JPS60240382A - Multiple-electrode high speed submerged arc welding - Google Patents

Multiple-electrode high speed submerged arc welding

Info

Publication number
JPS60240382A
JPS60240382A JP9513284A JP9513284A JPS60240382A JP S60240382 A JPS60240382 A JP S60240382A JP 9513284 A JP9513284 A JP 9513284A JP 9513284 A JP9513284 A JP 9513284A JP S60240382 A JPS60240382 A JP S60240382A
Authority
JP
Japan
Prior art keywords
electrode
welding
wire
magnetic field
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9513284A
Other languages
Japanese (ja)
Other versions
JPH0333436B2 (en
Inventor
Naoki Okuda
直樹 奥田
Takashi Wada
俊 和田
Masaharu Kumagai
雅晴 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9513284A priority Critical patent/JPS60240382A/en
Publication of JPS60240382A publication Critical patent/JPS60240382A/en
Publication of JPH0333436B2 publication Critical patent/JPH0333436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/08Arrangements or circuits for magnetic control of the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • B23K9/186Submerged-arc welding making use of a consumable electrodes
    • B23K9/188Submerged-arc welding making use of a consumable electrodes making use of several electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To speed up submerged arc welding further without spoiling the quality of a weld zone by making welding giving a magnetic field of specified intensity to the lower part of the second and sulese quent electrode wires. CONSTITUTION:An arc 6a is oscillated electromagnetically in the direction perpendicular to the face of paper (perpendicular to the weld line) by making the direction of magnetic line of force that crosses the arc 6a of preceding electrode P1 perpendicularly under a succeeding electrode wire 1b, i.e. magnetic vector H, giving fixed magnetic field at all times, and changing the direction of welding current of the preceding electrode P1, i.e. the direction of current vector I, with the passage of time. At this time, the intensity of the magnetic field that makes magnetic flux density (unit: gauss) under the electrode wire 1a at least >=1/4 of welding current value (unit: ampere) is maintained. To give the magnetic field 8, there are various ways such as providing an electrode solenoid around the electrode wire 1b.

Description

【発明の詳細な説明】 本発明は多電極ワイヤを用いてサブマージアーク溶接を
高速で行なう方法に関し、特にアークを電磁気的に振動
させて溶融池に、かかるアーク力の分散軽減を図るとと
によ1)サブマージアーク溶接を一層高速で行なえる様
にしたものである。
[Detailed Description of the Invention] The present invention relates to a method of performing submerged arc welding at high speed using a multi-electrode wire, and in particular to a method in which the arc is electromagnetically vibrated to reduce the dispersion of the arc force applied to the molten pool. 1) Submerged arc welding can be performed at higher speeds.

薄板のサブマージアーク溶接を高速で行なう場合には多
電極溶接法によることが有効とされ、これまでに例えば
2電極法であれば最高約150cffI/m、 3電極
法であれば最高約2500m/iまで高速化が可能とさ
れている。しかじよシ一層の高速化を図って溶接作業性
を高めようとする産業界の要請は非常に強く、従来の高
速サブマージアーク溶接法でけその技術内容からして上
記要請に十分対応することができない状況にある。即ち
多電極方式においては溶接が高速化するにつれて電極後
方へ向かうアーク力が増加して溶融池の溶鋼が必要以上
に後方へ流され、アンダーカットやハンピング等の溶接
欠陥を生じ易くなる。そこでこのような不都合の発生を
未然に防止するためには溶融池に作用するアーク力を分
散軽減することが有効な手段と考えられ、このような観
点から従来では溶接ワイヤを機械的に振動する方法が実
施されている。しかしこの方法ではワイヤを約10〜3
0Hzという周波数で振動させるので、ワイヤ先端の溶
滴が強制的にふシ落とされ、それがビードエツジのばル
として残った)、あるいはワイヤがフラックスをかき分
けるがめに溶鋼に有害な窒を 素が入シ込むという問題があシ、そのために高速化の要
請に十分対重できまい状況にあるという点については上
述したところである。
When performing submerged arc welding of thin plates at high speeds, multi-electrode welding is considered to be effective. Up to now, for example, the two-electrode method has a maximum welding speed of approximately 150 cffI/m, and the three-electrode method has a maximum welding speed of approximately 2,500 m/i. It is said that it is possible to increase the speed up to There is a very strong demand from the industry to further increase welding speed and improve welding workability, and considering the technical content of the conventional high-speed submerged arc welding method, it is difficult to fully meet the above demands. I'm in a situation where I can't. That is, in the multi-electrode method, as the welding speed increases, the arc force directed toward the rear of the electrodes increases, causing the molten steel in the molten pool to flow further backward than necessary, making welding defects such as undercuts and humping more likely to occur. Therefore, in order to prevent such inconveniences from occurring, it is considered an effective means to disperse and reduce the arc force acting on the molten pool.From this perspective, conventional methods have been to mechanically vibrate the welding wire. method is implemented. However, with this method, the wire is approximately 10 to 3
Because the vibration is made at a frequency of 0 Hz, the droplets at the tip of the wire are forced to fall off and remain as bulges at the bead edge), or the wire through which the flux is passed through is filled with nitrogen, which is harmful to the molten steel. As mentioned above, there is a problem of crowding, and as a result, it is difficult to meet the demands for higher speeds.

本発明者等はかかる状況に鑑み、ワイヤを機械的に振動
させなくとも溶融池にかかるアーク力を分散軽減できる
ような手段を開発すぺ〈研究を行なってきたが、所定強
さの磁気力を利用してアークを電磁気的に振動させる事
によってよシ一層の高速化を実現できる方法を完成しこ
こに提供しようとするものである。
In view of this situation, the present inventors have been conducting research to develop a means to disperse and reduce the arc force applied to the molten pool without mechanically vibrating the wire. We have completed a method that can realize even higher speeds by electromagnetically oscillating the arc using this method, and we are going to present it here.

しかしてこの様な本発明の多電極式高速サブマージアー
ク溶接方法とは、少なくとも第2位以後の電極ワイヤ下
方に磁界を付与すると共に、該電極ワイヤ下方で測定さ
れる磁束密度値(単位ニガウス)が、隣接先行する電極
ワイヤの溶接電流値(単位二アンペア)の少なくともイ
以上の値となるように前記磁界の強度を維持しつつサブ
マージアーク溶接を行なう点に要旨を有するものである
However, in the multi-electrode high-speed submerged arc welding method of the present invention, a magnetic field is applied below at least the second electrode wire, and the magnetic flux density value (unit: nigauss) measured below the electrode wire is applied. However, the gist of this method is to perform submerged arc welding while maintaining the strength of the magnetic field so that the welding current value (unit: 2 amperes) of the adjacent preceding electrode wire is at least A or more.

以下図面を参照しつつ本発明の構成及び作用効果を具体
的に説明する。第1図及び第2図は本発明方法の原理説
明図であシ、理解の便のため2電極法によ)高速サブマ
ージアーク溶接を行なう場合を示してbる。P1+P2
は夫々先行電極及び後行電極であシ、1a+1bは夫々
電極ワイヤで、その先端部から発生するアーク6a y
 6bは溶接方向(矢印入方向)と反対の方向に放射さ
れている。その為に溶融池の溶鋼5は後方凝固面上に吹
き上げられ、前方に溶鋼不足を来たし、アンダーカット
が起こシ易くなる状況が形成される。そしてこの状況は
ワイヤ先端間隔dが小さいときほど両電極のアーク力が
協調し易くなって顕著な傾向を示す。
The configuration and effects of the present invention will be specifically explained below with reference to the drawings. 1 and 2 are explanatory diagrams of the principle of the method of the present invention, and for ease of understanding, the case in which high-speed submerged arc welding is performed (by a two-electrode method) is shown. P1+P2
are a leading electrode and a trailing electrode, respectively, 1a+1b are electrode wires, and an arc 6a y is generated from the tip thereof.
6b is radiated in a direction opposite to the welding direction (arrow direction). Therefore, the molten steel 5 in the molten pool is blown up onto the rear solidification surface, resulting in a shortage of molten steel in the front, creating a situation where undercuts are likely to occur. This situation shows a remarkable tendency as the distance d between the wire tips becomes smaller, as the arc forces of both electrodes become easier to coordinate.

ところが本発明では第2図に示す様に後行電極ワイヤ1
bの下方において先行電極P□のアーク6aを垂直方向
に横切るような磁力線が作用する磁界8を与えるので、
アーク6aはフレミングの左手の法則に従って紙面に直
角方向(溶接線と直角方向)に力を受け、溶接線を横切
る方向へ偏向させられる。この場合において磁力線の方
向即ち磁気ベクトルHを常に一定とUで電流の方向即ち
電流ベクトルIの向きを経時的に変化させれば、アーク
6aは溶接線を横切る方向に振動されることになる。こ
の場合先行の電極ワイヤ1aは特に強制的に振動させて
いないから、ワイヤ先端の溶滴が強制的にふシ落とされ
たり、フラックスがワイヤによってかき乱されるという
心配はなくなシ、ビードエツジのばシ発生や溶鋼への窒
素混入といった外観及び構造上の溶接欠陥の発生は回避
できる。
However, in the present invention, as shown in FIG.
Below b, the magnetic field 8 is applied by lines of magnetic force that perpendicularly cross the arc 6a of the preceding electrode P□.
The arc 6a receives a force in a direction perpendicular to the plane of the paper (perpendicular to the welding line) according to Fleming's left-hand rule, and is deflected in a direction across the welding line. In this case, if the direction of the magnetic lines of force, that is, the magnetic vector H, is always constant U, and the direction of the current, that is, the direction of the current vector I, is changed over time, the arc 6a will be vibrated in the direction across the welding line. In this case, since the leading electrode wire 1a is not particularly forcibly vibrated, there is no need to worry about the droplet at the tip of the wire being forcibly dropped or the flux being disturbed by the wire, and the bead edge is not forced to vibrate. It is possible to avoid appearance and structural welding defects such as nitrogen generation and nitrogen contamination into molten steel.

以上は先行電極のアークに対して後行電極の磁界が作用
する場合を説明したが、先行電極の下方に磁界を直接作
用させることによシ、即ち自他下で強く作用する磁界に
よって白檀のアークを直接制御するととも幽然考えられ
る。しかし本発明は高速溶接即ちアークが水平に近い状
態で吹き流れている場合の効果的な適用を意図している
ので、上述の様に後行電極下方に磁界を作用させるだけ
で目的は十分達せられ、しかもその方が先行電極のアー
クを制御する上でよシ効果的である。
The case where the magnetic field of the trailing electrode acts on the arc of the leading electrode has been explained above, but it is also possible to apply the magnetic field directly below the leading electrode, that is, by applying a magnetic field that acts strongly under the leading electrode, the sandalwood It can also be thought of as directly controlling the arc. However, since the present invention is intended to be effectively applied to high-speed welding, that is, when the arc is flowing in a nearly horizontal state, simply applying a magnetic field below the trailing electrode as described above is sufficient to achieve the purpose. Moreover, it is more effective in controlling the arc of the leading electrode.

しかしながら後行電極P2の下方に磁界8を付与するに
当っては条件的に次の配慮が必要になる。
However, when applying the magnetic field 8 below the trailing electrode P2, the following considerations need to be made.

即ち電極ワイヤ1b先端において測定される磁束密度値
(単位ニガウス)が隣接先行する電極ワイ’t’laの
溶接電流値(単位二アンペア)の少なくともA以上(両
者を無名数化して比較9例えば1000アンペアに対し
て250ガウス以上)となるようにしなければ電極ワイ
ヤ1b下のアーク6aを溶接線を横切る方向へ駆動する
力を十分誘起せしめ得す、ひいてはアンダーカット等の
不都合を排除する効果も期待できなくなる。
That is, the magnetic flux density value (unit: 2 gauss) measured at the tip of the electrode wire 1b is at least A greater than the welding current value (unit: 2 amperes) of the adjacent preceding electrode wire (both are anonymized and compared 9, for example, 1000 250 Gauss or more with respect to the ampere), it is possible to induce a sufficient force to drive the arc 6a under the electrode wire 1b in the direction across the welding line, and it is also expected to have the effect of eliminating inconveniences such as undercuts. become unable.

ただし、上記磁界強さを測定するにあたシ「ワイヤ先端
位置」を特定しなければならないが、それは便宜上ワイ
ヤが通常[ワイヤエクステステンション」と呼ばれてい
る長さくワイヤ方向に沿った通電チップと鋼板面との距
離)だけ突き出たときの位置(たとえば第1図X1+X
2点)とする。
However, in order to measure the magnetic field strength mentioned above, it is necessary to specify the ``wire tip position'', but this is because the wire is usually called a ``wire extension'' and is energized along the wire direction. The position when the tip protrudes by the distance (distance between the tip and the steel plate surface) (for example,
2 points).

又電極ワイヤ先端間隔lとの関係においても多少の考慮
を要する。即ちワイヤ先端間隔4.、t (第1極目と
第2極目の先端間隔)が短、くなる11どア−り6a、
6bの協調性が増し、溶鋼1.5がよシ後方へ排斥駆動
されるようになって好ましくないのでワイヤ先端間隔1
1,20減少程度に応じて磁界8が強くなるという状態
をつくることが好ましい。本発明者等の実験ではワイヤ
先端間隔値(単位: l1lnl:と磁束密度値(単位
ニガウス)との積が約3000以上(例えばその間隔が
20mmの場合であれば150ガウス以上)になるよう
にすれば、ワイヤ先端間@ZS、tが短くなってもアー
ク6a 、6bの協調性を増加させないことを確認して
パ)。
Further, some consideration must be given to the relationship with the electrode wire tip distance l. That is, the distance between the wire tips is 4. , t (distance between the tips of the first pole and the second pole) is short, 11-door 6a,
6b becomes more cooperative and the molten steel 1.5 is driven further backwards, which is undesirable, so the wire tip spacing is 1.
It is preferable to create a state in which the magnetic field 8 becomes stronger as the magnetic field decreases by about 1 or 20. In experiments conducted by the present inventors, the product of the wire tip spacing value (unit: l1lnl:) and the magnetic flux density value (unit: n Gauss) was set to be approximately 3000 or more (for example, if the spacing was 20 mm, it was 150 Gauss or more). Then, confirm that even if @ZS, t between the wire tips becomes shorter, the coordination of the arcs 6a and 6b will not increase (Pa).

ところで電極ワイヤ1b下方に磁界8を付与するには電
極ワイヤ1bの周囲に外部磁界を形成することが有効で
あるが、その具体的手段としては下記の諸法を挙げるこ
とができる。即ち(1)電極ワイヤ1bの周囲に電磁ソ
レノイドを設ける方法。この場合、汎用のワイヤガイド
ノズル(図示していない)周囲に電磁ソレノイドを設け
るようにすれば電極間隔の狭い多電極溶接においても特
別外スペースを必要としないので装置設計上好ましい。
By the way, in order to apply the magnetic field 8 below the electrode wire 1b, it is effective to form an external magnetic field around the electrode wire 1b, and the following methods can be cited as specific means for this. (1) A method of providing an electromagnetic solenoid around the electrode wire 1b. In this case, it is preferable in terms of device design to provide an electromagnetic solenoid around a general-purpose wire guide nozzle (not shown) because no extra space is required even in multi-electrode welding with narrow electrode spacing.

(2)(1)の構成において電極ワイヤガイドノズルを
、鉄又は鉄合金等の強磁性体とし、その周囲に電磁ソレ
ノイドを設ける方法。このようにすると、上記ノズルが
鉄心として作用することによって電極ワイヤ1b下方へ
の磁束の集中がよシ効呆的に行なわれるため、該ノズル
をたとえば弱磁性体の銅で製作した場合に比べ電磁ソレ
ノイドに要求される励磁強さが小さくてすむ。従って電
磁ソレノイドの小型化が可能で、電極間隔のよシ狭い多
電極溶接にも容易に適用することができる。
(2) In the configuration of (1), the electrode wire guide nozzle is made of a ferromagnetic material such as iron or an iron alloy, and an electromagnetic solenoid is provided around it. In this case, since the nozzle acts as an iron core, the concentration of magnetic flux below the electrode wire 1b is more effectively achieved. The excitation strength required for the solenoid is small. Therefore, the electromagnetic solenoid can be made smaller and can be easily applied to multi-electrode welding with narrower electrode spacing.

(3)電極ワイヤガイドノズルを適当な磁力を有する永
久磁石によシ構成する方法。
(3) A method of constructing the electrode wire guide nozzle with a permanent magnet having an appropriate magnetic force.

この方法によれば、溶接条件がほぼきまっている場合、
特に電磁コイルを用いることなく、アークに対して必要
な磁界を及ばずことができ、励磁電源装置やスイッチ投
入操作を省略することができる。
According to this method, if the welding conditions are almost fixed,
In particular, without using an electromagnetic coil, it is possible to avoid applying a necessary magnetic field to the arc, and it is possible to omit an excitation power supply device and a switch-on operation.

(4)電極ワイヤガイドノズルを永久磁石とし、その周
囲にさらに電磁ソレノイドを設ける方法。
(4) A method in which the electrode wire guide nozzle is a permanent magnet and an electromagnetic solenoid is further provided around it.

この方法によれば同じ磁力を得るにも電磁ソレノイドの
励磁能力を上記(1)或いは(2)の場合よシ低めるこ
ともでき電磁ソレノイド奪さらに小型化できるという利
点がある。
This method has the advantage that the excitation ability of the electromagnetic solenoid can be lowered than in the case of (1) or (2) to obtain the same magnetic force, and that the electromagnetic solenoid can be further miniaturized.

尚上記(1)〜(4)のいずれかの方法によシ励起され
た磁気を電極ワイヤlb先端まで効率良く導くためには
電磁ソレノイド、磁心たるワイヤガイドノズル、永久磁
石等をできるだけ電極ワイヤ1b先端付近まで延設する
ととが望ましいことは言うまでもない。ところが電極ワ
イヤ1b先端からは、超高温のアークが発生しておシ、
又溶融池からは高温の輻射熱、ガスが放出されているの
で電極ワイヤ1b先端に近づけるにしても限度がある。
In order to efficiently guide the magnetism excited by any of the methods (1) to (4) above to the tip of the electrode wire 1b, the electromagnetic solenoid, the wire guide nozzle serving as the magnetic core, the permanent magnet, etc. should be placed as close to the electrode wire 1b as possible. Needless to say, it is desirable to extend it to the vicinity of the tip. However, an extremely high temperature arc is generated from the tip of the electrode wire 1b.
Furthermore, since high-temperature radiant heat and gas are released from the molten pool, there is a limit to how close it can be to the tip of the electrode wire 1b.

そこで実施に際してはワイヤガイドノズルの先端に装着
される通電チップ2b(通常銅合金で造られ、使い捨て
にされる)として鉄又は鉄台金製のものを使用するのが
便利である。この場合ワイヤへの通電性及び鉄スパッタ
の溶着防止等を考慮して通電チップ2bに銅めっき、浸
銅処理、附勢合金溶射処理等を施したわ、また鉄もしく
は鉄台金製の製のもので覆ったような複合構造体とする
ことも可能である。
Therefore, in practice, it is convenient to use iron or an iron base metal as the current-carrying tip 2b (usually made of copper alloy and disposable) attached to the tip of the wire guide nozzle. In this case, the current-carrying tip 2b was subjected to copper plating, copper dipping treatment, energized alloy thermal spraying treatment, etc. in order to conduct electricity to the wire and prevent iron spatter from adhering. It is also possible to form a composite structure covered with something.

尚本発明の原理からすれば電極ワイヤ1b先端及びその
近傍における磁界は必ずしも一方向である必要はなく、
交番磁界を利用する場合には交流電磁石と直流アークを
用いることによシ所期の目的を十分達成することができ
る。但しこの場合。
According to the principle of the present invention, the magnetic field at the tip of the electrode wire 1b and its vicinity does not necessarily have to be in one direction.
When using an alternating magnetic field, the intended purpose can be fully achieved by using an alternating current electromagnet and a direct current arc. However, in this case.

上述の(4)の磁界形成方法は採用できない。The above magnetic field forming method (4) cannot be adopted.

又アーク電流として例えば50乃至60Hzという商用
周波数電流を使用する場合には、励磁電流として直流の
代わシに50Hzよシ周波数の低い交流を使用すること
ができる。
Further, when a commercial frequency current of 50 to 60 Hz is used as the arc current, an alternating current with a frequency lower than 50 Hz can be used as the exciting current instead of a direct current.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例1) 第3図に示す様に第1電極(先行極)及び第2電極(後
行匍を鉛1直線に対して溶接方向と反対方向に夫々4°
と20°傾け4.0闘φの軟鋼ワイヤ及びS i O,
−MnO系ンラツクスを使用して2電極式サブマージア
ーク溶接法によシ第4図で示される開先形状を右ナス赴
砿濡4の画面ワンパス迫梓窄粁なった。その際第2電極
1bに電磁ソレノイド10を使用して下記条件のもとで
溶接を行ない、ワイヤ先端における磁界強さとビードの
状態との関係を調べた。但し溶接電流には5 onzの
交流を、又励磁電流には直流を使用した。結果は第1表
に示す通電であるが、通電チップ2a l 2bとして
は調合金製で長さ3ommのものを使用し、又鋼板面に
おける第1電極1aと第2電極1bとの間隔!89.は
15mmとした。
(Example 1) As shown in FIG.
and 20° inclined 4.0mm diameter mild steel wire and S i O,
The groove shape shown in FIG. 4 was formed by using MnO-based flux in one pass by two-electrode submerged arc welding. At that time, welding was performed under the following conditions using the electromagnetic solenoid 10 as the second electrode 1b, and the relationship between the magnetic field strength at the tip of the wire and the state of the bead was investigated. However, a 5 oz alternating current was used for the welding current, and a direct current was used for the excitation current. The energization results are shown in Table 1. The energizing tips 2a l 2b were made of prepared alloy and had a length of 3 om, and the distance between the first electrode 1a and the second electrode 1b on the steel plate surface! 89. was set to 15 mm.

〔溶接条件〕[Welding conditions]

第1電極:900X36V 第2電極: 700X42V 溶接速度: 1700m/*i 第 1 表 (実施例2) 第1電極2°、第2電極13°、第3電極26°夫々実
施例1と同様傾け、4.0 mmφの軟鋼ワイヤ及びS
 i O,−MnO−CaO−CaF1系フラックスを
使用して3電極式サブマージアーク溶接法にょシ第4図
で示される開先形状を有する高張力鋼の両面ワンパス溶
接を行なった。その際第2又は第3電極として電磁ソレ
ノイドを装着してなる銅又は鉄製ワイヤガイドノズルを
使用して下記条件のもとて溶接を行ない、ワイヤ先端に
おける磁界強さとビードの状態との関係を調べた。桓し
溶接電流には50Hzの交流を、又励磁電流には゛直流
及び10Hz。
First electrode: 900 x 36 V Second electrode: 700 x 42 V Welding speed: 1700 m/*i Table 1 (Example 2) The first electrode was tilted at 2 degrees, the second electrode was at 13 degrees, and the third electrode was tilted at 26 degrees as in Example 1. 4.0 mmφ mild steel wire and S
Double-sided one-pass welding of high-strength steel having the groove shape shown in FIG. 4 was carried out using a three-electrode submerged arc welding method using an O, -MnO-CaO-CaF1 flux. At that time, welding was performed under the following conditions using a copper or iron wire guide nozzle equipped with an electromagnetic solenoid as the second or third electrode, and the relationship between the magnetic field strength at the wire tip and the bead condition was investigated. Ta. The welding current is 50Hz AC, and the exciting current is DC and 10Hz.

30Hzの交流を使用した。結果は第2表に示す通電で
あるが、通電チップとしてはいずれも調合金製で長さ3
0rnmのものを使用し、又第1電極と第2電極との間
隔112.を20111ms第2電極と第3電極との間
隔l!、8を25mmとした。
A 30 Hz alternating current was used. The energization results are shown in Table 2, and the energizing tips are all made of prepared alloy and have a length of 3.
0 nm is used, and the distance between the first electrode and the second electrode is 112. The distance between the second and third electrodes is 20111ms l! , 8 was set to 25 mm.

〔溶接条件〕[Welding conditions]

第1電極: 1200AX34V 第2電極: 900AX42V 第3電極: 700AX44V 溶接速度: 330cm/m (実施例3) アンダーカットの発生状態と電極ワイヤ間隔、溶接電流
、磁束密度の関係を調べるために第3電極に電磁ソレノ
イドを付して3電極式サブマージアーク溶接を行なった
。この場合電磁ソレノイドのコアを軟鋼部とし、ワイヤ
ガイドノズルを兼用させた。又第3電極の通電チップと
しては第5図(b)で示されるような軟鋼部27とクロ
ム鋼部28の複合体構造のものを使用すると共に、4.
0 mmφの軟鋼製ワイヤ及びSi(%−A1203 
CaOT((%−CaFz系フラックスを使用した。そ
して溶接電流には50Hzの交流を励磁電流には直流を
使用し、深さ3mmの90°溝を両面に有する9胴厚の
軟鋼板を下記条件のもとで溶接してアンダーカット発生
の有無を調べた。但し第1.第2.第3電Iの傾きは夫
夫2°、12°、24°傾き方向は実施例1と同じであ
シ、通電チップと鋼板面との間隔は第1.第2電極が3
0mm、第3電極が25mmである。結果は第3表に示
す通電である。
First electrode: 1200AX34V Second electrode: 900AX42V Third electrode: 700AX44V Welding speed: 330cm/m (Example 3) The third electrode An electromagnetic solenoid was attached to the 3-electrode submerged arc welding. In this case, the core of the electromagnetic solenoid was made of mild steel and also served as a wire guide nozzle. Further, as the current-carrying tip of the third electrode, one having a composite structure of a mild steel part 27 and a chrome steel part 28 as shown in FIG. 5(b) is used;
0 mmφ mild steel wire and Si (%-A1203
CaOT ((%-CaFz-based flux was used. A 50 Hz alternating current was used for the welding current and a direct current was used for the excitation current. A 9-thickness mild steel plate with 90° grooves of 3 mm depth on both sides was heated under the following conditions. The presence or absence of undercut was examined by welding under the following conditions.However, the inclination directions of the first, second, and third electrodes I were 2°, 12°, and 24°, which were the same as in Example 1. The distance between the current-carrying tip and the steel plate surface is 1, and the second electrode is 3.
0 mm, and the third electrode is 25 mm. The results are shown in Table 3.

〔溶接条件〕[Welding conditions]

溶接条件A、Bにおけるものであることを示す。 Indicates that welding conditions A and B are applied.

上記第1〜第3表から明らかな様に実施例1から実施例
3のいずれの実施例においても第2位以後の電極下方で
の磁束密度(単位ニガウス)が隣接先行電極の溶接電流
値(単位:アンペア)の少なくともA以上あればアンダ
ーカットの発生は全く見られない。
As is clear from Tables 1 to 3 above, in any of Examples 1 to 3, the magnetic flux density (in Gauss) below the second and subsequent electrodes is the welding current value of the adjacent preceding electrode ( If the value is at least A (unit: ampere), no undercut will occur at all.

(実施例4) 通電チップとして鋼部を有する銅・銅複合構造体のもの
を使用し、ワイヤ励磁能力及び耐熱性を調べた。但し通
電チップとしては第5図(a)〜(c)で示されるもの
を用意した。図中21 、25 、29はワイヤ通過孔
、22,26,30は接続ねじ部、23.27.31は
鋼部、24.28は鋼部、32は銅めつき部である。ま
ず励磁能力即ち磁界強さの向上を確認するため実施例1
の実験番号1−3において通電チップを上記(a)〜(
c)のものと交換して実施した結果、ワイヤ先端におい
て夫々1300゜1700.1500ガウスと著しく向
上することが認められた。
(Example 4) A copper/copper composite structure having a steel part was used as the current-carrying chip, and its wire excitation ability and heat resistance were examined. However, the current-carrying chips shown in FIGS. 5(a) to 5(c) were prepared. In the figure, 21, 25, and 29 are wire passing holes, 22, 26, and 30 are connection screw parts, 23, 27, and 31 are steel parts, 24, 28 are steel parts, and 32 is a copper plated part. First, in order to confirm the improvement of excitation ability, that is, magnetic field strength, Example 1
In experiment number 1-3, the energized chip was
As a result of replacing it with the one in c), it was found that the wire tip was significantly improved to 1300°, 1700 Gauss, and 1500 Gauss, respectively.

次に実施例10条件によシ、上記(a)〜(C)の通電
チップをこれらチップ先端が鋼板面から30mmとなる
ように第2電極に取付けて100m連続溶接した結果、
通電特性、溶損度等はいずれも通常の銅合金膜のものに
比べて見劣シすることはなかった。
Next, according to the conditions of Example 10, the current-carrying tips of (a) to (C) above were attached to the second electrode so that the tips of these tips were 30 mm from the steel plate surface, and welded continuously for 100 m. As a result,
The current conduction characteristics, degree of erosion, etc. were not inferior to those of ordinary copper alloy films.

本発明は以上の様に構成されるが、要はワイヤを機械的
に振動させずに所定強さの磁気力を利用してアークを電
磁気的に振動させて溶融池にかかるアーク力の分散軽減
を図るようにしたので、溶接部の品質を何ら損うことな
くサブマージアーク溶接をよ)一層高速で行なえる様に
なった。
The present invention is configured as described above, but the key point is to electromagnetically vibrate the arc using magnetic force of a predetermined strength without mechanically vibrating the wire, thereby reducing the dispersion of the arc force applied to the molten pool. As a result, submerged arc welding can now be performed at higher speeds without any loss in the quality of the weld.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明方法の原理説明図、第3図〜
第5図は実施例条件説明図である。 Pl・・・先行電極 P2・・・後行電極1a+1b・
・・電極ワイヤ 2a * 2b・・・通電チップ4・
・・鋼板 5・・・溶鋼 6a 、 6b・・・アーク 7・・・溶接金属8・・
・磁界 H・・・磁気ベクトル ■・・・電流ベクトル 第1図 9Fi′ 第2図 り q
Figures 1 and 2 are diagrams explaining the principle of the method of the present invention, and Figures 3-
FIG. 5 is an explanatory diagram of the conditions of the embodiment. Pl... Leading electrode P2... Trailing electrode 1a+1b・
... Electrode wire 2a * 2b ... Current-carrying tip 4.
...Steel plate 5... Molten steel 6a, 6b... Arc 7... Weld metal 8...
・Magnetic field H...Magnetic vector ■...Current vector Figure 1 9Fi' 2nd diagram q

Claims (1)

【特許請求の範囲】[Claims] (1)電極ワイヤ下方で測定される磁束密度値(単位ニ
ガウス)ならびに隣接先行する電極における溶接電流値
(単位二アンペア)をそれぞれ無名数化したものが下記
条件を満たすように少なくとも2極目以降の電極ワイヤ
下方に磁界を付与しつつ行なうことを特徴とする多電極
式高速サブマージアーク溶接方法。
(1) The magnetic flux density value (unit: nigauss) measured below the electrode wire and the welding current value (unit: 2 amperes) at the adjacent preceding electrode, each anonymized, satisfy the following conditions. A multi-electrode high-speed submerged arc welding method characterized by applying a magnetic field below the electrode wire.
JP9513284A 1984-05-12 1984-05-12 Multiple-electrode high speed submerged arc welding Granted JPS60240382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9513284A JPS60240382A (en) 1984-05-12 1984-05-12 Multiple-electrode high speed submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9513284A JPS60240382A (en) 1984-05-12 1984-05-12 Multiple-electrode high speed submerged arc welding

Publications (2)

Publication Number Publication Date
JPS60240382A true JPS60240382A (en) 1985-11-29
JPH0333436B2 JPH0333436B2 (en) 1991-05-17

Family

ID=14129291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9513284A Granted JPS60240382A (en) 1984-05-12 1984-05-12 Multiple-electrode high speed submerged arc welding

Country Status (1)

Country Link
JP (1) JPS60240382A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533833A (en) * 1978-08-31 1980-03-10 Nippon Steel Corp High speed inclined position submerged arc welding method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533833A (en) * 1978-08-31 1980-03-10 Nippon Steel Corp High speed inclined position submerged arc welding method

Also Published As

Publication number Publication date
JPH0333436B2 (en) 1991-05-17

Similar Documents

Publication Publication Date Title
JP5124765B2 (en) Welding method and welding apparatus using electromagnetic force
JP3284930B2 (en) High-frequency pulse arc welding method and its equipment and applications
US3825712A (en) Welding process
US20050199593A1 (en) MIG-plasma welding
US4190760A (en) Welding apparatus with shifting magnetic field
Zhang et al. Effect of external longitudinal magnetic field on arc plasma characteristics and droplet transfer during laser-MIG hybrid welding
JPS60240382A (en) Multiple-electrode high speed submerged arc welding
JPS60191677A (en) Narrow gap tig arc welding torch
US4035605A (en) Narrow groove welding method, and welding apparatus for practicing the method
JPS58138568A (en) Tig arc and mig arc composite welding method
JPH11123553A (en) Welded joint structure
JP4224196B2 (en) Multi-electrode submerged arc welding method with excellent weld bead shape
JP3867164B2 (en) Welding method
Ukita et al. High-speed DCEN TIG welding of very thin aluminium sheets with magnetic arc control
JP5131008B2 (en) Surface melting processing equipment for cast steel pieces
JP6738628B2 (en) Welding method, manufacturing method, and welding apparatus for light metal weldments
JP2637599B2 (en) Arc welding method and apparatus by ultrasonic vibration
JP3256089B2 (en) Non-consumable nozzle type electroslag welding method
JPH07102458B2 (en) Control method for arc and plasma
JPS6245474A (en) Narrow groove tig welding device
JPS62263868A (en) Narrow gap tig welding method
JP2685989B2 (en) Plasma overlay equipment
JP3233741B2 (en) Upward position welding apparatus and method
JPS62114772A (en) Mig welding method
KR100585273B1 (en) Improvement in gas metal arc welding uitlizing external electromagnetic force