JPS6255612B2 - - Google Patents

Info

Publication number
JPS6255612B2
JPS6255612B2 JP8258080A JP8258080A JPS6255612B2 JP S6255612 B2 JPS6255612 B2 JP S6255612B2 JP 8258080 A JP8258080 A JP 8258080A JP 8258080 A JP8258080 A JP 8258080A JP S6255612 B2 JPS6255612 B2 JP S6255612B2
Authority
JP
Japan
Prior art keywords
humidity
thickness
mode
frequency
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8258080A
Other languages
Japanese (ja)
Other versions
JPS577538A (en
Inventor
Futoshi Uchama
Sumyuki Ishigami
Yasushi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Denpa Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Tokyo Denpa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Tokyo Denpa Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP8258080A priority Critical patent/JPS577538A/en
Publication of JPS577538A publication Critical patent/JPS577538A/en
Publication of JPS6255612B2 publication Critical patent/JPS6255612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02845Humidity, wetness

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は安定した振動周波数を提供する圧電振
動子において、該圧電振動子の主振動面に吸湿性
物質を塗布してなる圧電式湿度センサに関する。
すなわち、上記吸湿性物質の塗布層の厚みと圧電
振動板の輪郭寸法との関係が、上記圧電振動子の
主振動モードを不要振動モードと結合させて、あ
らかじめ定めた湿度で発振を停止させる湿度スイ
ツチとして動作するように構成することを目的と
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a piezoelectric humidity sensor in which a hygroscopic substance is coated on the main vibration surface of a piezoelectric vibrator that provides a stable vibration frequency.
In other words, the relationship between the thickness of the coating layer of the hygroscopic material and the contour dimensions of the piezoelectric diaphragm is such that the main vibration mode of the piezoelectric vibrator is combined with the unnecessary vibration mode, and the humidity is such that oscillation is stopped at a predetermined humidity. It is intended to be configured to operate as a switch.

矩形状厚みすべり振動圧電振動子において、主
振動周波数の付近には、矩形状振動板の長さlお
よび幅Wに依存する周波数の高次寄生振動が多数
存在し、温度等によつては、この高次寄生振動が
主振動に結合することがある。この結合により、
寄生振動の種類によつては極めて急峻な引込現象
を示し、このためいわゆるアクテイビテイ・デイ
ツプと称する特異現象が生じて主振動の等価抵抗
が著しく増大し、ついには発振が停止する。
In a rectangular thickness-shear vibrating piezoelectric vibrator, there are many high-order parasitic vibrations near the main vibration frequency whose frequencies depend on the length l and width W of the rectangular diaphragm, and depending on the temperature etc. This higher-order parasitic vibration may be coupled to the main vibration. With this combination,
Depending on the type of parasitic vibration, an extremely steep entrainment phenomenon may occur, resulting in a peculiar phenomenon called an activity dip, in which the equivalent resistance of the main vibration increases significantly, and eventually oscillation stops.

これは圧電振動子として異常な現象であり、従
来はこのような動作が生じないように、すなわち
主振動周波数の付近では不要振動モードとの結合
が生じるおそれがなく、所定周波数で安定した振
動が行なわれるように種々の配慮がなされてい
た。
This is an abnormal phenomenon for a piezoelectric vibrator, and conventional methods have been designed to prevent this kind of behavior from occurring, that is, to avoid the possibility of coupling with unnecessary vibration modes near the main vibration frequency, and to maintain stable vibration at a predetermined frequency. Various considerations were made to ensure that this was done.

本発明は逆にこの現象を用い、圧電振動子が特
定の湿度で主振動モードと不要振動モード(以下
主モード、不要モードと略記する)とが結合して
発振を停止し湿度センサとして作用するようにし
たもので、以下その詳細を説明する。
The present invention uses this phenomenon to the contrary, and the piezoelectric vibrator stops oscillating when the main vibration mode and unnecessary vibration mode (hereinafter abbreviated as main mode or unnecessary mode) are combined at a specific humidity, and acts as a humidity sensor. The details will be explained below.

一般に、安定な周波数を提供する振動子では、
広い温度範囲にわたつて不要モードとの結合の無
いものが要求され、また振動子によつて構成した
フイルタなどでも、この不要モードが特性に悪影
響を及ぼすことが知られている。
In general, a transducer that provides a stable frequency
It is required that there is no coupling with unnecessary modes over a wide temperature range, and it is known that even in filters made of vibrators, these unnecessary modes have an adverse effect on the characteristics.

矩形状厚みすべり振動子の主振動周波数f0は、
水晶振動子の場合、厚さtに逆比例し、次式の関
係にある。
The main vibration frequency f 0 of the rectangular thickness-shear oscillator is
In the case of a crystal resonator, it is inversely proportional to the thickness t, and has the following relationship.

f0=K1/t ……(1) すなわちATカツト板の場合、定数K=1.67で
あり、f0=10MHzの場合、振動板の厚さは0.167mm
となる。
f 0 = K1/t... (1) In other words, in the case of an AT cut plate, the constant K = 1.67, and if f 0 = 10MHz, the thickness of the diaphragm is 0.167 mm.
becomes.

ここで不要モードは、上記主モードに対して矩
形板の長さlを幅Wに依存する輪郭、幅すべり、
幅たて等の各振動モードで生じ、厚みすべり主振
動周波数の近傍に各モードの高次振動が出現し、
前記アクテビイテイ・デイツプの原因の1つにな
つている。
Here, the unnecessary mode is a contour where the length l of the rectangular plate depends on the width W, width slip,
It occurs in each vibration mode such as vertical vibration, and higher-order vibrations of each mode appear near the main vibration frequency of thickness shear.
This is one of the causes of the activity dip.

矩形状厚みすべり振動子において、振動板の長
辺方向を結晶軸xに平行にとると、ATカツト板
の場合、次式のように多くの寄生振動すなわち高
次輪郭振動周波数flが存在する。
In a rectangular thickness-shear oscillator, if the long side direction of the diaphragm is taken parallel to the crystal axis x, in the case of an AT cut plate, there are many parasitic vibrations, that is, higher-order contour vibration frequencies f l as shown in the following equation. .

ここに、lは矩形振動板の長辺寸法、nはx軸
方向のオーバートン次数、tは板厚を示す。この
寄生振動は矩形振動板の長辺寸法(x軸方向)に
依存し、振動板の幅(短辺)寸法とは無関係であ
る。
Here, l is the long side dimension of the rectangular diaphragm, n is the Overton order in the x-axis direction, and t is the plate thickness. This parasitic vibration depends on the long side dimension (x-axis direction) of the rectangular diaphragm and is unrelated to the width (short side) dimension of the diaphragm.

次に、矩形振動板の幅(短辺)方向(Z′軸)に
関しては、次式の関係ですべり、たての各振動周
波数fWが存在する。
Next, regarding the width (short side) direction (Z' axis) of the rectangular diaphragm, there are sliding and vertical vibration frequencies f W according to the following equations.

ここに、Wは幅(短辺)寸法、ρは密度、Cij
は結晶の弾性定数を示す。
Here, W is the width (short side) dimension, ρ is the density, and C ij
indicates the elastic constant of the crystal.

以上の関係式より明らかなように、主振動周波
数の近傍には高次の不要モードが無数に存在す
る。
As is clear from the above relational expression, there are countless high-order unnecessary modes near the main vibration frequency.

一方、上記不要モードが故意に主モードと結合
するように設計した振動子において、電極の厚さ
を変えた場合、主振動周波数は電極の厚さに比例
して低下するが、不要モード周波数はあまり変化
しない。よつて、電極形成後に適当な吸湿性物質
(例えばポリアミド)を電極上に塗布すれば、吸
湿性物質の吸湿によつて、あたかも電極自体の厚
さが変化したかのように作用し、湿度によつて主
振動周波数は変化する。
On the other hand, in a vibrator designed so that the unnecessary mode is intentionally combined with the main mode, if the electrode thickness is changed, the main vibration frequency decreases in proportion to the electrode thickness, but the unnecessary mode frequency decreases. It doesn't change much. Therefore, if a suitable hygroscopic material (for example, polyamide) is applied to the electrode after the electrode is formed, the moisture absorbed by the hygroscopic material will act as if the thickness of the electrode itself has changed, and the humidity will be reduced. Therefore, the main vibration frequency changes.

実測結果によれば、主振動周波数10MHzにおい
て湿度1%あたり200Hz近くの程度で変化する。
このため湿度が変化した場合、ある湿度で主モー
ドと不要モードとの結合が生じ、この湿度で急激
に振動子の等価抵抗が増大し、ついには発振が停
止する。なお湿度がさらに変化すると、再び発振
が開始される。よつて、主モードと不要モードと
の結合が生じる湿度を変化させることにより、任
意の湿度で振動子が発振を停止するようにし、温
度センサとして動作させることができる。
According to actual measurement results, at a main vibration frequency of 10 MHz, the humidity changes by nearly 200 Hz per 1% humidity.
Therefore, when the humidity changes, a combination of the main mode and the unnecessary mode occurs at a certain humidity, and the equivalent resistance of the vibrator suddenly increases at this humidity, eventually stopping oscillation. Note that when the humidity changes further, oscillation starts again. Therefore, by changing the humidity at which the main mode and unnecessary mode are combined, the vibrator can be made to stop oscillating at an arbitrary humidity, and can be operated as a temperature sensor.

以下、本発明を実施例によつて説明する。 Hereinafter, the present invention will be explained with reference to Examples.

第1図は圧電振動子の電極全面に吸湿性物質を
塗布した状態を示し、1は矩形状の圧電振動板、
2はその表、裏に設けた電極で、引出し部2aを
通じて電極脚3に接続されている。また電極2の
表面には吸湿性物質を塗布して形成した膜4が設
けられ、さらに5は保持具である。
Figure 1 shows a state in which a hygroscopic substance is applied to the entire surface of the electrode of a piezoelectric vibrator, where 1 is a rectangular piezoelectric diaphragm;
Reference numeral 2 denotes electrodes provided on the front and back sides of the electrode, which are connected to the electrode leg 3 through a lead-out portion 2a. Further, a film 4 formed by applying a hygroscopic substance is provided on the surface of the electrode 2, and 5 is a holder.

湿度および温度を一定に保つた状態で吸湿性物
質膜4の膜厚を変化した場合、次に説明するよう
に主振動周波数は−1.0Hz/Åの割合いで変化す
るが、不要モードの周波数変化はこれに比べては
るかに小さく、約−0.1Hz/Åである。
When the thickness of the hygroscopic material film 4 is changed while keeping the humidity and temperature constant, the main vibration frequency changes at a rate of -1.0Hz/Å, as explained below, but the frequency change of the unnecessary mode is much smaller than this, about -0.1Hz/Å.

第2図は、上記吸湿性物質として用いたポリア
ミド塗布膜の厚さを増加したとき主発振周波数の
低下する状態を示し、横軸は膜厚(Å)、縦軸は
周波数低下量(KHz)で、主振動周波数は−1
Hz/Åの変化を行なう。
Figure 2 shows how the main oscillation frequency decreases when the thickness of the polyamide coating film used as the hygroscopic substance increases, where the horizontal axis is the film thickness (Å) and the vertical axis is the amount of frequency decrease (KHz). So, the main vibration frequency is -1
Changes are made in Hz/Å.

また、第3図は吸湿性物質の塗布膜の厚さをパ
ラメータとして、第4図のヤーマン回路により測
定した厚みすべり振動の共振特性を示す。第3図
の特性曲線h1〜h5は、h1よりh5に至るにつれ順次
電極上の吸湿性物質の膜厚は大である。また第4
図において、信号発生器6より圧電振動子7に加
える周波数を出力一定のまま順次変化させ、各周
波数に対する電圧計8の指示より共振特性を測定
する。
Further, FIG. 3 shows the resonance characteristics of the thickness shear vibration measured by the Yarman circuit of FIG. 4, using the thickness of the coating film of the hygroscopic substance as a parameter. In the characteristic curves h 1 to h 5 in FIG. 3, the film thickness of the hygroscopic substance on the electrode increases sequentially from h 1 to h 5 . Also the fourth
In the figure, the frequency applied to the piezoelectric vibrator 7 from the signal generator 6 is sequentially changed while keeping the output constant, and the resonance characteristics are measured from the indications from the voltmeter 8 for each frequency.

この場合第3図に明らかなように、振動板電極
上の吸湿物質膜の厚さが大となるにつれて主発振
モードの共振特性はh1よりh5のように変化し、そ
の共振周熱数はf1〜f5まで、前記のように膜厚の
変化に対し、−1Hz/Åの割合で大きく変化す
る。これに対し、不要モードの共振周波数は
f1′〜f5′までの、実測した結果前記のように、−0.1
Hz/Å程度のわずかの変化に止まる。よつて同図
の場合は(簡単のため図示してはいないが)、共
振曲線h3とh4の間で主発振モードと不要発振モー
ドとの共振周波数は一致、すなわち両モードの結
合が生じる。
In this case, as is clear from Fig. 3, as the thickness of the hygroscopic material film on the diaphragm electrode increases, the resonance characteristics of the main oscillation mode change from h 1 to h 5 , and the resonance frequency increases. From f 1 to f 5 , as described above, changes greatly at a rate of −1 Hz/Å with respect to changes in film thickness. On the other hand, the resonance frequency of the unwanted mode is
As mentioned above, the actual measurement results from f 1 ′ to f 5 ′ are -0.1
The change is only a small amount of Hz/Å. Therefore, in the case of the same figure (not shown for simplicity), the resonance frequencies of the main oscillation mode and the unwanted oscillation mode match between resonance curves h3 and h4 , that is, coupling of both modes occurs. .

次に、このような振動子の湿度特性、すなわち
吸湿性物質膜の厚さを一定とし温度を一定に保つ
て湿度を変化した場合の、吸湿性物質膜の吸湿量
が電極質量の増大として作用し共振周波数の低下
を生じる状態を第5図に示す。同図において横軸
は相対湿度(%)を示し、実線の曲線は、振動板
電極上の吸湿物質膜の厚さを不要モードとの結合
が生じない大きさにした場合のもので、湿度変化
に対する共振周波数の変化をA、等価インピーダ
ンスの変化をBに示す。また同図において、破線
の曲線は相対湿度P(82%)で主モードが不要モ
ードと結合するように、振動板電極上の吸湿性物
質の厚さを適節した場合を示し、aは共振周波
数、bは等価インピーダンスの、各湿度に対する
特性曲線である。
Next, the humidity characteristics of such a vibrator, that is, when the thickness of the hygroscopic material film is kept constant and the temperature is kept constant and the humidity is changed, the amount of moisture absorbed by the hygroscopic material film acts as an increase in the mass of the electrode. FIG. 5 shows a state in which the resonant frequency decreases. In the same figure, the horizontal axis indicates relative humidity (%), and the solid line curve represents the case where the thickness of the hygroscopic material film on the diaphragm electrode is set to a size that does not cause coupling with unnecessary modes, and the curve shows the change in humidity. A shows the change in the resonant frequency with respect to the current, and B shows the change in the equivalent impedance. In the same figure, the dashed curve shows the case where the thickness of the hygroscopic substance on the diaphragm electrode is adjusted appropriately so that the main mode is combined with the unnecessary mode at relative humidity P (82%), and a is the resonance The frequency b is a characteristic curve of equivalent impedance for each humidity.

このように、吸湿性物質膜の厚さを調節して所
定の湿度において主モードと不要モードとが結合
するようにし、その湿度で等価インピーダンスが
急激に増大し、発振を停止するように制御するこ
とができる。なお、上記湿度変化に対する特性変
化は極めて急速に作用し、ほとんど遅れは認めら
れない程度であつた。
In this way, the thickness of the hygroscopic material film is adjusted so that the main mode and unnecessary mode are combined at a predetermined humidity, and the equivalent impedance increases rapidly at that humidity, controlling the oscillation to stop. be able to. It should be noted that the characteristic change in response to the humidity change was extremely rapid, with almost no delay observed.

なお以上の説明において吸湿性物質膜を設ける
には、吸湿性物質として用いたポリアミドのアル
コール溶液を電極面に塗布したのち乾燥し、これ
を繰り返し行なつて膜厚を順次増加し所定の膜厚
とした。
In the above explanation, in order to provide a hygroscopic substance film, an alcoholic solution of polyamide used as a hygroscopic substance is applied to the electrode surface, dried, and this is repeated to gradually increase the film thickness until a predetermined film thickness is obtained. And so.

また、上記吸湿性物質は必ずしも電極全面に限
らず、電極または振動板の一部分にのみ塗布し、
あるいは振動板全面にわたつて塗布し、さらには
振動板を上記溶液中に浸す等の処理を行なつて
も、ほぼ同様の結果が得られた。
In addition, the above-mentioned hygroscopic substance is not necessarily applied to the entire surface of the electrode, but only to a portion of the electrode or the diaphragm.
Alternatively, almost the same results were obtained by applying the solution over the entire surface of the diaphragm and further immersing the diaphragm in the solution.

次に、この作用の温度による影響を検討する。 Next, we will consider the influence of temperature on this effect.

一般に、不要モードの呈する温度による周波数
変化は主モードであるATカツト厚みすべり振動
に対して1桁以上大きく、温度に対する依存性が
大である。このため、温度係数の比較的小さな不
要モードを選ぶこと、および湿度対周波数の変化
率を極力大きくすることにより、動作精度に及ぼ
す温度の影響を極少にすることができる。
Generally, the temperature-related frequency change exhibited by the unwanted mode is more than an order of magnitude larger than the main mode, AT cut thickness shear vibration, and has a large dependence on temperature. Therefore, by selecting an unnecessary mode with a relatively small temperature coefficient and by increasing the rate of change of humidity versus frequency as much as possible, the influence of temperature on operational accuracy can be minimized.

以上述べたように、本発明に係る圧電式湿度セ
ンサは、該センサが湿度を周波数に変換するデジ
タルタイプの高感度湿度感応素子である特徴をも
つと同時に、任意の湿度で故意に発振を停止させ
るという湿度スイツチの機能を発揮するものであ
り、極めて実用性に富み、その効果は大きいもの
である。
As described above, the piezoelectric humidity sensor according to the present invention is characterized in that it is a digital type highly sensitive humidity sensing element that converts humidity into a frequency, and at the same time, it intentionally stops oscillation at an arbitrary humidity. It performs the function of a humidity switch, which is to control humidity, and is extremely practical and has great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による水晶振動子を示
す斜視図、第2図は振動子の電極面に吸湿性物質
膜を設けたときの膜厚と主振動周波数との関係を
示す特性図、第3図は電極面上の吸湿性物質の膜
厚をパラメータとした厚みすべり振動の共振特性
図、第4図は上記共振特性の測定に用いたヤーマ
ン回路を示す回路図、第5図は吸湿性物質の膜厚
を一定とした振動子の相対湿度による共振周波数
および等価抵抗の変化を示す特性図である。 1……矩形状圧電振動板、2……電極、4……
吸湿性物質膜。
FIG. 1 is a perspective view showing a crystal resonator according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between film thickness and main vibration frequency when a hygroscopic material film is provided on the electrode surface of the resonator. , Fig. 3 is a resonance characteristic diagram of thickness shear vibration using the film thickness of the hygroscopic material on the electrode surface as a parameter, Fig. 4 is a circuit diagram showing the Yarman circuit used to measure the above resonance characteristics, and Fig. 5 is a diagram FIG. 3 is a characteristic diagram showing changes in resonance frequency and equivalent resistance due to relative humidity of a vibrator with a constant film thickness of a hygroscopic substance. 1... Rectangular piezoelectric diaphragm, 2... Electrode, 4...
Hygroscopic substance film.

Claims (1)

【特許請求の範囲】[Claims] 1 圧電振動板の振動面に吸湿性物質を塗布した
感湿圧振動子において、主振動モードと不要振動
モードが所定の湿度で結合するように上記吸湿性
物質の膜厚を定めたことを特徴とする圧電式湿度
センサ。
1. A moisture-sensitive pressure vibrator in which a hygroscopic substance is coated on the vibration surface of a piezoelectric diaphragm, characterized in that the film thickness of the hygroscopic substance is determined so that the main vibration mode and the unnecessary vibration mode are combined at a predetermined humidity. Piezoelectric humidity sensor.
JP8258080A 1980-06-18 1980-06-18 Piezo-electric humidity sensor Granted JPS577538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8258080A JPS577538A (en) 1980-06-18 1980-06-18 Piezo-electric humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8258080A JPS577538A (en) 1980-06-18 1980-06-18 Piezo-electric humidity sensor

Publications (2)

Publication Number Publication Date
JPS577538A JPS577538A (en) 1982-01-14
JPS6255612B2 true JPS6255612B2 (en) 1987-11-20

Family

ID=13778411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8258080A Granted JPS577538A (en) 1980-06-18 1980-06-18 Piezo-electric humidity sensor

Country Status (1)

Country Link
JP (1) JPS577538A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198445A (en) * 1984-03-22 1985-10-07 Shimada Phys & Chem Ind Co Ltd Humidity sensor
JPH07101614B2 (en) * 1985-06-10 1995-11-01 アメリカ合衆国 Fuel cell integrated with steam reformer
US5032365A (en) * 1988-06-14 1991-07-16 Mitsubishi Denki Kabushiki Kaisha Reaction apparatus
US5164163A (en) * 1988-09-19 1992-11-17 Kabushiki Kaisha Kobe Seiko Sho Hydrocarbon reforming apparatus
JPH03232703A (en) * 1989-12-26 1991-10-16 Tokyo Electric Power Co Inc:The Reformer of hydrocarbon
JP4890911B2 (en) * 2006-03-31 2012-03-07 京セラキンセキ株式会社 QCM sensor element
JP5435243B2 (en) * 2011-02-14 2014-03-05 セイコーエプソン株式会社 Vibrator and electronic equipment

Also Published As

Publication number Publication date
JPS577538A (en) 1982-01-14

Similar Documents

Publication Publication Date Title
US4741200A (en) Method and apparatus for measuring viscosity in a liquid utilizing a piezoelectric sensor
US5113698A (en) Vibrating beam transducer drive system
JP4222513B2 (en) Mass measuring apparatus and method
TWI638986B (en) Gas sensor and gas detection method
US3505866A (en) Single tine digital force transducer
JPS6255612B2 (en)
US4531073A (en) Piezoelectric crystal resonator with reduced impedance and sensitivity to change in humidity
US4743790A (en) Force sensing vibrating beam resonator
JP3072354B2 (en) Transducer accelerometer
JP2009100480A (en) Quartz crystal unit and method of manufacturing quartz crystal oscillator
JP3158176B2 (en) Transducer accelerometer
JPS62194718A (en) Contour shear crystal resonator
JP4194935B2 (en) measuring device
JP2004245605A (en) Vibrator and signal generation element for measuring physical quantity
JPS62190905A (en) Surface acoustic wave device
JPS59192937A (en) Measuring device for characteristics of fluid
JP3191404B2 (en) Temperature detection method for piezoelectric vibrator
JPH11173967A (en) Method and apparatus for measuring viscosity of liquid
JP3158175B2 (en) Transducer accelerometer
JPH0242190B2 (en)
JPS63316509A (en) Oscillating circuit
Wong et al. Phonon detection technique for the study of the temperature coefficient of resonance frequency in clamped–clamped beam resonators
JPH04184130A (en) Pressure gauge
JPH0237975B2 (en)
JP2618729B2 (en) Micro weight change measuring device