JPS6255542B2 - - Google Patents

Info

Publication number
JPS6255542B2
JPS6255542B2 JP6957080A JP6957080A JPS6255542B2 JP S6255542 B2 JPS6255542 B2 JP S6255542B2 JP 6957080 A JP6957080 A JP 6957080A JP 6957080 A JP6957080 A JP 6957080A JP S6255542 B2 JPS6255542 B2 JP S6255542B2
Authority
JP
Japan
Prior art keywords
rubber
olefin
melting point
poly
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6957080A
Other languages
Japanese (ja)
Other versions
JPS56166242A (en
Inventor
Hiroharu Ikeda
Kohei Goto
Yasuyuki Shimozato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP6957080A priority Critical patent/JPS56166242A/en
Priority to US06/256,921 priority patent/US4380607A/en
Priority to DE8181301878T priority patent/DE3175852D1/en
Priority to EP19810301878 priority patent/EP0039240B1/en
Publication of JPS56166242A publication Critical patent/JPS56166242A/en
Publication of JPS6255542B2 publication Critical patent/JPS6255542B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】 本発明は高融点のアむ゜タクチツクポリ―α―
オレフむンをゎムにブレンドしおなる高匟性率で
匕裂抵抗のすぐれたゎム組成物の新芏な補造方法
に関する。 近幎䞀般に甚いられおいる加硫ゎムよりも䞀局
高匟性率の加硫ゎムが特定の分野においお望たれ
るようにな぀おきた。この堎合、匟性率以倖のゎ
ム物性は埓来の加硫ゎムず同皋床の物性を保持
し、加硫ゎム補品を぀くるに際しおの加工性が優
れおいるこずが望たしい。 加硫ゎムの匟性率を倧きくする方法ずしおは、
高匟性率物質カヌボンブラツク、暹脂などを
粉末状や繊維状でゎムに混合する方法が行なわれ
おいる。しかしながらこのような方法では高匟性
率物質の分散性、混合物の加工性およびモゞナラ
ス以倖の加硫物性、䟋えば匕裂抵抗などの点で十
分でない。 最近、ゎムマトリツクス䞭に暹脂をミクロ分散
させるこずにより、ゎムの匟性率および匷床を改
良する詊みずしお、高結晶性の―シンゞオ
タクチツクポリブタゞ゚ンを含むゎム組成物が高
匟性率を瀺し、匕裂抵抗に優れ物性䞊のバランス
のずれたゎム組成物が特定の補造方法で埗られる
こずが開瀺されおいる。䟋えば―ブタゞ゚
ンをシス―重合し、匕続き―重合す
る段重合法特公昭49−17666、特公昭49−
17667や、―シンゞオタクチツクポリブ
タゞ゚ン粉末をゎムず混合した埌、―シン
ゞオタクチツクポリブタゞ゚ンの融点200℃前
埌より℃以䞊高い枩床で凊理しお、ひも状た
たはシヌト状に抌出す方法特開昭53−126050
がある。しかし前者の堎合はポリマヌ混合物の物
性のコントロヌルが容易でなく、たたゎムがシス
――ポリブタゞ゚ンに限定される制玄があ
る。たた埌者の堎合は各皮のゎムを甚いるこずが
できるが、ゎムの加工操䜜で高枩を芁するなど特
殊な加工条件が芁求されるこずや、―シン
ゞオタクチツクポリブタゞ゚ンが高枩でゲル化し
やすいため、加工枩床のコントロヌルが困難な点
がある。さらに―シンゞオタクチツクポリ
ブタゞ゚ンの融点は200℃前埌であるので、融点
以䞊の高い䜿甚枩床が芁求される堎合には実甚䞊
問題がある。 本発明者らは䜿甚するゎムを限定せず、たた特
殊な加工条件を必芁ずせずに、―シンゞオ
タクチツクポリブタゞ゚ンよりも耐熱性に優れた
結晶性ポリマヌを含有させお高匟性率を有し䞔぀
匕裂抵抗にすぐれたゎム組成物を埗るべく鋭意怜
蚎した結果、高融点のアむ゜タクチツクポリ―α
―オレフむンを特定の方法でゎムにブレンドし、
ミクロ分散させるこずによ぀お高匟性率で匕裂抵
抗にすぐれたゎム組成物を工業的に有利に補造で
きるこずを芋出し本発明に到぀た。すなわち本発
明は平均粒埄200Ό以䞋の埮粉末高融点のアむ゜
タクチツクポリ―α―オレフむンを有機溶媒䞭で
撹拌分散させた懞濁分散物ずゎム溶液を混合する
こずを特城ずする高匟性率を有するゎム組成物の
補造方法である。 以䞋に本発明を詳现に説明する。 本発明に甚いられる高融点のアむ゜タクチツク
ポリ―α―オレフむンは融点150℃以䞊、奜たし
くは160℃以䞊のアむ゜タクチツクポリ―α―オ
レフむンである。融点が150℃より䜎いずゎムの
加硫条件䞋で溶融しおしたうので、良奜な物性が
えられない。具䜓的なものずしおはアむ゜タクチ
ツクプロピレン、ポリアリルシクロペンタン、ポ
リアリルシクロヘキサン、ポリアリルベンれン、
ポリ―メチル――ブテン、ポリ―シ
クロヘキシル――ブテン、ポリ―プニ
ル――ブテン、ポリ―メチル――ペン
テン、ポリ―メチル――ペンテン、ポリ
―メチル――ヘキセン、ポリ―メチル
――ヘキセン、ポリビニルシクロペンタンお
よびプロピレンずアリルベンれンの共重合䜓、
―メチル――ブテンず―ブテンの共重
合䜓などのα―オレフむンず他のα―オレフむン
の共重合䜓が挙げられる。 このうちアむ゜タクチツクポリプロピレンずポ
リ―メチル――ペンテンが奜たしい。特
に匕匵匷さを芁求される甚途にはアむ゜タクチツ
クポリプロピレン、特に匕裂匷さを芁求される甚
途にはポリ―メチル――ペンテンを甚い
るのが奜たしい。ポリ―メチル――ペンテ
ンは、䟋えばトリ゚チルアルミニりム―四塩化
チタンからなるチヌグラヌ・ナツタ觊媒で合成で
きる䟋えばBrit.P.9440551963。融点は200
℃以䞊である。ポリ―メチル――ペンテ
ンは高結晶性のため、窒枩附近では通垞の炭化
氎玠やハロゲン化炭化氎玠溶媒には難溶である。
たた本発明に甚いられるアむ゜タクチツクポリプ
ロピレンは䟋えばチヌグラヌ・ナツタ觊媒で通垞
重合される䟋えばG.ナツタ“ステレオ レギ
ナラヌ ポリメリれヌシペン”Pergamon Press.
、1967。融点は150℃以䞊でアむ゜タクチツク
ポリマヌが90以䞊である。又アタクチツクポリ
マヌを分離陀去したものが奜たしい。 本発明においお高融点のアむ゜タクチツクポリ
―α―オレフむンず混合されるゎムはポリむ゜プ
レンゎム、ポリブタゞ゚ンゎム、スチレン―ブタ
ゞ゚ンゎム、ブタゞ゚ン―ペンタゞ゚ン―スチレ
ンゎム、゚チレン―プロピレン系共重合ゎム、む
゜ブチレン―む゜プレン共重合ゎム、倩然ゎムな
どが挙げられるが、このうちポリむ゜プレンゎ
ム、ポリブタゞ゚ンゎム、スチレン―ブタゞ゚ン
ゎムが奜たしい。 本発明の混合方法は平均粒埄200Ό以䞋の埮粉
末高融点アむ゜タクチツクポリ―α―オレフむン
を有機溶媒䞭に分散させおゎム溶液ず混合するず
いう特殊な方法をず぀たものである。本方法によ
りゎム䞭にポリマヌが埮粒子状䞔぀均䞀に混合さ
れ本発明の目的が達せられる。 本発明に䜿甚される平均粒埄200Ό以䞋の埮粉
末高融点アむ゜タクチツクポリ―α―オレフむン
は高融点のアむ゜タクチツクポリ―α―オレフむ
ンの粉末たたはペレツトを有機溶媒䞭に加えお膚
最させた膚最物を界面掻性剀氎溶液ず共に機械的
に激しく撹拌した埌スチヌム通気などにより加熱
しお有機溶媒を陀去する方法粉末化法、たた
はアむ゜タクチツクポリ―α―オレフむンをチヌ
グラヌ・ナツタ觊媒で重合しおえられる埮粉末ス
ラリヌ状重合䜓から粒埄200Ό以䞋のものを遞択
する方法遞別法などにより埗るこずができる
が、これらの方法に限定されるものではない。 本発明で䜿甚する高融点アむ゜タクチツクポリ
―α―オレフむンの平均粒埄は200Ό以䞋の埮粉
末である必芁がある。平均粒埄が200Όを超える
ずゎムぞの分散が悪くゎム組成物の物性の䜎䞋が
著しい。奜たしい平均粒埄は100Ό以䞋、さらに
奜たしくは50Ό以䞋である。䞊蚘粉末化法の堎合
50Ό以䞋にするこずが可胜であり奜たしい。 埮粉末高融点アむ゜タクチツクポリ―α―オレ
フむンを撹拌分散させる有機溶媒ずしおは炭化氎
玠たたはハロゲン化炭化氎玠などの溶媒が挙げら
れる。具䜓的にはベンれン、トル゚ン、キシレ
ン、テトラリン、ヘキサン、ヘプタン、オクタ
ン、シクロヘキサン、塩化メチレン、二塩化メチ
レン、䞉臭化゚タン、クロルベンれン、プロムベ
ンれン、―ゞクロルベンれンおよびこれらの混
合物がある。これらのうちベンれン、トル゚ン、
ヘキサン、ヘプタン、シクロヘキサンなどの沞点
120℃以䞋の炭化氎玠化合物が溶媒回収の点で特
に奜たしい。 䞀方ゎムを溶解させる溶媒ずしおはゎムを溶解
する有機溶媒であればすべお䜿甚可胜であり、䞊
蚘のアむ゜タクチツクポリ―α―オレフむンを分
散させる有機溶媒ず必ずしも䞀臎させる必芁はな
いが、䞀臎させる方が工業的には有利である。 本発明で蚀う懞濁分散ずはポリマヌの埮粒子状
が膚最しないか、たたは䜎い膚最床の状態で、䞔
぀溶媒に垌釈され懞濁しおいる状態で、溶媒は単
に垌釈分散媒䜓ずしお䜜甚しおいるこずを意味す
る。懞濁分散するポリマヌの濃床は通垞0.1〜25
重量で、奜たしくは0.1〜10重量の範囲であ
る。懞濁分散物は埮粉末高融点アむ゜タクチツク
ポリ―α―オレフむンを有機溶媒䞭で機械的な混
合撹拌をするこずによりえられる。埮粉末の凝集
を防止し分散状態を良奜に維持する意味から、䟋
えば歯付円板むンペラ翌で高速撹拌する方法ある
いは特殊機化工業補ホモミキサヌMV―型を甚
い2000rpm以䞊の条件で激しく撹拌するこずが奜
たしい。この際の枩床条件は特に制限はないが、
通垞〜100℃で行なうこずができる。 本発明のゎム溶液ずしおは固䜓ゎムを有機溶媒
に溶解させおゎム溶液ずしたものや、有機溶媒䞭
で単量䜓を重合させた埌のゎム重合䜓溶液が挙げ
られる。このゎム重合䜓溶液は重合停止剀や老化
防止剀を含有しおいたり、溶媒で垌釈するこずが
できる。ゎム溶液の固圢分濃床は通垞0.5〜40重
量であり、奜たしくは〜20重量の範囲であ
る。 本発明においお高融点アむ゜タクチツクポリ―
α―オレフむンの有機溶媒䞭の懞濁分散ずゎム溶
液ずの混合はプロペラ型たたはタヌビン型などの
撹拌機を甚いる方法などの通垞行なわれおいる方
法により行なうこずができる。効率よく混合する
意味からは懞濁分散物調補の項で蚘したような高
速撹忰機を甚いるのがより奜たしい。混合順序は
撹拌分散されおいる高融点アむ゜タクチツクポリ
―α―オレフむンの懞濁物䞭にゎム溶液を添加す
るか、その逆の方法、あるいは䞡者を同時に混合
するいずれの方法でもよい。混合枩床は特に制限
はないが、通垞〜100℃で行なうこずができ
る。混合時間は䞡者が均䞀に混合するのに十分な
時間であればよく、特に制限はない。 高融点のアむ゜タクチツクポリ―α―オレフむ
ンずゎムの混合割合に制限はないが、高匟性率お
よび匕裂抵抗の優れた加硫ゎムを埗るためには、
生成物䞭の高融点のアむ゜タクチツクポリ―α―
オレフむン含量は〜40重量ずするこずが奜た
しい。特に奜たしくは〜30重量で、曎に奜た
しくは〜25重量の範囲である。含量が重量
未満では匟性率および匕裂抵抗の改良効果が小
さく、たた40重量を超えるず加工性が悪くな
る。 混合埌のゎム組成物の回収は通垞のゎム状ポリ
マヌの回収法によ぀お行なうこずができる。䟋え
ば倧量の非溶媒を接觊させるか、たたは界面掻性
剀を添加しおスチヌムず接觊させる方法などが挙
げられる。 本発明によ぀お埗られるゎム組成物は単独たた
は他のゎムず混合しおゎム甚途に甚いられる。こ
こに甚いる他のゎムずしおはポリむ゜プレンゎ
ム、ポリブタゞ゚ンゎム、スチレン―ブタゞ゚ン
ゎム、゚チレン―プロピレンゎム、ブチルゎム、
倩然ゎムなどがあるが、特にゞ゚ン系ゎム又は倩
然ゎムが奜たしい。 本発明のゎム組成物をゎム甚途に䜿甚する堎合
は通垞ゎムに配合される補匷剀および配合剀を䜿
甚するこずができる。たた加工法、加硫法に぀い
おも通垞ゎムにおいお行なわれる方法が甚いられ
る。 次に実斜䟋を挙げお本発明を詳现に説明する。 実斜䟋  ポリ―メチル――ペンテンICI瀟補融
点235℃重量郚あたり、トル゚ン20重量郚で
膚最させた膚最ポリマヌを、ロゞン酞カリりム氎
溶液䞭で高速ミキサヌ特殊機化工業補ホモミキ
サヌMV―型10000rpmで撹拌した。撹拌の埌
半でスチヌム通気を行ない、溶媒を陀去した。こ
の堎合ロゞン酞カリりムはポリ―メチル―
―ペンテンに察しを䜿甚した。このよ
うにしお埗られた粉末は、回収氎掗埌也燥した。
平均粒埄20Όであ぀た。 この埮粉末を―ヘキサン溶媒分散物濃床
1.5重量に加え、高速ミキサヌ10000rpm
で撹拌分散しながら懞濁状態でポリむ゜プレンゎ
ム日本合成ゎム株補IR―2200のヘキサ
ン溶液固圢分濃床10重量を加えお撹拌混合
した。混合物を少量のゞ――ブチル―
―クレゟヌルを含む倧量のメタノヌル䞭にあけ凝
固させた。凝固したゎム組成物を䞀昌倜真空也燥
埌、第衚に瀺す配合凊方により、配合加工を行
な぀た。145℃で20分プレス加硫を行な぀た埌、
JISK6301に準じお匕匵詊隓、匕裂詊隓を行ない
物性を枬定した。結果は第衚に瀺した。このゎ
ム組成物は良奜な匕裂抵抗ず高い匟性率を有しお
いるこずがわかる。 第  è¡š ポリマヌ 100重量郹 カヌボンブラツクISAF 50 芳銙族油JSR AROMA 10 亜 鉛 華  ステアリン酞  老化防止剀810―NA  加硫促進剀CZ 1.5 ç¡« 黄 2.5 実斜䟋  ポリプロピレン䞉菱油化株補ノヌプレ
ン、融点165℃重量郚あたり、トル゚ン20重
量郚で膚最させた膚最ポリマヌを、ロゞン酞カリ
りム氎溶液ず共に高速ミキサヌ10000rpmで
撹拌した。撹拌の埌半でスチヌム通気を行ない溶
媒を陀去した。この堎合ロゞンカリりムはポリプ
ロピレンに察しを䜿甚した。このように
しお埗られた粉末を回収也燥した。平均粒埄25ÎŒ
であ぀た。 埗られた埮粉末を―ヘキサン溶媒分散物濃
床1.5重量に加え、高速ミキサヌ
10000rpmで撹拌分散しながら懞濁状態でポリ
む゜プレンゎムIR―2200のヘキサン溶液
ポリマヌ濃床10重量を加えお撹拌混合し
た。 混合物の埌凊理、配合加工は実斜䟋ず同様に
行な぀た。結果を第衚に瀺す。この組成物は良
奜な匕裂抵抗ず高い匟性率を有しおいるこずがわ
かる。 実斜䟋  実斜䟋で甚いたIR―2200の―ヘキサン溶
液の代りにBR01日本合成ゎム補ポリブタゞ゚
ンゎムのトル゚ン溶液を甚いたほかはすべお実
斜䟋ず同様に行な぀た。この組成物も良奜な匕
裂抵抗ず高い匟性率を有しおいるこずがわかる。 実斜䟋  IR―2200の―ヘキサン溶液の代りに
SBR#1500のトル゚ン溶液を甚いゎム組成物䞭の
ポリ―メチル――ペンテンの含量を10重
量ずした他は実斜䟋ず同様に行な぀た。 比范䟋 〜 ポリ―メチル――ペンテンたたはポリ
プロピレンを混合しないIR―2200、BR01、
SBR#1500を第衚に瀺す配合凊方で配合加工を
行な぀た。ただし加硫はIR―2200、BR01は145℃
×20分、SBR#1500は145℃×60分である。 比范䟋  実斜䟋の方法でえられた平均粒埄25Όのポリ
プロピレン10重量をIR―2200ず混緎りした䟋
である。この方法では匟性率の改良効果が少なく
匕匵匷さが倧巟䜎䞋したゎム組成物しか埗られな
い。 実斜䟋  ゎム組成物䞭のポリ―メチル――ペンテ
ンの含有量を10重量ずした他は実斜䟋ず同
様に行な぀た。 実斜䟋  ゎム組成物䞭のアむ゜タクチツクポリプロピレ
ンの含有量を重量ずした他は実斜䟋ず同様
に行な぀た。 比范䟋  平均粒埄350Όのアむ゜タクチツクポリプロピ
レン粉末を甚いた他は実斜䟋ず同様に行な぀
た。比范䟋ず同じく匟性率の改良効果が少な
く、匕匵匷さが倧巟䜎䞋したゎム組成物しか埗ら
れない。 【衚】
DETAILED DESCRIPTION OF THE INVENTION The present invention provides high melting point isotactic poly-α-
This invention relates to a new method for producing a rubber composition with high elastic modulus and excellent tear resistance, which is made by blending olefin with rubber. In recent years, vulcanized rubber having a higher elastic modulus than the commonly used vulcanized rubber has become desired in certain fields. In this case, it is desirable that the physical properties of the rubber other than the elastic modulus are comparable to those of conventional vulcanized rubber, and that the processability in producing vulcanized rubber products is excellent. As a method to increase the elastic modulus of vulcanized rubber,
A method of mixing high elastic modulus substances (carbon black, resin, etc.) with rubber in the form of powder or fibers has been used. However, such a method is not sufficient in terms of dispersibility of the high modulus material, processability of the mixture, and vulcanized physical properties other than modulus, such as tear resistance. Recently, in an attempt to improve the elastic modulus and strength of rubber by microdispersing a resin in a rubber matrix, rubber compositions containing highly crystalline 1,2-syndiotactic polybutadiene have been shown to exhibit high elastic modulus. discloses that a rubber composition with excellent tear resistance and well-balanced physical properties can be obtained by a specific manufacturing method. For example, a two-stage polymerization method in which 1,3-butadiene is cis-1,4-polymerized and then 1,2-polymerized (Japanese Patent Publication No. 49-17666;
17667) or 1,2-syndiotactic polybutadiene powder is mixed with rubber and then treated at a temperature 5°C or more higher than the melting point of 1,2-syndiotactic polybutadiene (around 200°C) to form a string or sheet. Method of extruding into shapes (Japanese Patent Application Laid-open No. 53-126050)
There is. However, in the former case, it is difficult to control the physical properties of the polymer mixture, and the rubber is limited to cis-1,4-polybutadiene. In the latter case, various rubbers can be used, but special processing conditions such as high temperatures are required for rubber processing, and 1,2-syndiotactic polybutadiene easily gels at high temperatures. However, it is difficult to control the processing temperature. Furthermore, since the melting point of 1,2-syndiotactic polybutadiene is around 200°C, there is a practical problem when a high operating temperature higher than the melting point is required. The present inventors have achieved high elastic modulus by incorporating a crystalline polymer with better heat resistance than 1,2-syndiotactic polybutadiene without limiting the rubber used or requiring special processing conditions. As a result of intensive studies to obtain a rubber composition with high melting point and excellent tear resistance, we found that
- Olefin is blended into rubber in a specific way,
The inventors have discovered that a rubber composition with a high elastic modulus and excellent tear resistance can be industrially advantageously produced by microdispersing the rubber composition, leading to the present invention. That is, the present invention provides a high elastic modulus product characterized by mixing a rubber solution with a suspension dispersion obtained by stirring and dispersing a fine powder high-melting point isotactic poly-α-olefin with an average particle size of 200Ό or less in an organic solvent. A method for producing a rubber composition having the following. The present invention will be explained in detail below. The high melting point isotactic poly-α-olefin used in the present invention is an isotactic poly-α-olefin having a melting point of 150°C or higher, preferably 160°C or higher. If the melting point is lower than 150°C, it will melt under the rubber vulcanization conditions, making it impossible to obtain good physical properties. Specific examples include isotactic propylene, polyallylcyclopentane, polyallylcyclohexane, polyallylbenzene,
Poly(3-methyl-1-butene), poly(3-cyclohexyl-1-butene), poly(4-phenyl-1-butene), poly(3-methyl-1-pentene), poly(4-methyl- 1-pentene), poly(3-methyl-1-hexene), poly(4-methyl-1-hexene), polyvinylcyclopentane and copolymers of propylene and allylbenzene,
Examples include copolymers of α-olefin and other α-olefins, such as copolymers of (3-methyl-1-butene) and 1-butene. Among these, isotactic polypropylene and poly(4-methyl-1-pentene) are preferred. It is preferable to use isotactic polypropylene especially for applications requiring tensile strength, and poly(4-methyl-1-pentene) for applications requiring particularly tear strength. Poly(4-methyl-1-pentene) can be synthesized, for example, using a Ziegler-Natsuta catalyst consisting of triethylaluminum-titanium tetrachloride (for example, Brit. P. 944055 (1963)). Melting point is 200
℃ or higher. Because poly(4-methyl-1-pentene) is highly crystalline, it is poorly soluble in ordinary hydrocarbon and halogenated hydrocarbon solvents near nitrogen temperatures.
The isotactic polypropylene used in the present invention is usually polymerized using, for example, a Ziegler-Natsuta catalyst (see, for example, G. Natsutta "Stereo Regular Polymerization", Pergamon Press).
, (1967)). The melting point is 150℃ or higher and the isotactic polymer content is 90% or higher. Preferably, the atactic polymer is separated and removed. In the present invention, the rubbers to be mixed with the isotactic poly-α-olefin having a high melting point are polyisoprene rubber, polybutadiene rubber, styrene-butadiene rubber, butadiene-pentadiene-styrene rubber, ethylene-propylene copolymer rubber, and isobutylene-isoprene rubber. Examples include copolymer rubber and natural rubber, among which polyisoprene rubber, polybutadiene rubber, and styrene-butadiene rubber are preferred. The mixing method of the present invention employs a special method in which fine powder high melting point isotactic poly-α-olefin with an average particle size of 200 ÎŒm or less is dispersed in an organic solvent and mixed with a rubber solution. By this method, the polymer is uniformly mixed in the rubber in the form of fine particles, thereby achieving the object of the present invention. The fine powder high melting point isotactic poly-α-olefin used in the present invention with an average particle size of 200ÎŒ or less is obtained by adding powder or pellets of high melting point isotactic poly-α-olefin to an organic solvent and swelling it. A method in which the swollen product is vigorously stirred mechanically with an aqueous surfactant solution and then heated by steam ventilation to remove the organic solvent (powderization method), or isotactic poly-α-olefin is polymerized using a Ziegler-Natsuta catalyst. It can be obtained by a method of selecting particles having a particle size of 200 ÎŒm or less from the resulting fine powder slurry polymer (selection method), but is not limited to these methods. The high melting point isotactic poly-α-olefin used in the present invention must be a fine powder with an average particle size of 200 ÎŒm or less. If the average particle size exceeds 200ÎŒ, dispersion into rubber is poor and the physical properties of the rubber composition are significantly deteriorated. The preferred average particle size is 100ÎŒ or less, more preferably 50ÎŒ or less. In case of the above powdering method
It is possible and preferable to make the thickness 50Ό or less. Examples of the organic solvent in which the fine powder high melting point isotactic poly-α-olefin is stirred and dispersed include solvents such as hydrocarbons and halogenated hydrocarbons. Specific examples include benzene, toluene, xylene, tetralin, hexane, heptane, octane, cyclohexane, methylene chloride, methylene dichloride, ethane tribromide, chlorobenzene, prombenzene, o-dichlorobenzene, and mixtures thereof. Among these, benzene, toluene,
Boiling points of hexane, heptane, cyclohexane, etc.
Hydrocarbon compounds having a temperature of 120° C. or lower are particularly preferred in terms of solvent recovery. On the other hand, as a solvent for dissolving rubber, any organic solvent that dissolves rubber can be used, and although it does not necessarily have to match the organic solvent in which the isotactic poly-α-olefin is dispersed, it is preferable to match it. is industrially advantageous. In the present invention, suspension dispersion refers to a state in which the fine particles of the polymer do not swell or have a low degree of swelling, and are diluted and suspended in a solvent, with the solvent simply acting as a dilution and dispersion medium. means. The concentration of polymer to be suspended and dispersed is usually 0.1 to 25
% by weight, preferably in the range of 0.1 to 10% by weight. The suspension dispersion can be obtained by mechanically mixing and stirring a finely powdered high melting point isotactic poly-α-olefin in an organic solvent. In order to prevent the agglomeration of fine powder and maintain a good dispersion state, for example, high-speed stirring with a toothed disk impeller blade or vigorous stirring at 2000 rpm or more using a Homomixer MV-H manufactured by Tokushu Kika Kogyo. It is preferable to do so. There are no particular restrictions on the temperature conditions at this time, but
It can usually be carried out at a temperature of 0 to 100°C. Examples of the rubber solution of the present invention include a rubber solution obtained by dissolving solid rubber in an organic solvent, and a rubber polymer solution obtained by polymerizing monomers in an organic solvent. This rubber polymer solution may contain a polymerization terminator or anti-aging agent, or may be diluted with a solvent. The solid content concentration of the rubber solution is usually 0.5 to 40% by weight, preferably 1 to 20% by weight. In the present invention, high melting point isotactic poly
Suspension and dispersion of α-olefin in an organic solvent and mixing with the rubber solution can be carried out by a commonly used method such as a method using a propeller type or turbine type stirrer. From the standpoint of efficient mixing, it is more preferable to use a high-speed stirrer as described in the section on suspension and dispersion preparation. The mixing order may be any method in which the rubber solution is added to the suspension of the high melting point isotactic poly-α-olefin that is stirred and dispersed, the reverse method, or both methods are mixed simultaneously. There are no particular restrictions on the mixing temperature, but it can usually be carried out at 0 to 100°C. The mixing time is not particularly limited as long as it is sufficient to uniformly mix both. There is no limit to the mixing ratio of high melting point isotactic poly-α-olefin and rubber, but in order to obtain a vulcanized rubber with high elastic modulus and excellent tear resistance,
High melting point isotactic poly-α- in the product
The olefin content is preferably 2 to 40% by weight. It is particularly preferably in the range of 3 to 30% by weight, and more preferably in the range of 3 to 25% by weight. If the content is less than 2% by weight, the effect of improving elastic modulus and tear resistance will be small, and if it exceeds 40% by weight, processability will deteriorate. The rubber composition after mixing can be recovered by a conventional method for recovering rubbery polymers. For example, methods include contacting with a large amount of non-solvent, or adding a surfactant and contacting with steam. The rubber composition obtained by the present invention can be used alone or in combination with other rubbers for rubber applications. Other rubbers used here include polyisoprene rubber, polybutadiene rubber, styrene-butadiene rubber, ethylene-propylene rubber, butyl rubber,
Although natural rubber and the like are available, diene rubber or natural rubber is particularly preferred. When the rubber composition of the present invention is used for rubber applications, reinforcing agents and compounding agents that are commonly incorporated into rubber can be used. Furthermore, the processing and vulcanization methods used are those commonly used for rubber. Next, the present invention will be explained in detail with reference to Examples. Example 1 A swollen polymer prepared by swelling 1 part by weight of poly(4-methyl-1-pentene) (manufactured by ICI, melting point 235°C) with 20 parts by weight of toluene was mixed in a potassium rosinate aqueous solution using a high-speed mixer (Tokushu Kikaku Co., Ltd.). The mixture was stirred at 10,000 rpm (industrial homomixer MV-H type). In the latter half of the stirring, steam ventilation was performed to remove the solvent. In this case, potassium rosinate is poly(4-methyl-1
- Pentene) 3g was used per 1g. The powder thus obtained was recovered, washed with water, and then dried.
The average particle size was 20Ό. This fine powder was mixed with n-hexane solvent (dispersion concentration
1.5% by weight) plus high speed mixer (10000rpm)
A hexane solution (solid content concentration 10% by weight) of polyisoprene rubber (IR-2200 manufactured by Nippon Gosei Rubber Co., Ltd.) was added in a suspended state while stirring and dispersing the mixture. Add a small amount of 2,6 di-t-butyl-p to the mixture.
- It was poured into a large amount of methanol containing cresol and coagulated. After drying the coagulated rubber composition in vacuum for a day and night, it was compounded according to the formulation shown in Table 1. After press curing at 145℃ for 20 minutes,
Tensile tests and tear tests were conducted according to JISK6301 to measure physical properties. The results are shown in Table 2. It can be seen that this rubber composition has good tear resistance and high elastic modulus. Table 1 Polymer 100 parts by weight Carbon black ISAF 50 Aromatic oil JSR AROMA 10 Zinc Flower 5 Stearic acid 1 Antioxidant 810-NA 1 Vulcanization accelerator CZ 1.5 Sulfur 2.5 Example 2 Polypropylene (Mitsubishi Yuka Co., Ltd. ), a swollen polymer swollen with 20 parts by weight of toluene was stirred with an aqueous potassium rosinate solution in a high-speed mixer (10,000 rpm). In the latter half of stirring, steam ventilation was performed to remove the solvent. In this case, 3 g of rosin potassium was used per 1 g of polypropylene. The powder thus obtained was collected and dried. Average particle size 25Ό
It was hot. The obtained fine powder was added to n-hexane solvent (dispersion concentration 1.5% by weight), and while stirring and dispersing with a high-speed mixer (10000 rpm), a hexane solution of polyisoprene rubber (IR-2200) (polymer concentration 10 % by weight) and stirred and mixed. Post-treatment and blending of the mixture were carried out in the same manner as in Example 1. The results are shown in Table 2. It can be seen that this composition has good tear resistance and high modulus. Example 3 The same procedure as in Example 2 was carried out except that a toluene solution of BR01 (polybutadiene rubber manufactured by Nippon Synthetic Rubber Co., Ltd.) was used instead of the n-hexane solution of IR-2200 used in Example 2. It can be seen that this composition also has good tear resistance and high elastic modulus. Example 4 Instead of n-hexane solution of IR-2200
The same procedure as in Example 1 was conducted except that a toluene solution of SBR#1500 was used and the content of poly(4-methyl-1-pentene) in the rubber composition was 10% by weight. Comparative Examples 1 to 3 IR-2200, BR01, without mixing poly(4-methyl-1-pentene) or polypropylene
SBR#1500 was compounded according to the compounding recipe shown in Table 1. However, vulcanization is at IR-2200, and BR01 is at 145℃.
x 20 minutes, SBR#1500 is 145℃ x 60 minutes. Comparative Example 4 This is an example in which 10% by weight of polypropylene having an average particle size of 25ÎŒ obtained by the method of Example 2 was kneaded with IR-2200. This method has little effect on improving the modulus of elasticity and can only produce a rubber composition whose tensile strength is significantly reduced. Example 5 The same procedure as in Example 1 was carried out except that the content of poly(4-methyl-1-pentene) in the rubber composition was 10% by weight. Example 6 The same procedure as in Example 3 was carried out except that the content of isotactic polypropylene in the rubber composition was changed to 5% by weight. Comparative Example 5 The same procedure as in Example 2 was carried out except that an isotactic polypropylene powder having an average particle size of 350 ÎŒm was used. As in Comparative Example 4, only a rubber composition with little effect of improving the elastic modulus and with a large decrease in tensile strength was obtained. 【table】

Claims (1)

【特蚱請求の範囲】  平均粒埄200Ό以䞋の埮粉末高融点アむ゜タ
クチツクポリ―α―オレフむンを有機溶媒䞭で撹
拌分散させた懞濁分散物ずゎム溶液を混合させた
のち、ポリマヌ混合物を回収するこずを特城ずす
る高融点のアむ゜タクチツクポリ―α―オレフむ
ンを含有する高匟性率を有するゎム組成物の補造
法。  高融点のアむ゜タクチツクポリ―α―オレフ
むンがポリ―メチル――ペンテンである
特蚱請求の範囲第項蚘茉のゎム組成物の補造
法。  高融点のアむ゜タクチツクポリ―α―オレフ
むンがアむ゜タクチツクポリプロピレンである特
蚱請求の範囲第項蚘茉のゎム組成物の補造法。  ゎムがポリむ゜プレンゎム、ポリブタゞ゚ン
ゎム、スチレン―ブタゞ゚ンゎムである特蚱請求
の範囲第項蚘茉のゎム組成物の補造法。  ゎム組成物䞭の高融点のアむ゜タクチツクポ
リ―α―オレフむン含量が〜40重量である特
蚱請求の範囲第項蚘茉のゎム組成物の補造法。
[Scope of Claims] 1. After mixing a suspension dispersion of finely powdered high-melting point isotactic poly-α-olefin with an average particle size of 200Ό or less in an organic solvent with stirring and dispersion, and a rubber solution, a polymer mixture is mixed. 1. A method for producing a rubber composition having a high elastic modulus containing a high melting point isotactic poly-α-olefin, which comprises recovering the isotactic poly-α-olefin. 2. The method for producing a rubber composition according to claim 1, wherein the isotactic poly-α-olefin with a high melting point is poly(4-methyl-1-pentene). 3. The method for producing a rubber composition according to claim 1, wherein the isotactic poly-α-olefin having a high melting point is isotactic polypropylene. 4. The method for producing a rubber composition according to claim 1, wherein the rubber is polyisoprene rubber, polybutadiene rubber, or styrene-butadiene rubber. 5. The method for producing a rubber composition according to claim 1, wherein the content of the high melting point isotactic poly-α-olefin in the rubber composition is 2 to 40% by weight.
JP6957080A 1980-04-28 1980-05-27 Preparation of rubber composition having high modulus of elasticity Granted JPS56166242A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6957080A JPS56166242A (en) 1980-05-27 1980-05-27 Preparation of rubber composition having high modulus of elasticity
US06/256,921 US4380607A (en) 1980-04-28 1981-04-23 Rubber composition having high modulus of elasticity and process for preparing same
DE8181301878T DE3175852D1 (en) 1980-04-28 1981-04-28 Process for the preparation of rubber compositions having a high modulus of elasticity
EP19810301878 EP0039240B1 (en) 1980-04-28 1981-04-28 Process for the preparation of rubber compositions having a high modulus of elasticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6957080A JPS56166242A (en) 1980-05-27 1980-05-27 Preparation of rubber composition having high modulus of elasticity

Publications (2)

Publication Number Publication Date
JPS56166242A JPS56166242A (en) 1981-12-21
JPS6255542B2 true JPS6255542B2 (en) 1987-11-20

Family

ID=13406567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6957080A Granted JPS56166242A (en) 1980-04-28 1980-05-27 Preparation of rubber composition having high modulus of elasticity

Country Status (1)

Country Link
JP (1) JPS56166242A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4384862B2 (en) * 2003-02-28 2009-12-16 䜏友ゎム工業株匏䌚瀟 Rubber composition for tire and pneumatic tire using the same
JP4342814B2 (en) * 2003-02-28 2009-10-14 䜏友ゎム工業株匏䌚瀟 Rubber composition for tire and pneumatic tire using the same
JP4384873B2 (en) * 2003-05-13 2009-12-16 䜏友ゎム工業株匏䌚瀟 Rubber composition for bead apex and pneumatic tire using the same

Also Published As

Publication number Publication date
JPS56166242A (en) 1981-12-21

Similar Documents

Publication Publication Date Title
KR920000377B1 (en) A process for the production of tack-free pourable fuller containing elastomer powder
US3846365A (en) Process for the production of pourable elastomer particles
US3937681A (en) Tire tread of homopolymers of butadiene
JPH11315108A (en) Anionic polymerization initiator for producing macro-branched diene-based rubber
JPH01207342A (en) Isoolefin polymer having improved processing characteristics
JPH0229695B2 (en)
US4374941A (en) Particle size control of SBR/carbon black powder
US3304281A (en) Blends of rubbery polymers
US6800126B2 (en) Preparation and use of composite of rubber and carbon black aggregates and articles of manufacture, including tires, having a component comprised thereof
JPH11246711A (en) Rubber composition, tire, and outsole
JPS6255542B2 (en)
US3551392A (en) Process for the preparation of branched conjugated diene polymers
CA1339435C (en) Masterbatch with fiber and liquid elastomer
US4380607A (en) Rubber composition having high modulus of elasticity and process for preparing same
US3470144A (en) Process for producing copolymer
JP3672382B2 (en) Pneumatic tire
US3728300A (en) Process for producing polymer blends
JPS6255537B2 (en)
JP3220507B2 (en) Rubber-like polymer composition
JPS5842635A (en) Production of high-modulus rubber composition
JPS58152030A (en) Rubber composition
CA2349196C (en) Blending of polymeric materials and fillers
EP0039240A1 (en) Process for the preparation of rubber compositions having a high modulus of elasticity
US3334058A (en) Process of dispersing asphaltenes in rubber
GB2147589A (en) Preparing fibre-reinforcing rubbery polymers