたところ、ビード
形状は良好で、ブローホール発生数も減少した。
Next, when welding in the same horizontal position as above was performed using the alternating magnetizing current shown in Figure 6A (time ratio of + side and - side is 2:1, frequency is 3 Hz), the bead shape was good. , the number of blowholes also decreased.

なお、比較例として第5図Aのような逆極性の
磁化電流で同様の溶接を行なつた結果、ビードは
上方部がえぐられて下方側に凸となつた悪い形状
になつた。
As a comparative example, when similar welding was carried out using a magnetizing current of opposite polarity as shown in FIG. 5A, the bead had a bad shape with the upper part hollowed out and convex downward.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは本発明を実施するための装置の一例
と、これを用いた横向姿勢溶接の状態を示す説明
図であり、同図B,Cはその作用を示す説明図、
第2図A,B,Cおよび第3図A,Bは従来の横
向姿勢溶接方法とその問題点を示す説明図、第4
図〜第6図は本発明において採用する磁界の方向
がビードの形状に与える影響を示す説明図であ
る。 10……溶接装置、11……通電チツプ、12
……溶接ワイヤ、13……ワイヤ送給ロール、1
4……絶縁板、15……磁性体芯、16……コイ
ル、17……磁界発生電源、18……アーク、2
1……磁界、22……溶接電流、30……溶融金
属、31……撹拌力。
FIG. 1A is an explanatory diagram showing an example of an apparatus for carrying out the present invention and a state of welding in a horizontal position using the same, and FIGS. 1B and C are explanatory diagrams showing its operation,
Figure 2 A, B, C and Figure 3 A, B are explanatory diagrams showing the conventional horizontal position welding method and its problems.
6 to 6 are explanatory diagrams showing the influence that the direction of the magnetic field employed in the present invention has on the shape of the bead. 10...Welding device, 11...Electricity chip, 12
... Welding wire, 13 ... Wire feeding roll, 1
4... Insulating plate, 15... Magnetic core, 16... Coil, 17... Magnetic field generation power source, 18... Arc, 2
1... Magnetic field, 22... Welding current, 30... Molten metal, 31... Stirring force.

Claims (1)

【特許請求の範囲】[Claims] 1 横向姿勢溶接において、通電チツプと、該通
電チツプの外周部を巻回するコイルとを具備した
溶接装置によつて、溶接後方溶融池内を流れる溶
接電流と交差して溶融金属を押し上げる方向の攪
拌力を生起せしめる特定方向の磁界、或いは溶融
金属を押し上げる磁気または力の方が溶融金属を
押し下げる磁気または力よりも大きくなる交番磁
界を与えながら溶接することを特徴とする磁気攪
拌横向溶接方法。
1 In horizontal position welding, a welding device equipped with a current-carrying tip and a coil wound around the outer circumference of the current-carrying tip stirs the molten metal in a direction that crosses the welding current flowing in the molten pool after welding and pushes up the molten metal. A magnetic stirring horizontal welding method characterized in that welding is performed while applying a magnetic field in a specific direction that generates a force, or an alternating magnetic field in which the magnetism or force that pushes up the molten metal is greater than the magnetism or force that pushes the molten metal down.
JP13783084A 1984-07-03 1984-07-03 Magnetic agitation horizontal position welding Granted JPS6117372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13783084A JPS6117372A (en) 1984-07-03 1984-07-03 Magnetic agitation horizontal position welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13783084A JPS6117372A (en) 1984-07-03 1984-07-03 Magnetic agitation horizontal position welding

Publications (2)

Publication Number Publication Date
JPS6117372A JPS6117372A (en) 1986-01-25
JPH0532154B2 true JPH0532154B2 (en) 1993-05-14

Family

ID=15207832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13783084A Granted JPS6117372A (en) 1984-07-03 1984-07-03 Magnetic agitation horizontal position welding

Country Status (1)

Country Link
JP (1) JPS6117372A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114499A (en) * 1990-03-05 1992-05-19 Mazda Motor Corporation Method of forming chilled layer
JPH0463397A (en) * 1990-07-03 1992-02-28 Matsushita Electric Ind Co Ltd Tone controller
CN102922153B (en) * 2012-11-27 2014-10-15 哈尔滨工业大学 Laser guide GMAW (Gas Metal Arc Welding) electric arc compound transverse welding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155954A (en) * 1978-05-30 1979-12-08 Showa Aluminium Co Ltd Deffective prevention in aluminum dcspp tig welding
JPS58100970A (en) * 1981-12-11 1983-06-15 Mitsubishi Heavy Ind Ltd Sideways welding method
JPS5913577A (en) * 1982-07-15 1984-01-24 Mitsubishi Heavy Ind Ltd T-joint welding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155954A (en) * 1978-05-30 1979-12-08 Showa Aluminium Co Ltd Deffective prevention in aluminum dcspp tig welding
JPS58100970A (en) * 1981-12-11 1983-06-15 Mitsubishi Heavy Ind Ltd Sideways welding method
JPS5913577A (en) * 1982-07-15 1984-01-24 Mitsubishi Heavy Ind Ltd T-joint welding method

Also Published As

Publication number Publication date
JPS6117372A (en) 1986-01-25

Similar Documents

Publication Publication Date Title
US2756311A (en) High-speed tandem arc working
Houldcroft Welding process technology
US4190760A (en) Welding apparatus with shifting magnetic field
US2489002A (en) Method of electric arc welding
JPS5811317B2 (en) Horizontal electroslag build-up welding method
US3584181A (en) Method of arc welding for hard facing
US3885123A (en) Method and means for controlling adjacent arcs
JPH0532154B2 (en)
US2882384A (en) Welding system
JPS62248569A (en) Magnetism utilizing horizontal welding method
US4145598A (en) Automatic arc welding process using a consumable nozzle
JPS5913577A (en) T-joint welding method
US4045648A (en) Automatic arc welding process using a consumable nozzle
US3710066A (en) Method of electric-arc welding of tubular products with magnetic control of the arc
JPS63119980A (en) Transverse attitude welding method
JPS6245474A (en) Narrow groove tig welding device
JPS6336975A (en) Magnetic stirring horizontal welding method
JPS61279365A (en) Narrow groove horizontal welding method
JP3256089B2 (en) Non-consumable nozzle type electroslag welding method
JPS6253268B2 (en)
JP2005095953A (en) Tig welding method and device
JPS61255774A (en) Electron beam welding method
SU1696208A1 (en) Method of electric-arc hidden welding
JP2000079470A (en) Arc welding method
SU795794A1 (en) Method and apparatus for welding ring connections by magnetically-controlled arc

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees