JPS6255594B2 - - Google Patents

Info

Publication number
JPS6255594B2
JPS6255594B2 JP1161380A JP1161380A JPS6255594B2 JP S6255594 B2 JPS6255594 B2 JP S6255594B2 JP 1161380 A JP1161380 A JP 1161380A JP 1161380 A JP1161380 A JP 1161380A JP S6255594 B2 JPS6255594 B2 JP S6255594B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
condenser
outlet
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1161380A
Other languages
Japanese (ja)
Other versions
JPS56110846A (en
Inventor
Rikya Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP1161380A priority Critical patent/JPS56110846A/en
Publication of JPS56110846A publication Critical patent/JPS56110846A/en
Publication of JPS6255594B2 publication Critical patent/JPS6255594B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】 本発明は冷凍機の除霜装置に関し、詳しくはホ
ツトガスバイパスデフロスト装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a defrosting device for a refrigerator, and more particularly to a hot gas bypass defrosting device.

一般に蒸発コイル面に霜が付着すると、この霜
によつて熱伝達が阻害されるのでコイルの冷却能
力が著しく低下するものである。
Generally, when frost adheres to the surface of the evaporator coil, the frost inhibits heat transfer, resulting in a significant reduction in the cooling ability of the coil.

このような霜付現場(フロスト)による冷却能
力の低下を防止するために従来から各種の除霜手
段が案出されている。
Various defrosting means have been devised in the past in order to prevent a decrease in cooling capacity due to such frosting.

ホツトガスによる除霜装置を備えた冷凍機とし
て一般に知られている従来装置の概略構成を第3
図に示す。同図において31は圧縮機、32は空
冷凝縮器、33は受液器、34は膨張機構、35
は分流器、36は蒸発器、37はアキユムレータ
で、これらを冷媒配管38により連結して冷凍サ
イクルを構成すると共に、前記冷媒配管中の前記
圧縮機31の吐出配管38′と、前記膨張機構3
4と分流器35との間の冷媒配管38との間には
ホツトガス電磁弁39を介設したホツトガスバイ
パス配管40を設け、デフロスト時に図示しない
四路弁を切り換えると共に前記ホツトガス電磁弁
39を開いて圧縮機吐出ガス(ホツトガス)を凝
縮器32に入れることなく該ホツトガスを前記ホ
ツトガスバイパス配管40を介して蒸発器36に
導びき、蒸発コイル面に付着した霜を加熱して除
霜すべく構成したものが知られている。
The schematic configuration of a conventional device generally known as a refrigerator equipped with a defrosting device using hot gas is shown in the third section.
As shown in the figure. In the figure, 31 is a compressor, 32 is an air-cooled condenser, 33 is a liquid receiver, 34 is an expansion mechanism, and 35
36 is a flow divider, 36 is an evaporator, and 37 is an accumulator. These are connected by a refrigerant pipe 38 to constitute a refrigeration cycle, and the discharge pipe 38' of the compressor 31 in the refrigerant pipe and the expansion mechanism 3
A hot gas bypass pipe 40 with a hot gas solenoid valve 39 is provided between the refrigerant pipe 38 between the refrigerant pipe 38 and the flow divider 35, and a four-way valve (not shown) is switched during defrosting, and the hot gas solenoid valve 39 is opened. In order to defrost the compressor discharge gas (hot gas) by guiding it to the evaporator 36 via the hot gas bypass piping 40 without introducing it into the condenser 32, and heating the frost adhering to the evaporator coil surface. The composition is known.

しかしながら、斯る従来の単純ホツトガス方式
では凝縮器32の液出口から膨張機構34にかけ
て溜つている冷媒は前記デフロストに何等寄与し
ないので、デフロスト時の冷媒循環量が限られ、
この結果、デフロストに時間がかかりデフロスト
が困難であつた。このことは、ホツトガスデフロ
ストの熱源は圧縮機入力(換言すれば冷媒循環
量)によつて決まり、圧縮機入力の大小でデフロ
スト性能が左右されることからも容易に理解でき
よう。
However, in such a conventional simple hot gas system, the refrigerant accumulated from the liquid outlet of the condenser 32 to the expansion mechanism 34 does not contribute to the defrosting process, so the amount of refrigerant circulation during defrosting is limited.
As a result, defrosting took a long time and was difficult to defrost. This can be easily understood from the fact that the heat source for hot gas defrost is determined by the compressor input (in other words, the amount of refrigerant circulated), and the defrost performance is influenced by the magnitude of the compressor input.

本発明は斯る事情に鑑みて、膨張機構と蒸発器
との間の冷媒配管と、四路弁との間にホツトガス
バイパス配管を設けると共に、圧縮機吸入ライン
と四路弁との間にガス吸入用配管を設けて、デフ
ロスト時に四路弁およびガス吸入用配管を介して
凝縮器入口管と圧縮機吸入ラインとを連通すべく
構成することにより、デフロスト時の冷媒循環量
を単純ホツトガス方式のそれと比較して増加さ
せ、デフロストを加速し、以つてデフロスト時間
の短縮を図ると共に冬期デフロストが容易な冷凍
機の除霜装置を提供しようとするものである。
In view of such circumstances, the present invention provides a hot gas bypass pipe between the refrigerant pipe between the expansion mechanism and the evaporator and the four-way valve, and also provides a hot gas bypass pipe between the compressor suction line and the four-way valve. By providing gas suction piping and configuring the condenser inlet pipe to communicate with the compressor suction line via the four-way valve and gas suction piping during defrost, the amount of refrigerant circulation during defrost can be controlled using a simple hot gas system. The purpose of the present invention is to provide a defrosting device for a refrigerator that accelerates defrosting, shortens defrosting time, and facilitates defrosting in winter.

以下、本発明の実施例を図面に基づいて詳述す
る。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は本発明に係る冷凍機の除霜装置を示す
冷媒系統図で、同図中、1は圧縮機、2はスライ
ド弁(図示せず)を内蔵した四路弁、3は空冷凝
縮器、4は受液品、5は膨張機構、6は分流器、
7は蒸発器、8はアキユムレータで、これらを冷
媒配管9〜16により連結して循環冷凍サイクル
を構成している。なお、17は凝縮器用フアン、
18は蒸発器用フアンである。
Fig. 1 is a refrigerant system diagram showing a defrosting device for a refrigerator according to the present invention, in which 1 is a compressor, 2 is a four-way valve with a built-in slide valve (not shown), and 3 is an air-cooled condenser. 4 is a liquid receiving product, 5 is an expansion mechanism, 6 is a flow divider,
7 is an evaporator, 8 is an accumulator, and these are connected by refrigerant pipes 9 to 16 to form a circulation refrigeration cycle. In addition, 17 is a condenser fan,
18 is an evaporator fan.

前記四路弁2は4つのポート19,20,2
1,22を備えていて、19は常流入口、21は
常流出口、20,22は出入口である。通常の冷
凍運転時には第1図に実線で示す如く常流入口1
9と出入口20とが連通すると共に常流出口21
と出入口22とが連通し、デフロスト時には同図
に点線で示す如く常流入口19と出入口22とが
連通すると共に出入口20と常流出口21とが連
通するようになつている。
The four-way valve 2 has four ports 19, 20, 2.
1 and 22, 19 is a regular inlet, 21 is a regular outlet, and 20 and 22 are inlets and outlets. During normal refrigeration operation, the normal inlet 1 is shown as a solid line in Figure 1.
9 and the inlet/outlet 20 communicate with each other, and the normal outlet 21
During defrosting, the normal inlet 19 and the inlet/outlet 22 communicate with each other, and the inlet/outlet 20 and the normal outlet 21 communicate with each other, as shown by dotted lines in the figure, during defrosting.

このように構成した四路弁2の一方の出入口2
2と、膨張機構5と分流器6との間の冷媒配管1
3との間には逆止弁23を介設したホツトガスバ
イパス配管24を設けている。前記逆止弁23は
通常運転時において冷媒が蒸発器7をバイパスす
るのを防止するものである。すなわち、冷媒が前
記ホツトガスバイパス配管24および四路弁2を
介して冷媒配管15へ流れるのを防止するもので
ある。
One inlet/outlet 2 of the four-way valve 2 configured in this way
2, and the refrigerant pipe 1 between the expansion mechanism 5 and the flow divider 6
3, a hot gas bypass pipe 24 with a check valve 23 interposed therebetween is provided. The check valve 23 prevents the refrigerant from bypassing the evaporator 7 during normal operation. That is, the refrigerant is prevented from flowing into the refrigerant pipe 15 via the hot gas bypass pipe 24 and the four-way valve 2.

また、前記四路弁2の常流出口21と圧縮機吸
入ライン25具体的には冷媒配管15との間にガ
ス吸入用配管26を設けていて、デフロスト時に
四路弁2のスライド弁を切り換えたとき、前記凝
縮器3の入口管3aを前記四路弁2の出入口2
0、常流出口21およびガス吸入用配管26を介
して圧縮機吸入ライン25つまり冷媒配管15に
連通すべく構成している。
In addition, a gas suction pipe 26 is provided between the regular outlet 21 of the four-way valve 2 and the compressor suction line 25, specifically, the refrigerant pipe 15, and the slide valve of the four-way valve 2 is switched during defrosting. When the inlet pipe 3a of the condenser 3 is connected to the inlet/outlet port 2 of the four-way valve 2,
0, it is configured to communicate with the compressor suction line 25, that is, the refrigerant pipe 15, via the regular outlet 21 and the gas suction pipe 26.

本発明は上記の如く構成するものにして、以下
作用を説明する。
The present invention is constructed as described above, and its operation will be explained below.

まず、最初に通常の冷凍運転について述べる。
この通常運転時には前記四路弁2は第1図に実線
で示す如くその常流入口19と出入口20および
常流出口21と出入口22とが互いに連通する如
く切り換えておく。いま、圧縮機1を駆動する
と、該圧縮機1で圧縮され高温高圧になつたガス
冷媒は第1図に実線矢印で示す如く四路弁2の常
流入口19、出入口20を経て凝縮器3に入り熱
交換され、熱交換されて液化した液冷媒は受液器
4を経て膨張機構5に至り、ここで絞り膨張され
て低圧となつた液冷媒は分流器6を介して蒸発器
7中に入り外部の熱を取つて気化されてガス冷媒
となり、さらにアキユムレータ8を介して再び前
記圧縮機1に吸入されるのである。前記凝縮器に
は通常運転時ガス冷媒が上(凝縮器入口管)から
入り液冷媒となつて下から流出するのである。
First, normal refrigeration operation will be described.
During this normal operation, the four-way valve 2 is switched so that its normal inlet 19 and outlet 20 and its normal outlet 21 and outlet 22 communicate with each other, as shown by solid lines in FIG. Now, when the compressor 1 is driven, the gas refrigerant compressed by the compressor 1 to a high temperature and high pressure passes through the normal inlet 19 and the outlet 20 of the four-way valve 2 to the condenser 3 as shown by the solid arrow in FIG. The liquid refrigerant enters, undergoes heat exchange, and is liquefied through the liquid receiver 4 and reaches the expansion mechanism 5, where the liquid refrigerant is throttled and expanded to a low pressure and flows into the evaporator 7 via the flow divider 6. The refrigerant enters the refrigerant, absorbs heat from the outside, is vaporized and becomes a gas refrigerant, and is further sucked into the compressor 1 via the accumulator 8. During normal operation, gas refrigerant enters the condenser from the top (condenser inlet pipe) and flows out from the bottom as liquid refrigerant.

なお、このような通常運転時には冷媒が前記蒸
発器7をバイパスするのを逆止弁23で防止して
いる。
Note that during such normal operation, the check valve 23 prevents the refrigerant from bypassing the evaporator 7.

次にデフロスト運転について述べる。このデフ
ロスト運転時には前記四路弁2は第1図に点線で
示す如くその常流入口19と出入口22および出
入口20と常流出口21とが互いに連通する如く
切り換えておく。いま、圧縮機で圧縮され高温高
圧になつたガス冷媒(ホツトガス)は第1図に点
線矢印で示す如く四路弁2の常流入口19、出入
口22およびホツトガスバイパス配管24を経て
蒸発器7に至り、ここで蒸発コイル面に付着した
霜を加熱して除霜するのである。
Next, we will discuss defrost operation. During this defrost operation, the four-way valve 2 is switched so that its normal inlet 19 and outlet 22 and its normal outlet 20 and outlet 21 communicate with each other, as shown by dotted lines in FIG. Now, the gas refrigerant (hot gas) that has been compressed by the compressor and has become high temperature and high pressure passes through the normal inlet 19, outlet 22 and hot gas bypass pipe 24 of the four-way valve 2, as shown by the dotted arrow in FIG. At this point, the frost adhering to the evaporator coil surface is heated and defrosted.

また斯るデフロスト時には凝縮器入口管3aが
四路弁2の出入口20、常流出口21およびガス
吸入用配管26を介して圧縮機吸入ライン25中
の冷媒配管15詳しくは合流点Aに連通されて、
前記凝縮器入口管3aからA点に至る回路が低圧
となり、通常運転時に前記凝縮器3に溜つていた
冷媒がデフロスト時には凝縮器周囲温度つまり外
気温度(外気温度>庫内温度)により加熱されて
沸騰し、沸騰中の冷媒蒸気は前記四路弁2の出入
口20、常流出口21およびガス吸入用配管26
を介して合流点Aに至り、ここでデフロスト中の
蒸発器7からの冷媒と合流する。
Also, during defrosting, the condenser inlet pipe 3a is communicated with the refrigerant pipe 15 in the compressor suction line 25, specifically the confluence point A, via the inlet/outlet 20 of the four-way valve 2, the regular outlet 21, and the gas suction pipe 26. hand,
The circuit from the condenser inlet pipe 3a to point A becomes low pressure, and the refrigerant accumulated in the condenser 3 during normal operation is heated by the condenser ambient temperature, that is, the outside air temperature (outside air temperature>inside temperature) during defrosting. The refrigerant vapor that is boiling is transferred to the inlet/outlet 20 of the four-way valve 2, the regular outlet 21, and the gas suction pipe 26.
The refrigerant flows through the refrigerant to the confluence point A, where it merges with the refrigerant from the evaporator 7 during defrosting.

前記ガス吸入用配管26を通つて合流点Aに至
つた冷媒はデフロスト中の蒸発器7からの冷媒よ
りも高温であるから、両者の合流冷媒は昇温し、
かつ高濃度となると共に、ガス吸入用配管26を
通つて合流点Aに至る冷媒分だけ冷媒の循環量が
増大する。この結果、圧縮機入力は従来の単純ホ
ツトガス方式のものに比較して増加するため充分
なデフロスト熱源を確保することができる。
Since the refrigerant that has reached the confluence point A through the gas suction pipe 26 has a higher temperature than the refrigerant from the evaporator 7 during defrost, the temperature of the two converged refrigerants increases;
As the concentration becomes high, the amount of refrigerant circulated increases by the amount of refrigerant that passes through the gas suction pipe 26 and reaches the confluence point A. As a result, the compressor input is increased compared to the conventional simple hot gas system, so a sufficient defrost heat source can be secured.

なお、凝縮器3内での前記沸騰は、デフロスト
時間(たとえば15分程度)が比較的短かいので、
この間に前記凝縮器3内の液冷媒がなくなること
はなく継続する。
Note that the boiling in the condenser 3 has a relatively short defrost time (for example, about 15 minutes), so
During this time, the liquid refrigerant in the condenser 3 does not run out and continues.

また、アキユムレータ8の入口へ沸騰冷媒蒸気
を流入させるので、該アキユムレータ8内に液冷
媒が溜まることはない。すなわち、デフロストに
関与する冷媒は途中液化することがない。
Further, since the boiling refrigerant vapor flows into the inlet of the accumulator 8, liquid refrigerant does not accumulate in the accumulator 8. That is, the refrigerant involved in defrosting does not liquefy during the process.

したがつて、デフロスト時の冷媒循環量を増加
させることができ、デフロストを加速し、以つて
デフロスト時間の短縮を図ると共に冬期デフロス
トをも容易に行なうことができるものである。な
お、夏期におけるデフロスト時には凝縮器用フア
ン17をオフにすることが推奨される。
Therefore, the amount of refrigerant circulated during defrosting can be increased, defrosting can be accelerated, the defrosting time can be shortened, and winter defrosting can be easily performed. It is recommended that the condenser fan 17 be turned off during defrosting in the summer.

第2図は他の実施例を示す冷媒系統図で、前記
ガス吸入用配管26の定圧膨張弁27を介設し、
圧縮機1の吸入圧力を不必要に上昇させないよう
に構成したものであり、冷媒としてR−22を用い
た時の定圧膨張弁27のセツト値は4.0〜4.5K/
cm2に設定することが推奨される。
FIG. 2 is a refrigerant system diagram showing another embodiment, in which a constant pressure expansion valve 27 of the gas suction pipe 26 is interposed,
It is constructed so as not to increase the suction pressure of the compressor 1 unnecessarily, and the set value of the constant pressure expansion valve 27 when R-22 is used as the refrigerant is 4.0 to 4.5K/
It is recommended to set it to cm2 .

このように構成すると、前記凝縮器3の周囲温
度が比較的高いので、デフロスト時には該凝縮器
3での沸騰が激化するけれども、前記定圧膨張弁
27によつて圧縮機1への冷媒供給圧力を適正に
保ち、圧縮機1のオーバロードを防止することが
できるものである。さらに、圧縮機吸入圧力の過
度の上昇を前記定圧膨張弁27で防止して高圧が
過大になるのを防ぐことができるので、図示しな
い安全弁や高圧圧力開閉器等が不要にしや断され
ることなく圧縮機1の運転中断が起こらないもの
である。なお、この場合には凝縮器用フアンは必
ず運転されるが、圧縮機1への冷媒供給圧力は適
正に制御され、斯る状態下でデフロスト用の最大
の熱源吸収を行なうことができる。また、前記定
圧膨張弁27を介設した場合にはホツトガスバイ
パス配管24には逆止弁を介設しなくてもよい。
このことは前記定圧膨張弁27の設定値が例えば
4.0〜4.5K/cm2に対して蒸発器7の抵抗が例えば
0.5K/cm2であることから容易に理解されよう。
With this configuration, since the ambient temperature of the condenser 3 is relatively high, boiling in the condenser 3 becomes intense during defrosting, but the constant pressure expansion valve 27 can reduce the refrigerant supply pressure to the compressor 1. It is possible to maintain the compressor 1 properly and prevent the compressor 1 from overloading. Furthermore, since the constant pressure expansion valve 27 prevents an excessive increase in the compressor suction pressure and prevents the high pressure from becoming excessive, a safety valve or a high pressure switch (not shown), etc., are unnecessary and can be cut off immediately. Therefore, the operation of the compressor 1 will not be interrupted. In this case, the condenser fan is always operated, but the refrigerant supply pressure to the compressor 1 is properly controlled, and under such conditions, maximum heat source absorption for defrosting can be achieved. Further, when the constant pressure expansion valve 27 is provided, it is not necessary to provide a check valve in the hot gas bypass piping 24.
This means that the set value of the constant pressure expansion valve 27 is, for example,
For example, the resistance of the evaporator 7 for 4.0 to 4.5K/cm 2 is
This can be easily understood from the fact that it is 0.5K/cm 2 .

本発明は以上詳述したように、凝縮器3、膨張
機構5、蒸発器7及び圧縮機1を順に冷媒配管に
より連結すると共に、四路弁2を備え、該四路弁
2が、圧縮機吐出管9に常流入口19、蒸発器7
と圧縮機1との間の冷媒配管に常流出口21を、
膨張機構5と蒸発器7との間の冷媒配管に該配管
側から四路弁2側への冷媒の流れを防止する逆止
弁23を介して一方の出入口22を、凝縮器入口
3aに他方の出入口20をそれぞれ連通すべく構
成したものであるから、デフロスト時の冷媒循環
量を従来の単純ホツトガス方式のそれと比較して
増加させ、デフロストを加速し、以つてデフロス
ト時間の短縮を図る効果がある。
As described in detail above, the present invention connects the condenser 3, the expansion mechanism 5, the evaporator 7, and the compressor 1 in order through refrigerant piping, and also includes the four-way valve 2, which connects the compressor to the compressor. A regular inlet 19 in the discharge pipe 9 and an evaporator 7
A regular outlet 21 is provided in the refrigerant pipe between the and the compressor 1,
One inlet/outlet 22 is connected to the refrigerant piping between the expansion mechanism 5 and the evaporator 7 via a check valve 23 that prevents the flow of refrigerant from the piping side to the four-way valve 2 side, and the other is connected to the condenser inlet 3a. Since the inlet and outlet ports 20 are configured to communicate with each other, the amount of refrigerant circulated during defrosting is increased compared to that of the conventional simple hot gas method, and the effect of accelerating defrosting and shortening the defrosting time is increased. be.

また、実施態様で示した如く前記凝縮器3に該
凝縮器用フアン17を設けると共に、前記蒸発器
7、圧縮機1間と、四路弁2の常流出口21との
間に定圧膨張弁27を介設し、かつデフロスト時
に前記凝縮用フアン17を運転させると、凝縮器
用フアン17の運転によりデフロスト時に凝縮器
3での沸騰が激化しても、前記定圧膨張弁27に
よつて圧縮機1への冷媒供給圧力を適正に保つこ
とができ、圧縮機1のオーバーロードを防止する
ことができるものである。
Further, as shown in the embodiment, the condenser fan 17 is provided in the condenser 3, and a constant pressure expansion valve 27 is provided between the evaporator 7 and the compressor 1 and the normal outlet 21 of the four-way valve 2. If the condensing fan 17 is operated during defrosting, even if boiling in the condenser 3 intensifies during defrosting due to the operation of the condenser fan 17, the constant pressure expansion valve 27 will cause the compressor 1 to The refrigerant supply pressure to the compressor 1 can be maintained at an appropriate level, and overload of the compressor 1 can be prevented.

さらに、圧縮機吸入圧力の過度の上昇を前記定
膨張弁27で防止して高圧が過大になるのを防ぐ
ことができるので、図示しない安全弁や高圧圧力
開閉器等が不要にしや断されることなく圧縮機の
運転中断が起こらないものである。
Furthermore, since the constant expansion valve 27 prevents an excessive increase in the compressor suction pressure and prevents the high pressure from becoming excessive, a safety valve or a high pressure switch (not shown), etc., are unnecessary and can be cut off immediately. This means that there will be no interruption in compressor operation.

しかも、凝縮器用フアン17の運転によりデフ
ロスト用エネルギーを外気より十分取入れるので
デフロストが迅速に完了するのである。
Furthermore, the operation of the condenser fan 17 takes in sufficient energy for defrosting from the outside air, so that defrosting can be completed quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る冷凍機の除霜装置を示す
冷媒系統図、第2図は他の実施例を示す冷媒系統
図、第3図は従来例の欠点を説明するための冷媒
系統図である。 1……圧縮機、2……四路弁、3……凝縮器、
3a……凝縮器入口管、5……膨張機構、7……
蒸発器、9……圧縮機吐出管、19……常流入
口、20,22……出入口、21……常流出口、
24……ホツトガスバイパス配管、25……圧縮
機吸入ライン、26……ガス吸入用配管、27…
…定圧膨張弁。
Fig. 1 is a refrigerant system diagram showing a defrosting device for a refrigerator according to the present invention, Fig. 2 is a refrigerant system diagram showing another embodiment, and Fig. 3 is a refrigerant system diagram for explaining the drawbacks of the conventional example. It is. 1... Compressor, 2... Four-way valve, 3... Condenser,
3a... Condenser inlet pipe, 5... Expansion mechanism, 7...
Evaporator, 9... Compressor discharge pipe, 19... Regular inlet, 20, 22... Inlet/outlet, 21... Regular outlet,
24...Hot gas bypass piping, 25...Compressor suction line, 26...Gas suction piping, 27...
…Constant pressure expansion valve.

Claims (1)

【特許請求の範囲】 1 凝縮器3、膨張機構5、蒸発器7及び圧縮機
1を順に冷媒配管により連結すると共に、四路弁
2を備え、該四路弁2が、圧縮機吐出管9に常流
入口19を、蒸発器7と圧縮機1との間の冷媒配
管に常流出口21を、膨張機構5と蒸発器7との
間の冷媒配管に該配管側から四路弁2側への冷媒
の流れを防止する逆止弁23を介して一方の出入
口22を、凝縮器入口管3aに他方の出入口20
をそれぞれ連通すべく構成したことを特徴とする
冷凍機の除霜装置。 2 前記凝縮器3に該凝縮器用フアン17を設け
ると共に、前記蒸発器7、圧縮機1間と、四路弁
2の常流出口21との間に定圧膨張弁27を介設
し、かつデフロスト時に前記凝縮器用フアン17
を運転させることを特徴とする特許請求の範囲第
1項記載の冷凍機の除霜装置。
[Claims] 1. A condenser 3, an expansion mechanism 5, an evaporator 7, and a compressor 1 are connected in order through refrigerant piping, and a four-way valve 2 is provided, and the four-way valve 2 connects to a compressor discharge pipe 9. A normal inlet 19 is connected to the refrigerant pipe between the evaporator 7 and the compressor 1, a normal outlet 21 is connected to the refrigerant pipe between the expansion mechanism 5 and the evaporator 7 from the pipe side to the four-way valve 2 side. One inlet/outlet 22 is connected to the condenser inlet pipe 3a through a check valve 23 that prevents the flow of refrigerant to the other inlet/outlet 20.
A defrosting device for a refrigerator, characterized in that the defrosting device is configured to communicate with each other. 2. The condenser fan 17 is provided in the condenser 3, and a constant pressure expansion valve 27 is interposed between the evaporator 7 and the compressor 1 and the regular outlet 21 of the four-way valve 2, and a defrost fan 17 is provided in the condenser 3. Sometimes the condenser fan 17
A defrosting device for a refrigerator according to claim 1, characterized in that the defrosting device operates a refrigerator.
JP1161380A 1980-02-01 1980-02-01 Defroster for refrigerator Granted JPS56110846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1161380A JPS56110846A (en) 1980-02-01 1980-02-01 Defroster for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1161380A JPS56110846A (en) 1980-02-01 1980-02-01 Defroster for refrigerator

Publications (2)

Publication Number Publication Date
JPS56110846A JPS56110846A (en) 1981-09-02
JPS6255594B2 true JPS6255594B2 (en) 1987-11-20

Family

ID=11782756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161380A Granted JPS56110846A (en) 1980-02-01 1980-02-01 Defroster for refrigerator

Country Status (1)

Country Link
JP (1) JPS56110846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199396A (en) * 1986-02-25 1987-09-03 日邦精機株式会社 Cutting base
JPH0693557A (en) * 1991-05-23 1994-04-05 Fuatetsuku:Kk Spreading apparatus for patterned fabric and spreading of patterned fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199396A (en) * 1986-02-25 1987-09-03 日邦精機株式会社 Cutting base
JPH0693557A (en) * 1991-05-23 1994-04-05 Fuatetsuku:Kk Spreading apparatus for patterned fabric and spreading of patterned fabric

Also Published As

Publication number Publication date
JPS56110846A (en) 1981-09-02

Similar Documents

Publication Publication Date Title
CN211739592U (en) Air conditioning system capable of continuously heating
US7770411B2 (en) System and method for using hot gas reheat for humidity control
US4565070A (en) Apparatus and method for defrosting a heat exchanger in a refrigeration circuit
US4688396A (en) Air-conditioning hot-water supply device
JP2522919B2 (en) Air conditioner
JP2004507707A (en) Method and apparatus for defrosting in a vapor compression system
JPH05223385A (en) Accumulation system of heat-pump and hot water
US4516408A (en) Refrigeration system for refrigerant heating type air conditioning apparatus
JP3993540B2 (en) Refrigeration equipment
US2748571A (en) Defrosting system for refrigeration evaporators
JPS6255594B2 (en)
JPS5852460Y2 (en) Refrigeration equipment
JPH09318229A (en) Refrigerating device
JP2675620B2 (en) Heat pump type air conditioner
JPS6467572A (en) Air conditioner
JPH1194395A (en) Multi-room air conditioner
JPH07180927A (en) Multi-chamber type cooling and heating device
JPS592832B2 (en) Heat recovery air conditioner
JPS5832300B2 (en) Heat pump type refrigeration equipment
JPH08320172A (en) Air conditioner
JP2513165Y2 (en) Multi-source refrigerator
JPS63148063A (en) Defrostation controller for heat pump type air conditioner
JPS6032535Y2 (en) Heat recovery air conditioner
JPS6032534Y2 (en) Heat recovery air conditioner
JPS5885047A (en) Ventilation control device for cold insulating type air conditioner