JPS6255656B2 - - Google Patents

Info

Publication number
JPS6255656B2
JPS6255656B2 JP10470379A JP10470379A JPS6255656B2 JP S6255656 B2 JPS6255656 B2 JP S6255656B2 JP 10470379 A JP10470379 A JP 10470379A JP 10470379 A JP10470379 A JP 10470379A JP S6255656 B2 JPS6255656 B2 JP S6255656B2
Authority
JP
Japan
Prior art keywords
group
photoreceptor
charge
charge carrier
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10470379A
Other languages
Japanese (ja)
Other versions
JPS5629245A (en
Inventor
Masaomi Sasaki
Masabumi Oota
Tomiko Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10470379A priority Critical patent/JPS5629245A/en
Publication of JPS5629245A publication Critical patent/JPS5629245A/en
Publication of JPS6255656B2 publication Critical patent/JPS6255656B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明感光層の有効成分としてジビニルベンゼ
ン化合物を含有する電子写真用感光体に関する。 従来、電子写真方式において使用される感光体
の光導電性素材としてはセレン、硫化カドミウ
ム、酸化亜鉛等の無機物質がある。ここに云う
「電子写真方式」とは一般に感光体を、まず暗所
でコロナ放電により帯電せしめ、ついで像露光し
て露光部のみの電荷を選択的に放電させることに
よつて静電潜像を得、次にこの潜像部をトナーと
呼ばれる着色剤及び結着樹脂よりなる検電微粒子
を含む現像剤で可視化して画像を形成するように
した画像形成法の一つである。このような電子写
真法における感光体に要求される基本的な特性と
しては1暗所で適当な電位に帯電可能なこと、2
暗所における電荷の放電が少ないこと、3光照射
により速やかに電荷を放出することなどが挙げら
れる。従来用いられている前記無機物質は多くの
長所を持つているが、同時に種々の欠点を有して
いることも事実である。例えば現在広く用いられ
ているセレンは前記1〜3の条件は十分に満足す
るのであるが、製造条件が厳しいため、製造コス
トが高くなる、可撓性がないため、ベルト状に加
工することが難しい、熱や機械的衝撃に対し鋭敏
なため、取扱いに注意を要する等の欠点も持つて
いる。硫化カドミウムや酸化亜鉛は結着性樹脂中
に分散して用いられているが、平滑性、硬度、引
張強度、耐摩擦性等の機械的欠点を有するため、
そのままでは反復使用に耐えられない。 近年、これら無機物質の欠点を除去すべく種々
の有機物質を用いた電子写真用感光体が提案さ
れ、一部実用に供されているものもある。例えば
ポリ−N−ビニルカルバゾール及び2,4,7−
トリニトロ−9−フルオレノンを組合せたもの
(米国特許3484237号明細書)、ポリ−N−ビニル
カルバゾールをピリリウム塩系色素で増感したも
の(特公昭48−25658号公報)、有機顔料を主成分
とするもの(特開昭47−37543号公報)、染料と樹
脂とからなる共晶錯体を主成分とするもの(特開
昭47−10735号公報)などがある。これらの感光
体は確かに優れた特性を有し、また実用的にも価
値が高いものと考えられるが、電子写真プロセス
の点から感光体に対する種々の要求を考慮する
と、未だこれらの要求を充分に満足するものが得
られていないのが実情である。 一方、これら優れた感光体は目的により、又は
作成方法により若干の違いはあるが、一般に優れ
た光導電性物質を使用することにより、優れた特
性を示している。 本発明者らは以上のような観点からこの種の光
導電性物質について研究した結果、下記一般式で
表わされるジビニルベンゼン化合物が電子写真用
感光体の光導電性物質として有効に働くことを発
見した。即ち、この一般式の化合物は後述するよ
うに、種々の材料と組合せることにより、予期し
ない効果と、驚く程、多面に亘つて有用性を有す
る感光体を提供することができることを見出し
た。 (式中Rはカルバゾリル基、ピリジル基、チエ
ニル基、インドリル基、フリル基、或いは夫々置
換または非置換のフエニル基、スチリル基、ナフ
チル基、アントリル基であつて、これらの置換基
がジアルキルアミノ基、アルキル基、アルコキシ
基、カルボキシ基もしくはそのエステル、ハロゲ
ン原子、シアノ基、アラルキルアミノ基、アミノ
基、ヒドロキシ基、ニトロ基およびアセチルアミ
ノ基からなる群から選らばれた基を表わす。) 本発明で使用される前記一般式のジビニルベン
ゼン化合物はW.Stilzらの方法(ドイツ特許第
1124949号)に従つてo−キシリレンジホスホン
酸テトラアルキルとアルデヒド類とを強塩基性ア
ルカリの存在下10〜180℃の温度で15分間〜3時
間撹拌を行なうことにより、高純度、高収率で得
られる。或いはC.E.Griffinらのホスフインを用
いたいわゆるWittig反応〔J.Org.Chem.27,1627
(1962)〕によつても同様に得られる。 こうして得られる前記一般式のジビニルベンゼ
ン化合物の具体例を以下に構造式で示す。なお式
The present invention relates to an electrophotographic photoreceptor containing a divinylbenzene compound as an active ingredient in the photosensitive layer. Conventionally, photoconductive materials for photoreceptors used in electrophotography include inorganic materials such as selenium, cadmium sulfide, and zinc oxide. The "electrophotographic method" referred to here generally involves first charging a photoreceptor in a dark place by corona discharge, and then exposing it to imagewise light to selectively discharge the charge only in the exposed areas, thereby forming an electrostatic latent image. This is one of the image forming methods in which an image is formed by visualizing this latent image area with a developer containing a coloring agent called a toner and electrostatic fine particles made of a binder resin. The basic characteristics required of a photoreceptor in such electrophotography are 1) the ability to be charged to an appropriate potential in a dark place, and 2)
Examples include the fact that there is little charge discharge in a dark place, and the charge is rapidly released by three-light irradiation. Although the conventionally used inorganic materials have many advantages, they also have various disadvantages. For example, selenium, which is currently widely used, fully satisfies conditions 1 to 3 above, but it has strict manufacturing conditions, increases manufacturing costs, and is not flexible, so it cannot be processed into a belt shape. It also has drawbacks such as being difficult and sensitive to heat and mechanical shock, requiring careful handling. Cadmium sulfide and zinc oxide are used dispersed in binding resins, but they have mechanical drawbacks such as smoothness, hardness, tensile strength, and abrasion resistance.
It cannot withstand repeated use as it is. In recent years, electrophotographic photoreceptors using various organic materials have been proposed in order to eliminate the drawbacks of these inorganic materials, and some of them have been put into practical use. For example, poly-N-vinylcarbazole and 2,4,7-
A combination of trinitro-9-fluorenone (U.S. Pat. No. 3,484,237), a sensitized poly-N-vinylcarbazole with a pyrylium salt dye (Japanese Patent Publication No. 48-25658), and an organic pigment as a main component. (Japanese Unexamined Patent Publication No. 47-37543), and one whose main component is a eutectic complex consisting of a dye and a resin (Japanese Unexamined Patent Publication No. 10735/1982). These photoreceptors certainly have excellent characteristics and are considered to be of high practical value, but considering the various requirements for photoreceptors from the viewpoint of electrophotographic processes, it is still difficult to fully meet these requirements. The reality is that we are not getting anything that satisfies us. On the other hand, although these excellent photoreceptors differ slightly depending on the purpose or manufacturing method, they generally exhibit excellent characteristics by using an excellent photoconductive material. As a result of researching this type of photoconductive substance from the above viewpoints, the present inventors discovered that a divinylbenzene compound represented by the following general formula works effectively as a photoconductive substance for electrophotographic photoreceptors. did. That is, as will be described later, it has been discovered that by combining the compound of this general formula with various materials, it is possible to provide a photoreceptor that has unexpected effects and is surprisingly useful in a wide range of aspects. (In the formula, R is a carbazolyl group, pyridyl group, thienyl group, indolyl group, furyl group, or a substituted or unsubstituted phenyl group, styryl group, naphthyl group, or anthryl group, and these substituents are dialkylamino groups) , an alkyl group, an alkoxy group, a carboxy group or an ester thereof, a halogen atom, a cyano group, an aralkylamino group, an amino group, a hydroxy group, a nitro group, and an acetylamino group.) In the present invention, The divinylbenzene compound of the general formula used is prepared according to the method of W. Stilz et al. (German patent no.
1124949), high purity and high yield can be obtained by stirring tetraalkyl o-xylylene diphosphonate and aldehydes at a temperature of 10 to 180°C for 15 minutes to 3 hours in the presence of a strong alkali. It can be obtained with Alternatively, the so-called Wittig reaction using phosphine by CEGriffin et al. [J.Org.Chem. 27 , 1627
(1962)]. A specific example of the divinylbenzene compound having the above general formula obtained in this manner is shown below by a structural formula. During the ceremony teeth

【式】と略記した。It is abbreviated as [Formula].

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 本発明の感光体は以上のようなジビニルベンゼ
ン化合物を含むものであるが、これらジビニルベ
ンゼン化合物の応用の仕方によつて第1〜3図の
形態をとることができる。 第1図の感光体は導電性支持体1上に前記ジビ
ニルベンゼン化合物と増感染料と結着性樹脂とか
らなる感光層2を設けたものである。第2図の感
光体は導電性支持体1上に電荷担体発生物質3を
前記ジビニルベンゼン化合物と結着性樹脂とから
なる電荷移動媒体4中に分散せしめた感光層2′
を設けたものである。また第3図の感光体は導電
性支持体1上に電荷担体発生物質3を主体とする
電荷担体発生層5と前記ジビニルベンゼン化合物
を含む電荷移動層4とからなる感光層2″を設け
たものである。 第1図の感光体において前記ジビニルベンゼン
化合物は光導電性物質として作用し、光減衰に必
要な電荷担体の生成及び移動はこのジビニルベン
ゼン化合物を介して行われる。しかしこのジビニ
ルベンゼン化合物は殆んど可視域に吸収を有して
いないので、使用光源によつては可視域に吸収を
有する増感染料で増感する必要がある。第2図の
感光体の場合はこのジビニルベンゼン化合物は結
着剤(及び場合により可塑剤)と共に電荷移動媒
体を形成し、一方、無機又は有機顔料のような電
荷担体発生物質は電荷担体を発生する。この場
合、電荷移動媒体は主として電荷担体発生物質が
発生する電荷担体を受け入れ、これを移動する能
力を持つている。ここで電荷担体発生物質とジビ
ニルベンゼン化合物とは互いに主として可視域に
おける吸収波長領域が重ならないというのが基本
的条件である。これは電荷担体発生物質に効率良
く電荷担体を発生させるために、電荷担体発生物
質表面まで光を透過させる必要があるからであ
る。本発明ジビニルベンゼン化合物は可視域に殆
んど吸収がなく、一般に可視領域の光線を吸収
し、電荷担体を発生する電荷担体発生物質と組合
せた場合、特に有効に電荷移動媒体として働くと
いう特徴を持つている。また第3図の感光体では
電荷移動層4を透過して来た光が電荷担体発生層
5に到達し、その部分で電荷担体の生成が起こ
り、一方、電荷移動媒体層は電荷担体の注入を受
け、その移動を行うもので、光減衰に必要な電荷
担体の生成は電荷担体発生物質で、また電荷担体
の移動は電荷移動媒体(主として本発明のジビニ
ルベンゼン化合物が働く)でというメカニズムは
第2図の感光体の場合と同様である。ここでもジ
ビニルベンゼン化合物は電荷移動物質として作用
する。 第1図の感光体を作成するには前記ジビニルベ
ンゼン化合物を結着剤溶液に溶解し、更に必要に
応じて増感染料を加えた液を導電性支持体1上に
塗布乾燥して感光層2を形成すればよい。 第2図の感光体を作るには電荷担体発生物質3
の微粒子を前記ジビニルベンゼン化合物及び結着
剤を溶解した溶液に分散せしめ、これを導電性支
持体1上に塗布乾燥して感光層2′を形成すれば
よい。また第3図の感光体の場合は導電性支持体
1上に、a電荷担体発生物質3を真空蒸着する
か、或いはb電荷担体発生物質3の微粒子を、結
着剤を溶解した溶液中に分散し、これを塗布乾燥
して電荷担体発生層5を形成し、必要あれば例え
ばバフ研磨のような方法で表面仕上げするか、或
いは厚さ調整した後、その上に前記ジビニルベン
ゼン化合物及び結着剤を含む溶液を塗布乾燥して
電荷移動層4を形成すればよい。塗布法は通常の
手段、例えばドクターブレード、ワイヤーバーな
どで行なう。 以上の感光体において感光層の厚さは第1図及
び第2図のものでは約3〜50μ、好ましくは5〜
20μが適当である。また第3図のものでは電荷担
体発生層の厚さ0.05〜20μ以下、好ましくは0.1
〜5μ及び電荷移動層の厚さ約3〜50μ、好まし
くは5〜20μである。また第1図の感光体におい
て、感光層中のジビニルベンゼン化合物の割合は
感光層重量の30〜70%、好ましくは約50%が適当
である。可視領域に感光性を与えるために用いら
れる増感染料は感光層重量の0.1〜5%、好まし
くは0.5〜3%が適当である。次に第2図の感光
層中のジビニルベンゼン化合物の割合は10〜95重
量%、好ましくは30〜90重量%であり、また電荷
担体発生物質の割合は1〜50重量%、好ましくは
1〜20重量%である。更に第3図の感光体におい
て、電荷移動層中のジビニルベンゼン化合物の割
合は第2図の感光体の場合と同様、10〜95重量
%、好ましくは30〜90重量%である。なお第1〜
3図のいずれの感光体においても結着剤と共に可
塑剤を併用することができる。 本発明の感光体において導電性支持体としては
アルミニウムの金属板又は金属箔、アルミニウム
などの金属を蒸着したプラスチツクフイルム、或
いは導電処理を施した紙、プラスチツクフイルム
等が使用される。 結着剤としてはポリアミド、ポリウレタン、ポ
リエステル、エポキシ樹脂、ポリケトン、ポリカ
ーボネートなどの縮合樹脂や、ポリビニルケト
ン、ポリスチレン、ポリ−N−ビニルカルバゾー
ル、ポリアクリルアミド等のビニル重合体が挙げ
られるが絶縁性で且つ接着性のある樹脂は全て使
用できる。なお可塑剤としてはハロゲン化パラフ
イン、ポリ塩化ビフエニル、ジメチルナフタレ
ン、ジブチルフタレート等が挙げられる。 また第1図の感光体に用いられる増感染料とし
てはブリリアントグリーン、ビクトリアブルー
B、メチルバイオレツト、クリスタルバイオレツ
ト、アシツドバイオレツト6Bのようなトリアリ
ールメタン染料;ローダミンB、ローダミン
6G、ローダミンGエキストラ、エオシンS、エ
リスロシン、ローズベンガル、フルオレツセンの
ようなキサンテン染料;メチレンブルーのような
チアジン染料;シアニンのようなシアニン染料;
2,6−ジフエニル−(N,N−ジメチルアミノ
フエニル)チアピリリウムパークロレート、特公
昭48−25658号に記載されるベンゾピリリウム塩
などのピリリウム染料等が挙げられる。 第2図及び第3図に用いられる電荷発生物質は
光照射により電荷担体を発生することができる顔
料であつて、例えば次のようなアゾ顔料を使用す
ることが特に効果的である。 カルバゾール骨格を有するアゾ顔料 (例えば、特願昭52−8740又は52−8741号に記
載) スチリルスチルベン骨格を有するアゾ顔料 (例えば、特願昭52−48859号に記載) トリフエニルアミン骨格を有するアゾ顔料 (例えば、特願昭52−45812号に記載) ジベンゾチオフエン骨格を有するアゾ顔料 (例えば、特願昭52−86255号に記載) オキサジアゾール骨格を有するアゾ顔料 (例えば、特願昭52−77155号に記載) フルオレノン骨格を有するアゾ顔料 (例えば、特願昭52−87351号に記載) スチルベン骨格を有するアゾ顔料 (例えば、特願昭52−81790号に記載) ジスチリルオキサジアゾール骨格を有するアゾ顔
料 (例えば、特願昭52−66711号に記載) ジスチリルカルバゾール骨格を有するアゾ顔料 (例えば、特願昭52−81791号に記載) これらのアゾ顔料のほかにも、一般的に知られ
ている次のような物質を電荷担体発生顔料として
用いることもできる。例えば、セレン、セレン−
テルル、硫化カドミウム、硫化カドミウム−セレ
ンなどの無機顔料、有機顔料としては例えばシ−
アイピグメントブルー25(カラーインデツクス
CI21180、別名ダイアンブルー)、シ−アイピグ
メントレツド41(CI21200)、シ−アイアシツド
レツド52(CI45100)、シ−アイベーシツクレツ
ド3(CI45210)などのアゾ顔料、シ−アイピグ
メントブルー16(CI74100)などのフタロシアニ
ン顔料、シ−アイバツトブラウン5
(CI73410)、シ−アイバツトダイ(CI73030)等
のインジゴ顔料、シーアイバシトレツド23
(CI71130)、シーアイバツトレツド32
(CI71135)、シーアイバツトレツド29
(CI71140)等のペリレン顔料等の有機顔料が挙
げられる。 なお、以上のようにして得られる感光体にはい
ずれも導電性支持体と感光層との間に接着層又は
バリヤ層を設けることができる。これらの層に用
いられる材料としてはポリアミド、ニトロセルロ
ース、酸化アルミニウムなどが適当で、また層厚
は0.01〜1μ程度が好ましい。 本発明の感光体を用いて複写を行なうには感光
層面に常法により帯電、露光を施した後、現像を
行ない、必要あれば更に上質紙などの転写用紙に
画像転写を行なえばよい。 本発明の感光体は一般に感度が高く、また可撓
性に富むなどのすぐれた利点を有している。 以下に実施例を示す。なお部は全て重量部であ
る。 実施例 1 ダイアンブルー(CI21180)2部にテトラヒド
ロフラン98部を加え、これをボールミル中で粉砕
混合して電荷担体発生顔料分散液を得る。これを
アルミニウム蒸着ポリエステルフイルム(厚さ約
75μ)上にドクターブレードを用いて塗布し、自
然乾燥して厚さ1μの電荷担体発生層を形成せし
める。 次いで化合物No.3で表わされるジビニルベンゼ
ン化合物2部、ポリカーボネート(帝人製パンラ
イトL)3部およびテトラヒドロフラン45部を混
合して得た電荷移動層形成液を、上記の電荷担体
発生層上にドクターブレードを用いて塗布し、
100℃で10分間乾燥して厚さ9μの電荷移動層を
形成せしめて本発明の感光体をつくつた。 この感光体について、静電複写紙試験装置
(KK川口電機製作所製、SP428型)を用い、−
6KVのコロナ放電を20秒間行なつて負に帯電せし
めた後、20秒間暗所に放置し、その時の表面電位
Vpo(V)を測定し、次いでタングステンランプ
によつてその表面が照度20ルツクスになるように
して光を照射し、その表面電位がVpoの1/2にな
るまでの時間(秒)を求め露光量E1/2(ルツク
ス・秒)を得た。その結果はVpo=1250V、E1/
2=3.5ルツクス・秒であつた。 実施例 2
[Table] The photoreceptor of the present invention contains the above-mentioned divinylbenzene compounds, and can take the forms shown in FIGS. 1 to 3 depending on how these divinylbenzene compounds are applied. The photoreceptor shown in FIG. 1 has a photosensitive layer 2 formed on a conductive support 1, comprising the divinylbenzene compound, a sensitizing dye, and a binding resin. The photoreceptor shown in FIG. 2 has a photosensitive layer 2' on a conductive support 1 in which a charge carrier generating substance 3 is dispersed in a charge transfer medium 4 made of the divinylbenzene compound and a binding resin.
It has been established. Further, the photoreceptor shown in FIG. 3 has a photosensitive layer 2'' formed on a conductive support 1, comprising a charge carrier generation layer 5 mainly composed of a charge carrier generation substance 3 and a charge transfer layer 4 containing the divinylbenzene compound. In the photoreceptor shown in Fig. 1, the divinylbenzene compound acts as a photoconductive substance, and the generation and transfer of charge carriers necessary for light attenuation occur through this divinylbenzene compound. Since most compounds have no absorption in the visible range, depending on the light source used, it is necessary to sensitize with a sensitizing dye that has absorption in the visible range.In the case of the photoreceptor shown in Figure 2, this divinyl Benzene compounds together with binders (and optionally plasticizers) form a charge transport medium, while charge carrier generating substances such as inorganic or organic pigments generate charge carriers. The carrier generating substance has the ability to accept and move the generated charge carriers.The basic condition here is that the absorption wavelength regions of the charge carrier generating substance and the divinylbenzene compound do not overlap each other, mainly in the visible range. This is because in order to efficiently generate charge carriers in a charge carrier generating material, it is necessary to transmit light to the surface of the charge carrier generating material.The divinylbenzene compound of the present invention absorbs almost nothing in the visible range. When combined with a charge carrier-generating substance that absorbs light in the visible region and generates charge carriers, it works particularly effectively as a charge transfer medium. The light transmitted through the transfer layer 4 reaches the charge carrier generation layer 5, where charge carriers are generated, while the charge transfer medium layer receives charge carriers and moves them. The mechanism in which the charge carriers necessary for light attenuation are generated by a charge carrier generating substance, and the charge carriers are moved by a charge transfer medium (mainly the divinylbenzene compound of the present invention acts) is the same as in the case of the photoreceptor shown in Figure 2. Similarly, the divinylbenzene compound acts as a charge transfer substance here. To prepare the photoreceptor shown in Figure 1, the divinylbenzene compound is dissolved in a binder solution, and if necessary, a sensitizing dye is added The added liquid may be coated on the conductive support 1 and dried to form the photosensitive layer 2. To make the photoreceptor shown in FIG.
The photosensitive layer 2' may be formed by dispersing the fine particles in a solution containing the divinylbenzene compound and the binder, coating the conductive support 1 and drying the dispersed particles. In the case of the photoreceptor shown in FIG. 3, the charge carrier generating substance 3 (a) is vacuum-deposited on the conductive support 1, or the fine particles of the charge carrier generating substance 3 (b) are placed in a solution containing a binder dissolved therein. The charge carrier generating layer 5 is formed by dispersing, applying and drying the layer, and if necessary, finishing the surface by a method such as buffing or adjusting the thickness, and then applying the divinylbenzene compound and crystals thereon. The charge transfer layer 4 may be formed by applying and drying a solution containing an adhesive. Application is carried out by conventional means, such as a doctor blade or wire bar. In the above photoreceptors, the thickness of the photosensitive layer is about 3 to 50 μm, preferably 5 to 50 μm for those shown in FIGS. 1 and 2.
20μ is appropriate. In addition, in the case of the one shown in FIG. 3, the thickness of the charge carrier generation layer is 0.05 to 20μ or less, preferably 0.1
~5μ and the thickness of the charge transport layer is about 3-50μ, preferably 5-20μ. In the photoreceptor shown in FIG. 1, the appropriate proportion of the divinylbenzene compound in the photosensitive layer is 30 to 70%, preferably about 50%, of the weight of the photosensitive layer. The amount of the sensitizing dye used to impart photosensitivity in the visible region is 0.1 to 5%, preferably 0.5 to 3%, based on the weight of the photosensitive layer. Next, the proportion of the divinylbenzene compound in the photosensitive layer shown in FIG. It is 20% by weight. Further, in the photoreceptor shown in FIG. 3, the proportion of the divinylbenzene compound in the charge transfer layer is 10 to 95% by weight, preferably 30 to 90% by weight, as in the case of the photoreceptor shown in FIG. In addition, the first
In any of the photoreceptors shown in FIG. 3, a plasticizer can be used together with a binder. In the photoreceptor of the present invention, as the conductive support, an aluminum metal plate or metal foil, a plastic film on which a metal such as aluminum is vapor-deposited, or paper or plastic film subjected to conductive treatment are used. Examples of the binder include condensation resins such as polyamide, polyurethane, polyester, epoxy resin, polyketone, and polycarbonate, and vinyl polymers such as polyvinyl ketone, polystyrene, poly-N-vinylcarbazole, and polyacrylamide. Any adhesive resin can be used. Examples of the plasticizer include halogenated paraffin, polychlorinated biphenyl, dimethylnaphthalene, and dibutyl phthalate. In addition, the sensitizing dyes used in the photoreceptor shown in FIG.
Xanthene dyes such as 6G, Rhodamine G Extra, Eosin S, Erythrosin, Rose Bengal, Fluorethcene; Thiazine dyes such as methylene blue; Cyanine dyes such as cyanine;
Examples include pyrylium dyes such as 2,6-diphenyl-(N,N-dimethylaminophenyl)thiapyrylium perchlorate and benzopyrylium salts described in Japanese Patent Publication No. 48-25658. The charge generating substance used in FIGS. 2 and 3 is a pigment capable of generating charge carriers by irradiation with light, and it is particularly effective to use, for example, the following azo pigment. Azo pigments having a carbazole skeleton (for example, described in Japanese Patent Application No. 52-8740 or 52-8741) Azo pigments having a styrylstilbene skeleton (for example, described in Japanese Patent Application No. 52-48859) Azo pigments having a triphenylamine skeleton Pigments (for example, described in Japanese Patent Application No. 52-45812) Azo pigments having a dibenzothiophene skeleton (for example, described in Japanese Patent Application No. 52-86255) Azo pigments having an oxadiazole skeleton (for example, described in Japanese Patent Application No. 52-86255) -77155) Azo pigments having a fluorenone skeleton (for example, described in Japanese Patent Application No. 52-87351) Azo pigments having a stilbene skeleton (for example, described in Japanese Patent Application No. 52-81790) Distyryloxadiazole skeleton (For example, described in Japanese Patent Application No. 52-66711) Azo pigments having a distyrylcarbazole skeleton (For example, described in Japanese Patent Application No. 52-81791) In addition to these azo pigments, generally The following known substances can also be used as charge carrier generating pigments. For example, selenium, selenium
Inorganic pigments such as tellurium, cadmium sulfide, cadmium-selenium sulfide, and organic pigments include, for example, seaweed.
Eye pigment blue 25 (color index
Azo pigments such as CI Pigment Red 41 (CI21200), CI Pigment Red 52 (CI45100), CI Basic Cred 3 (CI45210), CI Pigment Blue 16 Phthalocyanine pigments such as (CI74100), Sea Butt Brown 5
Indigo pigments such as (CI73410), C.I.Bath Toledo (CI73030), C.I.Vacit Red 23
(CI71130), Sea Eye Battled 32
(CI71135), CI Battled 29
Examples include organic pigments such as perylene pigments such as (CI71140). In any of the photoreceptors obtained as described above, an adhesive layer or a barrier layer can be provided between the conductive support and the photosensitive layer. Suitable materials for these layers include polyamide, nitrocellulose, aluminum oxide, etc., and the layer thickness is preferably about 0.01 to 1 μm. To perform copying using the photoreceptor of the present invention, the surface of the photosensitive layer is charged and exposed by a conventional method, and then developed, and if necessary, the image is transferred to a transfer paper such as high-quality paper. The photoreceptor of the present invention generally has excellent advantages such as high sensitivity and flexibility. Examples are shown below. All parts are by weight. Example 1 98 parts of tetrahydrofuran were added to 2 parts of Diane Blue (CI21180), and the mixture was pulverized and mixed in a ball mill to obtain a charge carrier-generating pigment dispersion. This is made of aluminized polyester film (thickness approx.
75μ) using a doctor blade and air-dried to form a charge carrier generation layer with a thickness of 1μ. Next, a charge transfer layer forming liquid obtained by mixing 2 parts of the divinylbenzene compound represented by Compound No. 3, 3 parts of polycarbonate (Panlite L manufactured by Teijin) and 45 parts of tetrahydrofuran was applied to the above charge carrier generation layer using a doctor. Apply using a blade,
The photoreceptor of the present invention was prepared by drying at 100° C. for 10 minutes to form a charge transfer layer with a thickness of 9 μm. This photoreceptor was tested using an electrostatic copying paper tester (KK Kawaguchi Electric Seisakusho, SP428 model).
After applying 6KV corona discharge for 20 seconds to make it negatively charged, leave it in a dark place for 20 seconds, and then measure the surface potential.
Measure Vpo (V), then irradiate the surface with light using a tungsten lamp at an illuminance of 20 lux, and calculate the time (seconds) it takes for the surface potential to become 1/2 of Vpo during exposure. The quantity E1/2 (lux seconds) was obtained. The result is Vpo=1250V, E1/
2 = 3.5 lux seconds. Example 2

【表】 からなる液をボールミル中で粉砕混合して電荷担
体発生顔料分散液を得る。これをアルミニウム蒸
着したポリエステルフイルム上にドクターブレー
ドを用いて塗布し、80℃の乾燥器中で5分間乾燥
して厚さ1μの電荷担体発生層を形成せしめる。 化合物No.7で表わされるジビニルベンゼン化合
物2部、ポリカーボネート(パンライトL)3部
および、テトラヒドロフラン45部を混合して得た
電荷移動層形成液を、上記の電荷担体発生層上に
ドクターブレードを用いて塗布し、100℃で10分
間乾燥して厚さ10μの電荷移動層を形成せしめて
本発明の感光体をつくつた。 この感光体について実施例1と同様にマイナス
帯電を行ない、Vpo、E1/2を測定したところ
Vpo=975V、E1/2=3.5ルツクス・秒であつた。 実施例 3 実施例2と同様にし、電荷担体発生顔料として を用い、また電荷移動剤として化合物No.25で表わ
されるジビニルベンゼン化合物を用いたところ、
Vpo=1320V、E1/2=2.5ルツクス・秒であつ
た。 実施例 4 実施例2と同様にして、電荷担体発生顔料とし
を用い、また電荷移動剤として化合物No.32で表わ
されるジビニルベンゼン化合物を用いたところ、
Vpo=1050V、E1/2=1.5ルツクス・秒であつ
た。 次に実施例1〜4で得られた感光体を用い市販
の複写機により負帯電せしめた後、原図を介して
光を照射して静電潜像を形成せしめ正帯電のトナ
ーを有する乾式現像剤を用いて現像し、その画像
を上質紙に静電的に転写して定着を行ない鮮明な
画像を得た。現像剤として湿式現像剤を用いた場
合にも同じように鮮明な画像を得た。 実施例 5 厚さ約300μのアルミニウム板上に、セレンを
厚さ1μに真空蒸着して電荷担体発生層を形成せ
しめる。次いで化合物No.19で表わされるジビニル
ベンゼン化合物2部、ポリエステル樹脂(デユポ
ン社製、ポリエステルアドフヘツシブ49000)3
部およびテトラヒドロフラン45部を混合して電荷
移動層形成液をつくり、これを上記の電荷担体発
生層(セレン蒸着層)上にドクターブレードを用
いて塗布し、自然乾燥した後、減圧下で乾燥して
厚さ10μの電荷移動層を形成せしめて本発明の感
光体を得た。 この感光体を実施例1と同じようにして、Vpo
およびE1/2を測定したところ、Vpo=990V、E
1/2=4.0ルツクス・秒であつた。 実施例 6 実施例5のセレンの代りにペリレン系顔料 を厚さ0.3μに真空蒸着して電荷担体発生層を形
成せしめる。次いで電荷移動剤を化合物No.33で表
わされるジビニルベンゼン化合物に代えた以外は
実施例5と同様に感光体を作成したところVpo=
790V、E1/2=9.5ルツクス・秒であつた。 次に実施例5及び6で得られた感光体を用い市
販の複写機により負帯電せしめた後、原図を介し
て光を照射して静電潜像を形成せしめ正帯電のト
ナーを有する乾式現像剤を用いて現像し、その画
像を上質紙に静電的に転写して定着を行ない鮮明
な画像を得た。現像剤として湿式現像剤を用いた
場合にも同じように鮮明な画像を得た。 実施例 7 β型銅フタロシアニン1部にテトラヒドロフラ
ン158部を加えた混合物を、ボールミル中で粉砕
混合した後、これに化合物No.41で表わされるジビ
ニルベンゼン化合物12部、ポリエステル樹脂(ポ
リエステルアドフエツシブ49000)18部を加えて
更に混合して得た感光層形成液を、実施例1と同
じアルミニウム蒸着ポリエステルフイルム上にド
クターブレードを用いて塗布し、100℃で30分間
乾燥して厚さ16μの感光層を形成せしめて、本発
明の感光体をつくつた。 この感光体について、実施例1で用いたと同じ
装置を使用し、+6KVのコロナ放電によつて正に
帯電せしめ、同様にVpoおよびE1/2を測定した
ところ、Vpo=1200V、E1/2=3.5ルツクス・秒
であつた。 実施例 8 実施例7と同様にして、電荷担体発生顔料とし
を用い、また電荷移動剤として化合物No.39で表わ
されるジビニルベンゼン化合物を用いたところ、
Vpo=1300V、E1/2=8.5ルツクス・秒であつ
た。 実施例 9 実施例7と同様にして、電荷担体発生顔料とし
を用い、また電荷移動剤として化合物No.40で表わ
されるジビニルベンゼン化合物を用いたところ、
Vpo=1100V、E1/2=2.5ルツクス・秒であつ
た。 実施例 10 実施例7と同様にして、電荷担体発生顔料とし
を用い、また電荷移動剤として化合物No.17で表わ
されジビニルベンゼン化合物を用いたところ、
Vpo=1160V、E1/2=9.5ルツクス・秒であつ
た。 次に実施例7〜10で得られた感光体に市販の電
子写真複写機により+6KVのコロナ放電を施して
正帯電せしめた後、原図を介して光照射して静電
潜像を形成せしめ、負帯電のトナーを有する乾式
現像剤で現像し、その画像を上質紙上に静電的に
転写し定着を行ない、鮮明な画像を得た。現像剤
として湿式現像剤を用いた場合も同様に良好な結
果を得た。 実施例 11 化合物No.5で表わされるジビニル ベンゼン化合物 10部 ローダミンBエキストラ 0.02部 ポリ塩化ビニル(日本カーバイド社製
SG1100) 10部 トルエン 70部 よりなる溶液を、予め有機溶剤に対する滲透防止
処理を施した透明紙上に均一に塗布乾燥して厚さ
15μの感光層を設けた。 次に得られた感光体に市販の電子写真複写機に
より−6KVのコロナ放電を施して負帯電させた
後、原図を介して光照射して静電潜像を形成せし
め、ついで正帯電トナーを有する乾式現像剤で現
像、定着して鮮明な画像を有する第2原図用のコ
ピーを得た。
[Table] A charge carrier-generating pigment dispersion is obtained by pulverizing and mixing the liquid in a ball mill. This was applied onto a polyester film deposited with aluminum using a doctor blade, and dried for 5 minutes in a dryer at 80° C. to form a charge carrier generation layer with a thickness of 1 μm. A charge transfer layer forming liquid obtained by mixing 2 parts of the divinylbenzene compound represented by Compound No. 7, 3 parts of polycarbonate (Panlite L), and 45 parts of tetrahydrofuran was applied onto the charge carrier generation layer using a doctor blade. The photoreceptor of the present invention was prepared by coating the photoreceptor using a photoreceptor and drying it at 100° C. for 10 minutes to form a charge transfer layer with a thickness of 10 μm. This photoreceptor was negatively charged in the same manner as in Example 1, and Vpo and E1/2 were measured.
Vpo=975V, E1/2=3.5 Lux・sec. Example 3 Same as Example 2, but as a charge carrier generating pigment When using divinylbenzene compound represented by compound No. 25 as a charge transfer agent,
Vpo=1320V, E1/2=2.5 Lux・sec. Example 4 In the same manner as in Example 2, as a charge carrier generating pigment When using divinylbenzene compound represented by compound No. 32 as a charge transfer agent,
Vpo=1050V, E1/2=1.5 Lux・sec. Next, the photoreceptors obtained in Examples 1 to 4 were negatively charged using a commercially available copying machine, and then light was irradiated through the original image to form an electrostatic latent image, followed by dry development with positively charged toner. The image was developed using a chemical agent, and the image was electrostatically transferred to high-quality paper and fixed to obtain a clear image. A similarly clear image was obtained when a wet type developer was used as the developer. Example 5 On an aluminum plate with a thickness of about 300 μm, selenium was vacuum-deposited to a thickness of 1 μm to form a charge carrier generation layer. Next, 2 parts of a divinylbenzene compound represented by Compound No. 19, 3 parts of a polyester resin (manufactured by DuPont, Polyester Adhesive 49000)
A charge transfer layer forming solution was prepared by mixing 1 part and 45 parts of tetrahydrofuran, and this was applied onto the above charge carrier generation layer (selenium vapor deposition layer) using a doctor blade, air-dried, and then dried under reduced pressure. A charge transfer layer having a thickness of 10 .mu.m was formed thereon to obtain a photoreceptor of the present invention. This photoconductor was prepared in the same manner as in Example 1, and Vpo
and E1/2 were measured, Vpo=990V, E
1/2 = 4.0 lux seconds. Example 6 Perylene pigment in place of selenium in Example 5 is vacuum deposited to a thickness of 0.3μ to form a charge carrier generation layer. Next, a photoreceptor was prepared in the same manner as in Example 5 except that the charge transfer agent was replaced with a divinylbenzene compound represented by compound No. 33, and Vpo=
It was 790V, E1/2 = 9.5 lux seconds. Next, the photoreceptors obtained in Examples 5 and 6 were negatively charged using a commercially available copying machine, and then light was irradiated through the original image to form an electrostatic latent image, followed by dry development with positively charged toner. The image was developed using a chemical agent, and the image was electrostatically transferred to high-quality paper and fixed to obtain a clear image. A similarly clear image was obtained when a wet type developer was used as the developer. Example 7 A mixture of 1 part of β-type copper phthalocyanine and 158 parts of tetrahydrofuran was pulverized and mixed in a ball mill. The photosensitive layer forming solution obtained by adding 18 parts of 49000) and further mixing was applied onto the same aluminum-deposited polyester film as in Example 1 using a doctor blade, and dried at 100°C for 30 minutes to form a 16μ thick film. A photoreceptor of the present invention was prepared by forming a photoreceptor layer. This photoreceptor was positively charged by +6KV corona discharge using the same device as used in Example 1, and Vpo and E1/2 were similarly measured.Vpo=1200V, E1/2=3.5 It was lux second. Example 8 In the same manner as in Example 7, as a charge carrier generating pigment When using divinylbenzene compound represented by compound No. 39 as a charge transfer agent,
Vpo=1300V, E1/2=8.5 Lux・sec. Example 9 In the same manner as in Example 7, as a charge carrier generating pigment When using divinylbenzene compound represented by compound No. 40 as a charge transfer agent,
Vpo=1100V, E1/2=2.5 Lux・sec. Example 10 In the same manner as in Example 7, as a charge carrier generating pigment When using divinylbenzene compound represented by compound No. 17 as a charge transfer agent,
Vpo=1160V, E1/2=9.5 Lux・sec. Next, the photoreceptors obtained in Examples 7 to 10 were positively charged by applying a +6KV corona discharge using a commercially available electrophotographic copying machine, and then irradiated with light through the original image to form an electrostatic latent image. The image was developed using a dry developer containing negatively charged toner, and the image was electrostatically transferred and fixed onto high-quality paper to obtain a clear image. Similarly good results were obtained when a wet type developer was used as the developer. Example 11 Divinylbenzene compound represented by compound No. 5 10 parts Rhodamine B Extra 0.02 parts Polyvinyl chloride (manufactured by Nippon Carbide Co., Ltd.)
SG1100) A solution consisting of 10 parts and 70 parts of toluene was uniformly coated on a transparent paper that had been treated to prevent seepage of organic solvents and dried.
A 15μ photosensitive layer was provided. Next, the obtained photoreceptor is negatively charged by applying -6KV corona discharge using a commercially available electrophotographic copying machine, and then light is irradiated through the original image to form an electrostatic latent image, and then positively charged toner is applied to the photoreceptor. A second original copy having a clear image was obtained by developing and fixing with a dry developer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明に係る感光体の拡大断
面図である。 1……導電性支持体、2,2′,2″……感光
層、3……電荷担体発生物質、4……電荷移動
層、5……電荷担体発生層。
1 to 3 are enlarged sectional views of a photoreceptor according to the present invention. 1... Conductive support, 2, 2', 2''... Photosensitive layer, 3... Charge carrier generating substance, 4... Charge transport layer, 5... Charge carrier generating layer.

Claims (1)

【特許請求の範囲】 1 導電性支持体上に一般式 (式中Rはカルバゾリル基、ピリジル基、チエ
ニル基、インドリル基、フリル基、或いは夫々置
換または非置換のフエニル基、スチリル基、ナフ
チル基、アントリル基であつて、これらの置換基
がジアルキルアミノ基、アルキル基、アルコキシ
基、カルボキシ基もしくはそのエステル、ハロゲ
ン原子、シアノ基、アラルキルアミノ基、アミノ
基、ヒドロキシ基、ニトロ基およびアセチルアミ
ノ基からなる群から選ばれた基を表わす。) で示されるジビニルベンゼン化合物を有効成分と
して含有する感光層を有することを特徴とする電
子写真用感光体。
[Claims] 1. General formula on a conductive support (In the formula, R is a carbazolyl group, pyridyl group, thienyl group, indolyl group, furyl group, or a substituted or unsubstituted phenyl group, styryl group, naphthyl group, or anthryl group, and these substituents are dialkylamino groups) , an alkyl group, an alkoxy group, a carboxy group or its ester, a halogen atom, a cyano group, an aralkylamino group, an amino group, a hydroxy group, a nitro group, and an acetylamino group) 1. A photoreceptor for electrophotography, comprising a photosensitive layer containing a divinylbenzene compound as an active ingredient.
JP10470379A 1979-08-16 1979-08-16 Electrophotographic receptor Granted JPS5629245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10470379A JPS5629245A (en) 1979-08-16 1979-08-16 Electrophotographic receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10470379A JPS5629245A (en) 1979-08-16 1979-08-16 Electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS5629245A JPS5629245A (en) 1981-03-24
JPS6255656B2 true JPS6255656B2 (en) 1987-11-20

Family

ID=14387833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10470379A Granted JPS5629245A (en) 1979-08-16 1979-08-16 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS5629245A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191060A (en) * 1983-04-14 1984-10-30 Ricoh Co Ltd Electrophotographic sensitive body
JPS6061762A (en) * 1983-09-14 1985-04-09 Canon Inc Transfer paper for electrophotography
DE3814105C2 (en) * 1987-04-27 1999-02-04 Minolta Camera Kk Electrophotographic recording material
US4886720A (en) * 1987-08-31 1989-12-12 Minolta Camera Kabushiki Kaisha Photosensitive medium having a styryl charge transport material
EP0487760A1 (en) * 1990-11-26 1992-06-03 Trw Repa Gmbh Seat belt restraint system for vehicles
US6824939B2 (en) 2001-12-11 2004-11-30 Ricoh Company Limited Electrophotographic image forming method and apparatus
EP2100907B1 (en) 2006-12-26 2013-02-20 Asahi Kasei E-materials Corporation Resin composition for printing plate
JP5557029B2 (en) * 2010-10-08 2014-07-23 株式会社リコー Electrophotographic photosensitive member, image forming method using the same, image forming apparatus, and process cartridge for image forming apparatus

Also Published As

Publication number Publication date
JPS5629245A (en) 1981-03-24

Similar Documents

Publication Publication Date Title
JPS6255657B2 (en)
JPS6255655B2 (en)
JPS6136231B2 (en)
JPH0542661B2 (en)
JPH0339306B2 (en)
JPS6136228B2 (en)
JPS6140105B2 (en)
JPS6255656B2 (en)
JP2701852B2 (en) Electrophotographic photoreceptor
JPH0462377B2 (en)
JPH01566A (en) Electrophotographic photoreceptor
JP3054659B2 (en) Electrophotographic photoreceptor
JP2813776B2 (en) Electrophotographic photoreceptor
JP3435476B2 (en) Electrophotographic photoreceptor
JP2700231B2 (en) Electrophotographic photoreceptor
JPS6255654B2 (en)
JP2700226B2 (en) Electrophotographic photoreceptor
JP2742564B2 (en) Electrophotographic photoreceptor
JP2700230B2 (en) Electrophotographic photoreceptor
JPS6235672B2 (en)
JP2688682B2 (en) Electrophotographic photoreceptor
JP2840667B2 (en) Electrophotographic photoreceptor
JPH0455299B2 (en)
JP3451278B2 (en) Electrophotographic photoreceptor
JPH05703B2 (en)