JPS63119980A - Transverse attitude welding method - Google Patents

Transverse attitude welding method

Info

Publication number
JPS63119980A
JPS63119980A JP26336286A JP26336286A JPS63119980A JP S63119980 A JPS63119980 A JP S63119980A JP 26336286 A JP26336286 A JP 26336286A JP 26336286 A JP26336286 A JP 26336286A JP S63119980 A JPS63119980 A JP S63119980A
Authority
JP
Japan
Prior art keywords
welding
force
current
molten metal
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26336286A
Other languages
Japanese (ja)
Inventor
Ikuo Wakamoto
郁夫 若元
Toshiro Kobayashi
敏郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26336286A priority Critical patent/JPS63119980A/en
Publication of JPS63119980A publication Critical patent/JPS63119980A/en
Pending legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To prevent the generation of a welding defect, and to improve the efficiency of a welding work by pushing up a molten metal in a molten pool by allowing mag netic force having specific directivity to work on a welding current flowing in the molten pool, and also, preventing the molten metal from sagging, by a copper patch. CONSTITUTION:Welding is executed by placing opposingly a surface side copper patch 11a provided with a water-cooling means and an exciting coil 13, and a reverse side copper patch 11b provided with a cooling means, through a base metal steel plate to be welded 1, feeding a welding wire 4, and connecting a feeding chip 18 and the steel plate 1 to a welding power source 20. The coil 13 is connected to an exciting power source 19 connected to the power source 20, an exciting current is given from an in on core 14 to which the coil 13 is wound and installed, and the power source 19, and by Lorentz's force, thereby, a weld metal 5 and an arc 23 are raised in the upper direction, and also, stirred by a vibration. In this case, to the coil 13, a DC current is applied in the direction where electromagnetic force which crosses a welding current flowing in a molten pool, and also, is in the direction for pushing up the molten metal 5 is generated. Or an AC current which crosses the welding current, and also becomes larger than the time for pushing up the molten metal 5, or the time when the force is reverse, or than the force is applied.

Description

【発明の詳細な説明】 物全般に適用されるものである。[Detailed description of the invention] It applies to all things.

[従来の技術] 第11図および第12図を参照して従来の横向横方向に
拡開した開先部を溶接する際に行なわれる。このような
横向溶接では重力により溶接金属が垂れ下がる傾向があ
り、一般に品質および能率の点で下向溶接よりも劣って
いる。即ち、第11図(A)に示した母材1の開先を横
向溶接する際、入熱を高くして一回当りの溶着量の多い
高能率溶接を行なうと、第11図(B)に示すように溶
接金属が垂れ下がり、ビード2・・・の形状不良や融合
不良等の溶接欠陥3が発生し易い。
[Prior Art] Referring to FIG. 11 and FIG. 12, a conventional welding process is performed when a groove portion widened in the lateral direction is welded. Such horizontal welds tend to cause the weld metal to sag due to gravity and are generally inferior to downward welds in terms of quality and efficiency. That is, when horizontally welding the groove of the base material 1 shown in FIG. 11(A), if the heat input is increased to perform high-efficiency welding with a large amount of welding per weld, the welding as shown in FIG. 11(B) is performed. As shown in the figure, the weld metal sag, and welding defects 3 such as poor shape of beads 2 and poor fusion are likely to occur.

そこで、上記のような横向姿勢溶接に際しては、小人熱
および小溶着量の条件で第11図(C)に示すような多
層溶接をする方法が従来行なわれている。
Therefore, when welding in a horizontal position as described above, a method of performing multilayer welding as shown in FIG. 11(C) under conditions of dwarf heat and a small amount of welding has been conventionally used.

また、第12図(A)に示すように溶接すべき母材の下
板と上板とで開先角度を異ならせ、特に下板側の開先角
度を水平に近くすることにより開先内の溶接は比較的高
い入熱で溶接を行なう一方、表層の仕上げビードの小人
熱、小溶着量で溶接する方法が用いられている。
In addition, as shown in Fig. 12 (A), the groove angle is made different between the lower plate and the upper plate of the base metal to be welded, and the groove angle on the lower plate side is made close to horizontal in particular. While welding is performed with a relatively high heat input, a method is used in which welding is performed with a small amount of heat and a small amount of welding of the finishing bead on the surface layer.

[発明が解決しようとする問題点] しかしながら、第11図(C)のような小人熱、小溶着
量による多層溶接を用いれば溶接金属の垂れ下がりを抑
制することはできるが、溶接能率が大幅に低下するとい
う別の問題が生じる。
[Problems to be Solved by the Invention] However, by using multilayer welding using dwarf heat and a small amount of welding as shown in FIG. Another problem arises:

また、第12図(A)(B)の溶接方法でも溶接能率は
十分でなく、更に開先内部と表層部で溶接の施工条件を
変える必要があることから、溶接作業における操作が困
難であるという問題があった。
In addition, even the welding methods shown in Figures 12 (A) and (B) do not have sufficient welding efficiency, and furthermore, it is necessary to change the welding conditions between the inside of the groove and the surface layer, making it difficult to operate during welding work. There was a problem.

本発明は従来の横方向姿勢溶接における上記問題の解決
を技術的課題とし、融合不良やビード形状不良の溶接欠
陥を生じず、しかも溶接作業の操作が容易で高能率の溶
接が可能な横向姿勢溶接方法を提供することを目的とす
る。
The present invention aims to solve the above-mentioned problems in conventional lateral position welding.The present invention aims to solve the above-mentioned problems in conventional lateral position welding, and does not cause welding defects such as poor fusion or poor bead shape, and also allows for easy welding operation and high efficiency welding. The purpose is to provide a welding method.

[問題点を解決するための手段] 本発明では上記の目的を達成するため溶融池内を流れる
溶接電流に着目して該溶接電流に特定の方向性を有する
磁力を作用させ、両者間で生じるローレンツ力で溶融池
の溶融金属を上方に押し上げるような力を生起させるこ
とと銅当金によって溶融金属の垂れ下がり防止を図った
[Means for Solving the Problems] In order to achieve the above object, the present invention focuses on the welding current flowing in the molten pool, applies a magnetic force having a specific direction to the welding current, and generates a Lorentzian force between the welding current and the welding current. The aim was to generate a force that pushes the molten metal in the molten pool upward and to prevent the molten metal from sagging by using a copper dowel.

即ち、本願発明は、励磁コイルに溶融池内に流れる溶接
電流と交差しかつ溶融金属を押し上げる方向の電磁力が
発生する方向に直流電流を印加するか、あるいは溶融池
内に流れる溶接電流と交差しかつ溶融金属を押し上げる
時間又は力が逆の時間又は力よりも大きくなる交流電流
を印加しながら溶接を行うことを要旨とする。
That is, the present invention applies a direct current to the excitation coil in a direction that generates an electromagnetic force that intersects with the welding current flowing in the molten pool and pushes up the molten metal, or The gist is to perform welding while applying an alternating current such that the time or force to push up the molten metal is greater than the time or force to push up the molten metal.

【作用] 本願発明において、磁化電流の方向と電磁力F及びビー
ドの形状との関係は第6図〜第8図に示す通りである。
[Function] In the present invention, the relationship between the direction of the magnetizing current, the electromagnetic force F, and the shape of the bead is as shown in FIGS. 6 to 8.

但し、何れの場合にも、図(A)(第8図(AI ) 
 (A2 ) )は上向き方向の磁界を生じる向きを十
として示す磁化電流の方向、図(B)は電磁力Fの方向
、図(C)はビード2の形状を示している。なお、溶接
電流は直流逆極性(溶接ワイヤ4が+、母材鋼板1が−
)として考察している。
However, in any case, Figure (A) (Figure 8 (AI)
(A2)) shows the direction of the magnetizing current, with the direction in which an upward magnetic field is generated as 0, Figure (B) shows the direction of the electromagnetic force F, and Figure (C) shows the shape of the bead 2. Note that the welding current is DC reverse polarity (welding wire 4 is +, base material steel plate 1 is -).
).

第6図は十の磁化電流を流した場合である。同図(B)
で溶接が左から右に進行する場合、溶融金属5で形成さ
れる溶融池6は溶接ワイヤ4によるアーク発生位置に形
成されるため、この溶接池6内の溶融金属5には上向き
方向の電磁力Fが作用する。該電磁力Fが溶融金属5を
垂れ下がらせる重力Wに抗する結果、ビード2は同図(
C)に示すように上下略均−となり、良好な溶接が行な
われる。
FIG. 6 shows the case where a magnetizing current of 10 is applied. Same figure (B)
When welding progresses from left to right, the molten pool 6 formed by the molten metal 5 is formed at the position where the arc is generated by the welding wire 4. Force F acts. As a result of the electromagnetic force F resisting the gravity W that causes the molten metal 5 to hang down, the bead 2 becomes as shown in the figure (
As shown in C), the top and bottom are approximately equal, and good welding is achieved.

第7図は、同図(A)から明らかなように、第6図のと
は逆方向の磁化電流を流した場合を示している。この場
合には溶融金属5に作用する電磁力Fが下向き方向とな
り、重力Wと重複するため、ビード2には更に顕著な垂
れ下がりが生じてしまう。
As is clear from FIG. 7(A), FIG. 7 shows the case where a magnetizing current is passed in the opposite direction to that in FIG. 6. In this case, the electromagnetic force F acting on the molten metal 5 is in a downward direction and overlaps with the gravity W, so that the bead 2 sags even more significantly.

第8図は、同図(At )  (A2 )に示すように
磁化電流を交番電流とした場合を示している。この場合
、同図(B)に示すように上向き方向の電磁力Fと下向
き方向の撹拌力F゛が交互に作用することになる。しか
し、同図(AI )のように交番電流の幅を変えたり、
また同図(A2)に示すように交番電流の強度を変えて
上向き方向の電磁力Fの方を大きくすることにより、同
図(C)に示すように上下均一なビード2を得ることが
できる。更に、この場合には結晶の微細化や溶湯中のガ
ス浮上を促進する作用をも生じることになる。
FIG. 8 shows the case where the magnetizing current is an alternating current as shown in (At) (A2) in the figure. In this case, the electromagnetic force F in the upward direction and the stirring force F' in the downward direction act alternately, as shown in FIG. 3B. However, if you change the width of the alternating current as shown in the same figure (AI),
In addition, by changing the intensity of the alternating current and increasing the electromagnetic force F in the upward direction as shown in the same figure (A2), it is possible to obtain a bead 2 that is uniform in the upper and lower directions as shown in the same figure (C). . Furthermore, in this case, the effect of accelerating the miniaturization of crystals and the floating of gas in the molten metal also occurs.

[実施例] 以下、本発明の一実施例を図を参照して説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図〜第5図は本発明に係る横方向姿勢溶接装置の説
明図であり、第1図は平面図、第2図は正面図、第3図
は第1図の要部を拡大して示す詳細図、第4図は第3図
のX−X線に沿う断面図、第5図は第3図の裏面図であ
る。なお、既述した図面と同部材は同符号を付して説明
を省略する。
1 to 5 are explanatory diagrams of the lateral position welding device according to the present invention, in which FIG. 1 is a plan view, FIG. 2 is a front view, and FIG. 3 is an enlarged view of the main part of FIG. 1. FIG. 4 is a sectional view taken along line X--X in FIG. 3, and FIG. 5 is a back view of FIG. 3. Note that the same members as those in the drawings already described are designated by the same reference numerals, and the description thereof will be omitted.

図中のllaは、冷却水を供給するバイブ12、及び励
磁コイル13が巻装された鉄心14を夫々付設した裏側
銅当金である。この裏側銅当金11の下方には、冷却水
を排出するバイブ12を有した裏側銅当金11bが被溶
接材としての母材鋼板1を介して対向配置されている。
lla in the figure is a backside copper pad to which a vibrator 12 for supplying cooling water and an iron core 14 around which an excitation coil 13 is wound are attached. Below this back side copper dot 11, a back side copper dot 11b having a vibrator 12 for discharging cooling water is arranged to face the base metal plate 1 as a material to be welded.

ここで、前記裏側銅当金11a、裏側鋼当金11bはと
もにワイヤの長手方向(矢印入方向)に移動自在となっ
ている。前記裏側銅当金11aには前方に溶融金属5が
流れないように前方銅当金15が設けられている。この
銅当金15の鉤部には、該銅当金15と溶接ワイヤ4の
通電を防止する為の絶縁材16が設けられている。とこ
ろで、前記溶接ワイヤ4は、ワイヤ送給ローラ17によ
って給電チップ18内を通って溶接部へ送給される。前
記励磁コイル13は励磁電源19に接続され、かつこの
励磁電源19及び前記給電チップ18、母材鋼板1は夫
々溶接電源20と電気的に接続される。なお、21はタ
ブ板、22はスラグ浴、23はアーク(電流)、24は
溶接金属である。こうした装置において、前記鉄心14
と励磁電源19から第6図〜第8図に示す様に直流又は
1〜30Hzの交番励磁電流を与える。この場合、通常
溶接電源20は直流電源のため直流又は1〜30Hzの
交流励磁電流を与え、これによって生じた磁界と溶接電
流によるローレンツ力により溶融金属5やアーク23を
上方向へ持ち上げると共に1〜30Hzで振動撹拌する
Here, both the back side copper dot 11a and the back side steel dot 11b are movable in the longitudinal direction of the wire (in the direction of the arrow). A front copper dot 15 is provided on the back side copper dot 11a to prevent the molten metal 5 from flowing forward. An insulating material 16 is provided at the hook portion of the copper butt 15 to prevent electrical conduction between the copper butt 15 and the welding wire 4. By the way, the welding wire 4 is fed to the welding part by the wire feeding roller 17 through the power feeding tip 18. The excitation coil 13 is connected to an excitation power source 19, and the excitation power source 19, the power supply chip 18, and the base steel plate 1 are electrically connected to a welding power source 20, respectively. In addition, 21 is a tab plate, 22 is a slag bath, 23 is an arc (current), and 24 is a welding metal. In such a device, the iron core 14
A direct current or alternating current of 1 to 30 Hz is applied from the excitation power source 19 as shown in FIGS. 6 to 8. In this case, the welding power source 20 is usually a DC power source, so it applies a DC or AC excitation current of 1 to 30 Hz, and the Lorentz force generated by the magnetic field and welding current lifts the molten metal 5 and the arc 23 upward, and also Vibratory stirring at 30 Hz.

次に、上記構造の装置の作動原理を第9図及び第10図
を参照して説明する。
Next, the operating principle of the device having the above structure will be explained with reference to FIGS. 9 and 10.

■ まず、第9図で励磁コイル13を流れる励磁電流に
より入方向からB方向の磁界が生じ、−方、ワイヤ4か
ら母材鋼板1a、lbへ流れる電流とにより、溶融金属
5中に母材鋼板1bから1a方向のローレンツ力Fが生
じる。
First, in Fig. 9, the excitation current flowing through the excitation coil 13 generates a magnetic field from the input direction to the B direction, and the current flowing from the wire 4 to the base steel plates 1a, lb causes the base material to flow into the molten metal 5. A Lorentz force F in the direction 1a is generated from the steel plate 1b.

■ 次に、励磁コイル13を流れる電流の向きが変わっ
た状B(第10図)ではB方向から入方向の磁界と溶接
電流により母材鋼板1aから1b方向のローレンツ力が
生じる。この原理により溶融金属5を上方向へ持ち上げ
たり、1〜30Hzの周期で切り換え溶融金属5を振動
撹拌することが可能となる。
(2) Next, in state B (FIG. 10) in which the direction of the current flowing through the excitation coil 13 has changed, a Lorentz force is generated in the direction from the base steel plate 1a to 1b due to the magnetic field in the direction B and the welding current. This principle makes it possible to lift the molten metal 5 upward and to vibrate and stir the molten metal 5 at a frequency of 1 to 30 Hz.

本実施例では上記装置を用いて磁気を利用した横方向姿
勢溶接を行なった。但し、裏側銅当金11aの鉄心14
には軟鉄を、励磁コイル13としては直径1.2Bの耐
熱電線で1000回巻きのものを用い、磁化電流は5A
とした。この場合、板厚20mの溶接部中央での磁界強
度は300ガウスであった。また、溶接条件は直径1.
6wxのフラックス入り溶接ワイヤを用い、溶接電流4
00A、電圧30V、速度20o/分とし、第6図の方
法で横方向姿勢溶接を行なったところ、上下均一な溶接
ビードが得られた。
In this example, the above-mentioned apparatus was used to perform lateral position welding using magnetism. However, the iron core 14 of the back side copper pad 11a
For the excitation coil 13, a 1000-turn heat-resistant wire with a diameter of 1.2 B was used, and the magnetizing current was 5 A.
And so. In this case, the magnetic field strength at the center of the welded part with a plate thickness of 20 m was 300 Gauss. Also, the welding conditions are diameter 1.
Using 6wx flux-cored welding wire, welding current 4
When welding was carried out in a lateral direction using the method shown in FIG. 6 at 00 A, a voltage of 30 V, and a speed of 20 o/min, a weld bead that was uniform in the upper and lower directions was obtained.

次に、第8図(A)の交番磁化電流(+側と一側の時間
比率は2:12周波数は3 Hz)を用い、上記と同様
の横方向姿勢溶接を行なったところ、ビード形状も良好
で、ブローホール発生も防止された。
Next, when the same lateral position welding as above was performed using the alternating magnetizing current shown in Fig. 8 (A) (the time ratio between the positive side and the one side was 2:12, and the frequency was 3 Hz), the bead shape also changed. The results were good and blowholes were also prevented.

なお、比較例として第7図(A)のような逆極性の磁化
電流で同様の溶接を行なった結果、ビードは上方部がえ
ぐられて下方側に凸となった悪い形状になった。
As a comparative example, similar welding was performed using a magnetizing current of opposite polarity as shown in FIG. 7(A), and as a result, the bead had a bad shape with the upper part hollowed out and convex downward.

[発明の効果] 以上詳述した如く本発明によれば、融合不良やビード形
状不良等の溶接欠陥を生じず、かつ溶接作業の操作が容
易で高能率な一層で横向溶接が可能な横向姿勢溶接方法
を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to perform horizontal welding in a single layer in a horizontal position, which does not cause welding defects such as poor fusion or poor bead shape, is easy to operate, and is highly efficient. We can provide welding methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る横向姿勢溶接装置の平面図、第2
図は第1図の正面図、第3図は第1図の要部を拡大して
示す詳細轟、第4図は第3図のX−X線に沿う断面図、
第5図は第3図の裏面図、第6図〜第8図は夫々本発明
に係る磁化電流の方向と電磁力及びビードの形状との関
係を示す説明図、第9図及び第10図は夫々本発明の作
動原理の説明図、第11図及び第12図は夫々従来の横
向姿勢溶接方法の説明図である。 1・・・母材鋼板、2・・・ビード、4・・・溶接ワイ
ヤ、5・・・溶融金属、lla・・・裏側銅当金、ll
b・・・裏側銅当金、12a、12b・・・パイプ、1
3・・・励磁コイル、14・・・鉄心、15・・・前方
銅当金、17・・・ワイヤ送給ローラ、18・・・給電
チップ、19・・・励磁電源、20・・・溶接電源、2
3・・・アーク(電流)、24・・・溶接金属。 出願人復代理人 弁理士 鈴江武彦 第1図 第2図 +01   +   01 第9図        第10図 第11図 (A )        CB ’) 第」2囚
FIG. 1 is a plan view of a horizontal position welding device according to the present invention, and FIG.
The drawing is a front view of Fig. 1, Fig. 3 is a detailed enlarged view of the main part of Fig. 1, Fig. 4 is a sectional view taken along the line X-X of Fig. 3,
FIG. 5 is a back view of FIG. 3, FIGS. 6 to 8 are explanatory diagrams showing the relationship between the direction of magnetizing current, electromagnetic force, and bead shape according to the present invention, and FIGS. 9 and 10, respectively. 11 and 12 are explanatory diagrams of the operating principle of the present invention, respectively, and FIGS. 11 and 12 are explanatory diagrams of the conventional horizontal position welding method, respectively. DESCRIPTION OF SYMBOLS 1... Base steel plate, 2... Bead, 4... Welding wire, 5... Molten metal, lla... Back side copper pad, ll
b... Backside copper pad, 12a, 12b... Pipe, 1
3... Excitation coil, 14... Iron core, 15... Front copper stopper, 17... Wire feeding roller, 18... Power feeding tip, 19... Excitation power source, 20... Welding power supply, 2
3... Arc (current), 24... Welding metal. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 Figure 2 +01 + 01 Figure 9 Figure 10 Figure 11 (A) CB') 2nd Prisoner

Claims (1)

【特許請求の範囲】[Claims] 水冷手段及び励磁コイルを付設した表側銅当金と、水冷
手段を有する裏側銅当金を被溶接材を介して移動自在に
対向配置して溶接を行う横向姿勢溶接方法において、上
記励磁コイルに溶融池内に流れる溶接電流と交差しかつ
溶融金属を押し上げる方向の電磁力が発生する方向に直
流電流を印加するか、あるいは溶融池内に流れる溶接電
流と交差しかつ溶融金属を押し上げる時間又は力が逆の
時間又は力よりも大きくなる交流電流を印加することを
特徴とする横向姿勢溶接方法。
In a horizontal position welding method in which welding is performed by movably disposing a front side copper butt equipped with a water cooling means and an excitation coil and a back side copper butt equipped with a water cooling means so as to be movably opposed to each other through the welded material, the above excitation coil is melted. Direct current is applied in a direction that generates an electromagnetic force that crosses the welding current flowing in the welding pool and pushes up the molten metal, or the time or force that crosses the welding current flowing in the welding pool and pushes up the molten metal is reversed. A horizontal position welding method characterized by applying an alternating current that is greater than time or force.
JP26336286A 1986-11-05 1986-11-05 Transverse attitude welding method Pending JPS63119980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26336286A JPS63119980A (en) 1986-11-05 1986-11-05 Transverse attitude welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26336286A JPS63119980A (en) 1986-11-05 1986-11-05 Transverse attitude welding method

Publications (1)

Publication Number Publication Date
JPS63119980A true JPS63119980A (en) 1988-05-24

Family

ID=17388434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26336286A Pending JPS63119980A (en) 1986-11-05 1986-11-05 Transverse attitude welding method

Country Status (1)

Country Link
JP (1) JPS63119980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844039A1 (en) * 1996-05-10 1998-05-27 Mitsubishi Heavy Industries, Ltd. Horizontal welding method and welding equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844039A1 (en) * 1996-05-10 1998-05-27 Mitsubishi Heavy Industries, Ltd. Horizontal welding method and welding equipment
EP0844039A4 (en) * 1996-05-10 1999-07-21 Mitsubishi Heavy Ind Ltd Horizontal welding method and welding equipment

Similar Documents

Publication Publication Date Title
EP0832710B1 (en) Welding method in the overhead and vertical positions
US4190760A (en) Welding apparatus with shifting magnetic field
JP5124765B2 (en) Welding method and welding apparatus using electromagnetic force
US9044818B2 (en) Method of welding two sides of a joint simultaneously
JPS5811317B2 (en) Horizontal electroslag build-up welding method
JPS63119980A (en) Transverse attitude welding method
JPH08132231A (en) Horizontal welding method and horizontal welding equipment
JPS62248569A (en) Magnetism utilizing horizontal welding method
JPS6117372A (en) Magnetic agitation horizontal position welding
JP2005095953A (en) Tig welding method and device
JPS6245474A (en) Narrow groove tig welding device
JP3256089B2 (en) Non-consumable nozzle type electroslag welding method
JPS62263868A (en) Narrow gap tig welding method
JPH02187272A (en) First layer welding method for one-side welding
JPH0773791B2 (en) Narrow groove horizontal welding method
JPS63108973A (en) Magnetic stirring horizontal welding method
JP2000079470A (en) Arc welding method
JPS6336975A (en) Magnetic stirring horizontal welding method
JPS5956978A (en) High-speed vertical welding method
JPS61262468A (en) Welding method
JPS5927773A (en) Single side welding method
JPS60240382A (en) Multiple-electrode high speed submerged arc welding
SU1053992A1 (en) Method of arc welding of tee joints by consumable electrodes
JPS62144877A (en) Spot welding method
JPS5944949B2 (en) Automatic welding method for laminated steel plates