JPS6255537B2 - - Google Patents

Info

Publication number
JPS6255537B2
JPS6255537B2 JP10319880A JP10319880A JPS6255537B2 JP S6255537 B2 JPS6255537 B2 JP S6255537B2 JP 10319880 A JP10319880 A JP 10319880A JP 10319880 A JP10319880 A JP 10319880A JP S6255537 B2 JPS6255537 B2 JP S6255537B2
Authority
JP
Japan
Prior art keywords
rubber
melting point
weight
poly
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10319880A
Other languages
Japanese (ja)
Other versions
JPS5730738A (en
Inventor
Kazuhiko Yamamoto
Yasuyuki Shimozato
Hiroharu Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP10319880A priority Critical patent/JPS5730738A/en
Priority to DE8181301878T priority patent/DE3175852D1/en
Priority to EP19810301878 priority patent/EP0039240B1/en
Publication of JPS5730738A publication Critical patent/JPS5730738A/en
Publication of JPS6255537B2 publication Critical patent/JPS6255537B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリイソプレンゴムたはポリイソプレ
ンゴムを主成分とするゴムに高融点のアイソタク
チツクポリ―α―オレフインをミクロ分散させた
混合物を特定の温度範囲で延伸加工することによ
り高弾性率を有するゴム組成物を製造する方法に
関する。 近年産業界においては省資源、省エネルギーが
重要なテーマになつており、ゴム業界においても
軽量化、高性能化が志向されている。そのため一
般に用いられている加硫ゴムよりもさらに高弾性
率の加硫ゴムが特定の分野において望まれるよう
になつてきた。この場合弾性率以外の物性は従来
の加硫ゴムと同程度の物性を保持し、ゴム製品を
製造するに際しての加工性が優れていることが望
ましい。 加硫ゴムの弾性率を大きくする方法としては高
弾性率を有する物質(カーボンブラツク、樹脂な
ど)を粉末状や繊維状にしてゴムに混合する方法
が行なわれている。しかしながらこのような方法
では高弾性率の物質の分散性およびゴムと高弾性
率物質との界面接着が充分でないため、加硫ゴム
に応力が作用した場合、ゴムと高弾性物質との界
面が破壊されるので、引張強さ、引裂抵抗、耐屈
曲性などの加硫物性の低下をもたらす。例えばジ
エン系ゴムのうち、耐屈曲性の最も優れたゴムで
ありラジアルタイヤ用として広く用いられている
ポリイソプレンゴムにおいても、カーボンブラツ
クを増量して高弾性率化した場合、加硫物性特に
耐屈曲性が低下するという問題がある。 さらに高結晶性の1,2―ポリブタジエンの短
繊維をゴム中にミクロ分散させた組成物が知られ
ているが(特開昭55−23150号)、高結晶性の1,
2―ポリブタジエンが高不飽和性であるため、た
とえ耐破壊特性、補強性が改良されても熱安定性
に問題があつて好ましくない。 本発明者らは従来の高弾性率物質による補強ゴ
ムの上記欠点を改良すべく新しい補強剤およびそ
の混合方法につき鋭意検討した結果、アイソタク
チツクポリ―α―オレフインをポリイソプレンゴ
ム中に特定の方法でミクロ分散させることにより
高弾性率で破壊特性の優れたゴム組成物が得られ
ることを見出した。例えば平均粒径200μ以下の
微粉末高融点アイソタクチツクポリ―α―オレフ
インを有機溶媒中で撹拌分散させた懸濁分散物と
ゴム溶液を混合させた後、ポリマー混合物を回収
する方法(特開昭56−166242号、特願昭55−
69570号)、高融点のアイソタクチツクポリ―α―
オレフインを有機溶媒膨潤状態で機械的剪断力を
与えて得られる分散液とゴム溶液を混合する方法
(特開昭56−151741号、特願昭55−55450号)、な
どがある。 本発明者らはかかるゴム組成物についてさらに
検討を重ねた結果、上記種々の方法で製造したポ
リイソプレンゴムと高融点アイソタクチツクポリ
―α―オレフインとの混合物をロール、押出機な
どの加工機を用いて特定の条件で加工させた場
合、さらに未加硫物のグリーン強度が向上し、加
硫物が高弾性率で、破壊特性が著しく向上したゴ
ム組成物が工業的に有利に製造できることを見出
し、本発明に到達した。即ち本発明はポリイソプ
レンゴムまたはポリイソプレンゴムを主成分とす
るゴムに融点150℃以上の高融点アイソタクチツ
クポリ―α―オレフインを平均粒子径50μ以下に
分散させた混合物を高融点アイソタクチツクポリ
―α―オレフインの融点より65℃低い温度から融
点より20℃高い温度の間で延伸加工することを特
徴とする高弾性率を有するゴム組成物の製造方法
である。 以下に本発明を詳細に説明する。 本発明のポリイソプレンゴムはシス―1,4含
量が90%以上の高シス―1,4―ポリイソプレン
ゴムまたは天然ゴムである。ポリイソプレンゴム
に混合されるゴムとしてはポリブタジエンゴム、
スチレン―ブタジエンゴムなどのジエン系ゴムや
エチレン―プロピレンゴム、ブチルゴムやこれら
の混合物などが挙げられるが、共加硫の容易さか
ら、ジエン系ゴムが好ましい。ゴム混合物中のポ
リイソプレンゴムの含量は50%以上である。50%
より小さいと破壊特性が悪くなる。 本発明に用いられる高融点のアイソタクチツク
ポリ―α―オレフインは融点(DSCを用いて20
℃/分でスキヤニングさせたときのピーク温度)
150℃以上、好ましくは160℃以上のアイソタクチ
ツクポリ―α―オレフインである。融点が150℃
未満ではゴムの加硫条件下で溶融し良好な物性が
得られない。 具体例としてはアイソタクチツクポリプロピレ
ン(以下アイソタクチツクを省略して単にポリプ
ロピレンという場合がある)、ポリアリルシクロ
ペンタン、ポリアリルシクロヘキサン、ポリアリ
ルベンゼン、ポリ(3―メチル―1―ブテン)、
ポリ(3―シクロヘキシル―1―ブテン)、ポリ
(4―フエニル―1―ブテン)、ポリ(3―メチル
―1―ペンテン)、ポリ(4―メチル―1―ペン
テン)、ポリ(3―メチル―1―ヘキセン)、ポリ
(4―メチル―1―ヘキセン)、ポリビニルシクロ
ペンタンおびプロピレンとアリルベンゼンの共重
合体、3―メチル―1―ブテンと1―ブテンの共
重合体などのα―オレフインと他のα―オレフイ
ンの共重合体が挙げられる。このうちポリプロピ
レンおよびポリ(4―メチル―1―ペンテン)が
好ましい。ポリ(4―メチル―1―ペンテン)は
例えばトリエチルアルミニウム―四塩化チタンか
らなるチーグラー・ナツタ触媒で合成できる。融
点は200℃以上である。またアイソタクチツクポ
リプロピレンは例えばチーグラー・ナツタ触媒で
通常重合される。融点は150℃以上でアイソタク
チツクポリマーが90%以上である。またアイソタ
クチツクポリマーを分離除去したものが好まし
い。 高融点アイソタクチツクポリ―α―オレフイン
が平均粒子径50μ以下でポリイソプレンゴムにミ
クロ分散した混合物を製造する方法としてアイソ
タクチツクポリ―α―オレフインを直接粉砕して
粒径50μ以下としたものをポリイソプレンゴムに
混合する方法、高融点のアイソタクチツクポリ―
α―オレフインを有機溶媒膨潤状態で機械的剪断
力を与えて得られる分散液とゴム溶液とを混合す
る方法、高融点のアイソタクチツクポリ―α―オ
レフインをその融点より高い温度でポリイソプレ
ンと機械的に混合する方法など湿式および乾式の
いずれの方法も使用することができる。粒径は40
μ以下がより好ましい。粒径が50μを越えるとゴ
ム中への分散が十分でなくなるため、延伸加工を
行なつても特性がでず、ゴム組成物の加工性も悪
くなる。 上記の如き種々の方法で製造した高融点アイソ
タクチツクポリ―α―オレフインが平均粒子径50
μ以下でポリイソプレンゴムにミクロ分散した混
合物を高融点アイソタクチツクポリ―α―オレフ
インの融点より65℃低い温度好ましくは融点より
55℃低い温度から融点より20℃高い温度の間で、
さらに好ましくは融点より55℃低い温度から融点
の間の温度で延伸加工した後、この延伸加工物を
通常のゴム加工温度まで戻し、その後無機充填
剤、軟化剤、可塑剤、着色剤、老化防止剤、加硫
剤、促進剤などのゴム薬品を混練りして加硫成形
する。また高融点のアイソタクチツクポリ―α―
オレフインとポリイソプレンゴムの混合物に無機
充填剤、軟化剤、可塑剤、着色剤、老化防止剤な
どを混練りした後、上記温度範囲で延伸加工し、
その後加硫剤、促進剤を添加し加硫成形しても同
じ結果が得られる。本発明でいう、延伸加工とは
ロール、ダイス付押出機などにより機械的剪断力
を加えゴム組成物中のアイソタクチツクポリ―α
―オレフインに配向性をもたせる処置をさす。こ
の配向性が大きいほど弾性率が高くなる。従つて
剪断力の大きい、すなわち加工歪の大きい成形条
件で加工することが望ましく、例えばロール、カ
レンダー加工機、押出機などを用いることが工業
的に有利である。アイソタクチツクポリ―α―オ
レフインの融点より65℃以上下まわると加工歪の
大きい成形条件で延伸加工してもアイソタクチツ
クポリ―α―オレフインが軟化していないため、
配向させることができない高弾性率が得られな
い。またアイソタクチツクポリ―α―オレフイン
の融点プラス20℃を越える温度で延伸した場合、
一度延伸したアイソタクチツクポリ―α―オレフ
インがアニールされて配向効果を充分発揮しなく
なり、より高い弾性率の成形品が得られない。例
えばポリプロピレンの場合110〜180℃の間で延伸
するのが好ましい。 高融点のアイソタクチツクポリ―α―オレフイ
ンのゴム組成物中での混合割合には特に制限ない
が、高弾性率(100%引張応力で表わす)および
引裂抵抗、耐屈曲性の優れた加硫ゴムを得るため
にはゴム組成物中のアイソタクチツクポリ―α―
オレフインの含量は2〜40重量%であり、特に好
ましくは3〜25重量%である。2重量%未満では
高弾性率が得られず、40重量%を超えると加工性
が悪くなる。 本発明によつて得られるゴム組成物は単独又は
他のゴムと混合してゴム用途に用いられる。ここ
に用いられる他のゴムとはポリイソプレンゴム、
ポリプタジエンゴム、スチレン―ブタジエンゴ
ム、エチレン―プロピレンゴム、ブチルゴム、天
然ゴムなどがあげられるが、特にジエン系ゴムが
好ましい。 本発明の方法によつて製造されたゴム組成物は
未加硫物のグリーン強度が大きく、加硫物は高弾
性率で耐屈曲亀裂成長などの破壊特性が優れてい
るので、ゴム用途に応く使用することができる。 次に実施例を挙げて本発明を詳細に説明する。 実施例 1 アイソタクチツクポリプロピレン(三菱油化(株)
製ノーブレン、融点165℃)1重量部に対して20
重量部のトルエンを加えて加熱し溶解させた。放
冷後、膨潤状態になつたポリマーを高速ミキサー
(13000rpm)で15分間撹拌し、剪断力を与えて破
砕した。この混合物の所定量をプロペラ撹拌機で
混合しながらポリプロピレンの含量が10重量%に
なるようにIR―2200(日本合成ゴム社製ポリイ
ソプレンゴム、シス―1,4含量98%
ML1001+482)のn―ヘキサン溶液(固形分濃度
10
重量%)の所定量を加えて30分間撹拌を続けた。
混合物を少量の2,6―ジ―t―ブチル―p―ク
レゾールを含む多量のメタノール中にあけて凝固
させた。このゴム組成物中のポリプロピレンの平
均粒子径は0.28μであつた。 凝固物をロール温度160℃で延伸加工した後80
℃まで冷却してから表1に示す配合処方のもとに
混練りおよび加硫成形を行なつた。物性測定を表
3に示す。 表 1 ポリマー 100重量部 カーボンブラツクISAF 50 芳香族油JSR AROMA 10 亜 鉛 華 5 ステアリン酸 1 老化防止剤810―NA 1 加硫促進剤CZ 1.5 硫 黄 2.5 加硫条件145℃×25分間 実施例 2 実施例1の延伸加工時のロール温度を130℃に
変えて実験した。 実施例 3 実施例1の延伸加工時のロール温度を170℃に
変えて実験した。 実施例 4、5 実施例1のポリプロピレン含量を5、15重量%
に変えて実験した。 実施例 6 平均粒子径35μのポリプロピレンの粉末10重量
%とIR―2200 90重量%の混合物100重量部に
2,2′―メチレンビス(4―メチル―6―t―ブ
チルフエノール)(老化防止剤)1重量部添加し
押出機(25mmφ)を用いて200℃で混練した。 この混練り物をロール温度160℃で延伸加工し
た後、表2に示す処方で配合加工および加硫成形
を行なつた。物性測定結果を表3に示す。 表 2 ポリマー/2,2′―メチレンビス(4―メチル―
6―t―ブチルフエノール)=100/1
101 重量部 カーボンブラツクISAF 50 芳香族油JSR AROMA 10 亜 鉛 華 5 ステアリン酸 1 老化防止剤810―NA 1 加硫促進剤 1.5 硫 黄 2.5 加硫条件45℃×25分間 実施例 7 平均粒子径30μのポリプロピレン粉末10重量%
とIR―2200 90重量%の混合物100重量部を表1
に示す処方でロール温度160℃で混練りした後、
同温度で延伸加工し加硫成形した。物性測定結果
を表3に示す。 実施例 8 実施例6のIR―2200をNR#1(天然ゴム、
RSSNo1)に変えて実験した結果を表3に示す。 実施例 9 実施例6のIR―2200をIR―2200/BRO1=70/
30(重量%)(BRO1日本合成ゴム社製ポリブタ
ジエンゴムシス―1,4含量97%ML1001+444)

変えて実験した。結果を表3に示す。 比較例 1、2 実施例1の延伸加工時のロール温度を80℃ある
いは200℃に変えて実験した。測定結果を表3に
示す。 比較例 3、4 IR―2200単独あるいはIR―2200/カーボン
(ISAF)=90/10(重量%)をロール温度60℃の
もとで延伸加工後、80℃まで冷却してからこれら
を表1のポリマーとして用い表1に示す配合処方
のもとに配合加工および加硫成形を行なつた。物
性測定結果を表3に示す。 比較例 5 実施例7のポリプロピレンの平均粒子径を210
μに変えて実験した結果を表3に示す。 比較例 6、7 NR#1単独あるいはNR#1/カーボン
(ISAF)=90/10(重量%)をロール温度160℃の
もとで延伸加工後、80℃で冷却してからこれらを
表1のポリマーとして用い表1に示す配合処方で
配合加工および加硫成形を行なつた。物性測定結
果を表3に示す。 比較例 8 IR―2200/BRO1=70/30(重量%)90重量部
とカーボン(ISAF)10重量部との混合物をロー
ル温度160℃のもとで延伸加工後、80℃まで冷却
してからこれを表1のポリマーとして用い表1に
示す処方で配合加工および加硫成形を行なつた。
物性測定結果を表3に示す。 実施例 10 ポリ(4―メチル―1―ペンテン)(ICI社製融
点235℃)1重量部に対して20重量部のトルエン
を加え加熱し溶解させた。放冷後膨潤状態になつ
たポリマーを高速ミキサー(13000rpm)で15分
間撹拌し、剪断力を加え破砕した。 この混合物の所定量をプロペラ撹拌機で混合し
ながら、ポリ(4―メチル―1―ペンテン)の含
量が10重量%になるようにIR―2200のn―ヘキ
サン溶液(固形分濃度10重量%)の所定量を加え
30分間撹拌を続けた。混合物を少量の2,6―ジ
―t―ブチル―p―クレゾールを含む大過剰のメ
タノール中にあけ、凝固させた。このゴム組成物
中のポリ(4―メチル―1―ペンテン)の平均粒
子径は0.32μであつた。 凝固物をロール温度200℃で延伸加工した後、
80℃まで冷却してから表1に示す配合処方で混練
りおよび加硫成形を行なつた。物性測定結果を表
4に示す。 実施例 11、12 実施例10のポリ(4―メチル―1―ペンテン)
の含量を7.5、15重量%に変えて実験した結果を
表4に示す。 実施例 13 平均粒子径30μのポリ(4―メチル―1―ペン
テン)の粉末10重量%とIR―2200 90重量%の混
合物100重量部に2,2′―メチレンビス(4―メ
チル―6―t―ブチルフエノール)1重量部添加
し、押出機(25mmφ)を用いて230℃で混練し
た。この混練り物をロール温度200℃で延伸加工
した後、表2に示す処方で配合加工および加硫成
形した。物性測定結果を表4に示す。 実施例 14 実施例13のIR―2200をNR#1(天然ゴム、
RSSNo1)に変えて実験した結果を表4に示す。 比較例 9 実施例10のロール温度を80℃に変えて実験した
結果を表4に示す。 比較例 10 平均粒子径230μのポリ(4―メチル―1―ペ
ンテン)の粉末10重量%とR―2200 90重量%の
混合物100重量部に2,2′―メチレンビス(4―
メチル―6―t―ブチルフエノール)1重量部添
加し、ロール温度200℃で混練りした。 この混練り物をロール温度200℃で延伸加工し
た後、表2に示す処方で配合加工および加硫成形
を行なつた。物性測定結果を表4に示す。 実施例 15 平均粒子径210μのポリプロピレンの粉末10重
量部とIR―2200 90重量部の混合物100重量部に
2,2′―メチレンビス(4―メチル―6―t―ブ
チルフエノール)(老化防止剤)1重量部を添加
し、押出機(25mmφ)を用いて200℃で混練りし
た。この混練物をロール温度160℃で延伸加工し
た後、表2に示す処方で配合加工および加硫成形
を行なつた。物性測定結果を表3に示す。 実施例 16 トルエン2Kg中にIR―2200 90gおよびポリプ
ロピレンのペレツト(平均粒径3mm)10gを加熱
して溶解させた後、熱いままのポリマー溶液を少
量の2,6―ジ―t―ブチル―p―クレゾールの
入つた大量のメタノールに注いでポリマーを回収
した。得られたポリマーを真空中で24時間乾燥し
た。得られたゴム組成物中のポリプロピレンの粒
径は0.48μであつた。このゴム組成物を150℃の
ロールを用いて延伸加工した後、表2に示す処方
で配合加工および加硫成形を行なつた。物性測定
結果を表3に示す。 実施例 17 ポリ(4―メチル―1―ペンテン)1重量部あ
たり20重量部のトルエンで膨潤させた膨潤ポリマ
ーをロジン酸カリウム水溶液中で高速回転
(10000rpm)で撹拌した後、スチーム通気を行な
い溶媒を除去した。この場合のロジン酸カリウム
はポリ(4―メチル―1―ペンテン)1gに対し
て3gを使用した。このようにして得られた粉末
を回収後乾燥した。平均粒径は20μであつた。こ
の微粉末をn―ヘキサン溶媒に加え(この時の分
散物濃度を1.5重量%とした)、高速ミキサー
(10000rpm)で撹拌分散しながらポリイソプレン
ゴム(IR―2200)のヘキサン溶液(固形分濃度
10%)を上記懸濁液に加えて撹拌混合した。混合
物を少量の2,6―ジ―t―ブチル―p―クレゾ
ールを含む大量のメタノールに加え凝固させた。
ポリ(4―メチル―1―ペンテン)の含量は10%
であつた。凝固したゴム組成物を一昼夜真空乾燥
後、200℃のロールを用いて延伸加工した。表2
の処方に従つて配合加硫した。物性測定結果を表
4に示す。 実施例 18 実施例6のゴム組成物100重量部に2,2′―メ
チレン―ビス(4―メチル―6―t―ブチルフエ
ノール)1重量部を添加し、Tダイ付押出機(25
mmφ、リツプ間隙0.1mm)を用いて170℃で混練り
および延伸加工を行なつた。表2の処方に従つて
配合し、加硫した。物性測定結果を表3に示す。
In the present invention, a high modulus of elasticity is achieved by stretching polyisoprene rubber or a mixture of polyisoprene rubber or a rubber containing polyisoprene rubber as a main component in which isotactic poly-α-olefin with a high melting point is stretched in a specific temperature range. The present invention relates to a method of manufacturing a rubber composition having the present invention. Resource saving and energy saving have become important themes in industry in recent years, and the rubber industry is also aiming for lighter weight and higher performance. Therefore, vulcanized rubber having a higher elastic modulus than the commonly used vulcanized rubber has become desired in specific fields. In this case, it is desirable that the physical properties other than the elastic modulus are comparable to those of conventional vulcanized rubber, and that the processability in manufacturing rubber products is excellent. A method of increasing the elastic modulus of vulcanized rubber is to mix a substance having a high elastic modulus (carbon black, resin, etc.) into a powder or fiber form with rubber. However, in this method, the dispersibility of the high-modulus substance and the interfacial adhesion between the rubber and the high-modulus substance are insufficient, so when stress is applied to the vulcanized rubber, the interface between the rubber and the high-modulus substance may be destroyed. This results in a decrease in vulcanized physical properties such as tensile strength, tear resistance, and bending resistance. For example, even in polyisoprene rubber, which is the rubber with the best bending resistance among diene rubbers and is widely used for radial tires, when increasing the amount of carbon black to increase the elastic modulus, the vulcanizate property, especially the resistance There is a problem that flexibility decreases. Furthermore, a composition in which short fibers of highly crystalline 1,2-polybutadiene are microdispersed in rubber is known (Japanese Patent Application Laid-Open No. 55-23150);
Since 2-polybutadiene is highly unsaturated, even if fracture resistance and reinforcing properties are improved, there is a problem with thermal stability, which is undesirable. In order to improve the above-mentioned drawbacks of conventional reinforced rubbers made of high-modulus materials, the present inventors have conducted intensive studies on new reinforcing agents and methods for mixing them. It has been found that a rubber composition with high elastic modulus and excellent fracture properties can be obtained by micro-dispersing the rubber composition using this method. For example, a method in which a rubber solution is mixed with a suspension dispersion of finely powdered high-melting-point isotactic poly-α-olefin with an average particle size of 200μ or less in an organic solvent by stirring, and then the polymer mixture is recovered (unexamined patent application No. 166242 (1982), patent application No. 166242 (1982)
69570), high melting point isotactic poly-α-
There is a method in which a dispersion obtained by applying mechanical shearing force to olefin in a swollen state in an organic solvent is mixed with a rubber solution (Japanese Patent Application Laid-Open No. 56-151741, Japanese Patent Application No. 55450-1983). As a result of further studies on such rubber compositions, the present inventors found that a mixture of polyisoprene rubber produced by the various methods described above and high melting point isotactic poly-α-olefin was processed into a processing machine such as a roll or an extruder. When processed under specific conditions using rubber compositions, the green strength of the unvulcanized product is further improved, the vulcanized product has a high modulus of elasticity, and a rubber composition with significantly improved fracture properties can be industrially advantageously produced. They discovered this and arrived at the present invention. That is, the present invention uses a mixture of polyisoprene rubber or a rubber containing polyisoprene rubber as a main component in which a high melting point isotactic poly-α-olefin having a melting point of 150° C. or higher is dispersed to an average particle size of 50 μm or less. This is a method for producing a rubber composition having a high elastic modulus, which is characterized by stretching at a temperature between 65°C lower than the melting point of poly-α-olefin and 20°C higher than the melting point. The present invention will be explained in detail below. The polyisoprene rubber of the present invention is a high cis-1,4-polyisoprene rubber or natural rubber having a cis-1,4 content of 90% or more. Rubbers mixed with polyisoprene rubber include polybutadiene rubber,
Examples include diene rubber such as styrene-butadiene rubber, ethylene-propylene rubber, butyl rubber, and mixtures thereof, but diene rubber is preferred because of ease of co-vulcanization. The content of polyisoprene rubber in the rubber mixture is at least 50%. 50%
If it is smaller, the fracture characteristics will be worse. The high melting point isotactic poly-α-olefin used in the present invention has a melting point (20
Peak temperature when scanning at °C/min)
It is an isotactic poly-α-olefin having a temperature of 150°C or higher, preferably 160°C or higher. Melting point is 150℃
If it is less than that, the rubber will melt under the vulcanization conditions and good physical properties will not be obtained. Specific examples include isotactic polypropylene (hereinafter, isotactic may be omitted and simply referred to as polypropylene), polyallylcyclopentane, polyallylcyclohexane, polyallylbenzene, poly(3-methyl-1-butene),
Poly(3-cyclohexyl-1-butene), poly(4-phenyl-1-butene), poly(3-methyl-1-pentene), poly(4-methyl-1-pentene), poly(3-methyl- 1-hexene), poly(4-methyl-1-hexene), polyvinylcyclopentane, a copolymer of propylene and allylbenzene, and a copolymer of 3-methyl-1-butene and 1-butene. Copolymers of other α-olefins may be mentioned. Among these, polypropylene and poly(4-methyl-1-pentene) are preferred. Poly(4-methyl-1-pentene) can be synthesized, for example, using a Ziegler-Natsuta catalyst consisting of triethylaluminum-titanium tetrachloride. Melting point is above 200℃. Isotactic polypropylene is also commonly polymerized using, for example, Ziegler-Natsuta catalysts. The melting point is 150℃ or higher and the isotactic polymer content is 90% or higher. Preferably, the isotactic polymer is separated and removed. A method for producing a mixture in which high melting point isotactic poly-α-olefin is microdispersed in polyisoprene rubber with an average particle size of 50 μm or less by directly crushing isotactic poly-α-olefin to a particle size of 50 μm or less. A method of mixing high melting point isotactic polyisoprene rubber with polyisoprene rubber.
A method of mixing a dispersion obtained by applying mechanical shearing force to α-olefin in a swollen state in an organic solvent and a rubber solution. Both wet and dry methods, including mechanical mixing methods, can be used. Particle size is 40
μ or less is more preferable. If the particle size exceeds 50μ, the particles will not be sufficiently dispersed in the rubber, so even if stretched, the properties will not be improved and the processability of the rubber composition will be poor. The high melting point isotactic poly-α-olefin produced by the various methods described above has an average particle size of 50.
The mixture microdispersed in polyisoprene rubber at a temperature of 65°C lower than the melting point of high melting point poly-α-olefin, preferably lower than the melting point.
between 55°C below and 20°C above the melting point.
More preferably, after stretching at a temperature between 55°C below the melting point and the melting point, the stretched product is returned to normal rubber processing temperature, and then inorganic fillers, softeners, plasticizers, colorants, anti-aging agents, etc. Rubber chemicals such as a vulcanizing agent, a vulcanizing agent, and an accelerator are kneaded and vulcanized. In addition, high melting point isotactic poly-α-
After kneading an inorganic filler, a softener, a plasticizer, a coloring agent, an anti-aging agent, etc. into a mixture of olefin and polyisoprene rubber, it is stretched in the above temperature range,
The same result can be obtained even if a vulcanizing agent and accelerator are then added and vulcanization molded. In the present invention, stretching processing refers to applying mechanical shearing force to the isotactic poly-α in the rubber composition using an extruder with rolls or dies.
-Refers to the process of imparting orientation to olefin. The greater the orientation, the higher the elastic modulus. Therefore, it is desirable to process the material under molding conditions with a large shearing force, that is, a large processing strain, and it is industrially advantageous to use, for example, a roll, a calender, an extruder, or the like. If the temperature is 65°C or more below the melting point of the isotactic poly-α-olefin, the isotactic poly-α-olefin will not soften even if stretched under forming conditions with large processing distortion.
Orientation is not possible and high elastic modulus cannot be obtained. In addition, when stretched at a temperature exceeding the melting point of isotactic poly-α-olefin plus 20°C,
The isotactic poly-α-olefin that has been stretched once is annealed and no longer exhibits a sufficient orientation effect, making it impossible to obtain a molded product with a higher modulus of elasticity. For example, in the case of polypropylene, it is preferable to stretch at a temperature of 110 to 180°C. There is no particular restriction on the mixing ratio of high melting point isotactic poly-α-olefin in the rubber composition, but vulcanization with high elastic modulus (expressed as 100% tensile stress) and excellent tear resistance and bending resistance To obtain rubber, isotactic polyα-
The content of olefins is between 2 and 40% by weight, particularly preferably between 3 and 25% by weight. If it is less than 2% by weight, a high elastic modulus cannot be obtained, and if it exceeds 40% by weight, workability will be poor. The rubber composition obtained according to the present invention can be used alone or in combination with other rubbers for rubber applications. Other rubbers used here are polyisoprene rubber,
Examples include polyptadiene rubber, styrene-butadiene rubber, ethylene-propylene rubber, butyl rubber, natural rubber, and diene rubber is particularly preferred. The rubber composition produced by the method of the present invention has high green strength as an unvulcanized product, and the vulcanized product has a high modulus of elasticity and excellent fracture properties such as resistance to flex crack growth, so it is suitable for rubber applications. It can be used frequently. Next, the present invention will be explained in detail with reference to Examples. Example 1 Isotactic polypropylene (Mitsubishi Yuka Co., Ltd.)
20 per part by weight of Noblen, melting point 165℃)
Part by weight of toluene was added and heated to dissolve. After cooling, the swollen polymer was stirred for 15 minutes using a high-speed mixer (13,000 rpm) and crushed by applying shear force. While mixing a predetermined amount of this mixture with a propeller stirrer, use IR-2200 (polyisoprene rubber manufactured by Japan Synthetic Rubber Co., Ltd., cis-1,4 content 98%) so that the polypropylene content is 10% by weight.
ML 100 °C 1+4 82) n-hexane solution (solid concentration
Ten
% by weight) was added and stirring was continued for 30 minutes.
The mixture was poured into a large amount of methanol containing a small amount of 2,6-di-t-butyl-p-cresol and coagulated. The average particle size of polypropylene in this rubber composition was 0.28μ. After stretching the coagulated product at a roll temperature of 160℃
After cooling to .degree. C., kneading and vulcanization molding were performed based on the formulation shown in Table 1. Physical property measurements are shown in Table 3. Table 1 Polymer 100 parts by weight Carbon black ISAF 50 Aromatic oil JSR AROMA 10 Zinc Flower 5 Stearic acid 1 Antioxidant 810-NA 1 Vulcanization accelerator CZ 1.5 Sulfur 2.5 Vulcanization conditions 145℃ x 25 minutes Example 2 An experiment was conducted by changing the roll temperature during the stretching process in Example 1 to 130°C. Example 3 An experiment was conducted by changing the roll temperature during the stretching process of Example 1 to 170°C. Examples 4 and 5 The polypropylene content of Example 1 was increased to 5.15% by weight.
I experimented by changing it to . Example 6 2,2'-methylenebis(4-methyl-6-t-butylphenol) (anti-aging agent) was added to 100 parts by weight of a mixture of 10% by weight polypropylene powder with an average particle size of 35μ and 90% by weight of IR-2200. 1 part by weight was added and kneaded at 200°C using an extruder (25 mmφ). This kneaded product was stretched at a roll temperature of 160°C, and then blended and vulcanized according to the formulation shown in Table 2. Table 3 shows the physical property measurement results. Table 2 Polymer/2,2'-methylenebis(4-methyl-
6-t-butylphenol) = 100/1
101 parts by weight Carbon black ISAF 50 Aromatic oil JSR AROMA 10 Zinc Flower 5 Stearic acid 1 Antioxidant 810-NA 1 Vulcanization accelerator 1.5 Sulfur 2.5 Vulcanization conditions 45℃ x 25 minutes Example 7 Average particle size 30μ 10% by weight of polypropylene powder
Table 1 shows 100 parts by weight of a mixture of 90% by weight of IR-2200 and
After kneading the recipe shown in at a roll temperature of 160℃,
It was stretched and vulcanized at the same temperature. Table 3 shows the physical property measurement results. Example 8 IR-2200 of Example 6 was mixed with NR#1 (natural rubber,
Table 3 shows the results of experiments performed by changing to RSSNo1). Example 9 IR-2200 of Example 6 was changed to IR-2200/BRO1=70/
30 (wt%) (BRO1 Polybutadiene rubber cis-1,4 content 97% ML manufactured by Japan Synthetic Rubber Co., Ltd. 100 °C 1+4 44)
I experimented by changing it to . The results are shown in Table 3. Comparative Examples 1 and 2 Experiments were conducted by changing the roll temperature during stretching in Example 1 to 80°C or 200°C. The measurement results are shown in Table 3. Comparative Examples 3 and 4 IR-2200 alone or IR-2200/carbon (ISAF) = 90/10 (wt%) was stretched at a roll temperature of 60°C, cooled to 80°C, and then summarized in Table 1. Compounding processing and vulcanization molding were performed based on the compounding recipe shown in Table 1. Table 3 shows the physical property measurement results. Comparative Example 5 The average particle diameter of the polypropylene of Example 7 was 210
Table 3 shows the results of an experiment in which μ was changed. Comparative Examples 6 and 7 NR# 1 alone or NR# 1 / carbon (ISAF) = 90/10 (wt%) was stretched at a roll temperature of 160°C, cooled at 80°C, and then processed in Table 1. The compound was used as a polymer, and compounding processing and vulcanization molding were performed according to the compounding recipe shown in Table 1. Table 3 shows the physical property measurement results. Comparative Example 8 A mixture of 90 parts by weight of IR-2200/BRO1=70/30 (wt%) and 10 parts by weight of carbon (ISAF) was stretched at a roll temperature of 160°C, then cooled to 80°C. Using this as the polymer shown in Table 1, compounding processing and vulcanization molding were carried out according to the formulation shown in Table 1.
Table 3 shows the physical property measurement results. Example 10 20 parts by weight of toluene was added to 1 part by weight of poly(4-methyl-1-pentene) (manufactured by ICI, melting point 235°C) and dissolved by heating. After cooling, the swollen polymer was stirred for 15 minutes using a high-speed mixer (13,000 rpm) and crushed by applying shear force. While mixing a predetermined amount of this mixture with a propeller stirrer, add a solution of IR-2200 in n-hexane (solid concentration 10% by weight) so that the content of poly(4-methyl-1-pentene) is 10% by weight. Add the specified amount of
Stirring was continued for 30 minutes. The mixture was poured into a large excess of methanol containing a small amount of 2,6-di-t-butyl-p-cresol and coagulated. The average particle size of poly(4-methyl-1-pentene) in this rubber composition was 0.32μ. After stretching the coagulated material at a roll temperature of 200℃,
After cooling to 80°C, kneading and vulcanization molding were performed using the formulation shown in Table 1. Table 4 shows the physical property measurement results. Examples 11, 12 Poly(4-methyl-1-pentene) of Example 10
Table 4 shows the results of an experiment in which the content was changed to 7.5 and 15% by weight. Example 13 2,2′-methylenebis(4-methyl-6-t) was added to 100 parts by weight of a mixture of 10% by weight of poly(4-methyl-1-pentene) powder with an average particle size of 30μ and 90% by weight of IR-2200. -butylphenol) was added and kneaded at 230°C using an extruder (25 mmφ). This kneaded product was stretched at a roll temperature of 200°C, and then blended and vulcanized according to the formulation shown in Table 2. Table 4 shows the physical property measurement results. Example 14 IR-2200 of Example 13 was converted into NR# 1 (natural rubber,
Table 4 shows the results of experiments performed by changing to RSSNo1). Comparative Example 9 Table 4 shows the results of an experiment in which the roll temperature of Example 10 was changed to 80°C. Comparative Example 10 2,2'-methylenebis(4-
1 part by weight of methyl-6-t-butylphenol) was added and kneaded at a roll temperature of 200°C. This kneaded product was stretched at a roll temperature of 200°C, and then blended and vulcanized according to the formulation shown in Table 2. Table 4 shows the physical property measurement results. Example 15 100 parts by weight of a mixture of 10 parts by weight of polypropylene powder with an average particle size of 210μ and 90 parts by weight of IR-2200, and 2,2'-methylenebis(4-methyl-6-t-butylphenol) (anti-aging agent) 1 part by weight was added and kneaded at 200°C using an extruder (25 mmφ). This kneaded product was stretched at a roll temperature of 160°C, and then blended and vulcanized according to the formulation shown in Table 2. Table 3 shows the physical property measurement results. Example 16 After heating and dissolving 90 g of IR-2200 and 10 g of polypropylene pellets (average particle size 3 mm) in 2 kg of toluene, the hot polymer solution was dissolved in a small amount of 2,6-di-t-butyl-p. -The polymer was recovered by pouring it into a large amount of methanol containing cresol. The resulting polymer was dried in vacuum for 24 hours. The particle size of polypropylene in the obtained rubber composition was 0.48μ. This rubber composition was stretched using rolls at 150°C, and then compounded and vulcanized according to the formulation shown in Table 2. Table 3 shows the physical property measurement results. Example 17 A swollen polymer swollen with 20 parts by weight of toluene per 1 part by weight of poly(4-methyl-1-pentene) was stirred at high speed (10,000 rpm) in an aqueous potassium rosinate solution, and then steam was introduced to remove the solvent. was removed. In this case, 3 g of potassium rosinate was used per 1 g of poly(4-methyl-1-pentene). The powder thus obtained was collected and dried. The average particle size was 20μ. This fine powder was added to an n-hexane solvent (the dispersion concentration at this time was 1.5% by weight), and while stirring and dispersing with a high-speed mixer (10000 rpm), a hexane solution of polyisoprene rubber (IR-2200) (solid content concentration
10%) was added to the above suspension and mixed with stirring. The mixture was added to a large amount of methanol containing a small amount of 2,6-di-t-butyl-p-cresol and coagulated.
Poly(4-methyl-1-pentene) content is 10%
It was hot. The coagulated rubber composition was vacuum dried for one day and then stretched using a roll at 200°C. Table 2
It was mixed and vulcanized according to the recipe. Table 4 shows the physical property measurement results. Example 18 1 part by weight of 2,2'-methylene-bis(4-methyl-6-t-butylphenol) was added to 100 parts by weight of the rubber composition of Example 6, and the mixture was heated in an extruder equipped with a T-die (25 parts by weight).
Kneading and stretching were performed at 170°C using a lip gap of 0.1 mm. They were blended and vulcanized according to the recipe in Table 2. Table 3 shows the physical property measurement results.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリイソプレンゴムまたはポリイソプレンゴ
ムを主成分とするゴムに融点150℃以上の高融点
アイソタクチツクポリ―α―オレフインを平均粒
子径50μ以下に分散させた混合物を高融点アイソ
タクチツクポリ―α―オレフインの融点より65℃
低い温度から融点より20℃高い温度の間で延伸加
工することを特徴とする高弾性率を有するゴム組
成物の製造方法。 2 ゴム組成物中の高融点アイソタクチツクポリ
―α―オレフインの含量が2〜40重量%である特
許請求の範囲第1項記載のゴム組成物の製造方
法。
[Scope of Claims] 1. A mixture of polyisoprene rubber or a rubber containing polyisoprene rubber as a main component in which high melting point isotactic poly-α-olefin with a melting point of 150°C or higher is dispersed to have an average particle size of 50 μm or less. 65℃ above the melting point of isotactic poly-α-olefin
A method for producing a rubber composition having a high elastic modulus, which comprises stretching at a temperature ranging from a low temperature to a temperature 20°C higher than the melting point. 2. The method for producing a rubber composition according to claim 1, wherein the content of the high melting point isotactic poly-α-olefin in the rubber composition is 2 to 40% by weight.
JP10319880A 1980-04-28 1980-07-29 Production of rubber composition Granted JPS5730738A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10319880A JPS5730738A (en) 1980-07-29 1980-07-29 Production of rubber composition
DE8181301878T DE3175852D1 (en) 1980-04-28 1981-04-28 Process for the preparation of rubber compositions having a high modulus of elasticity
EP19810301878 EP0039240B1 (en) 1980-04-28 1981-04-28 Process for the preparation of rubber compositions having a high modulus of elasticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10319880A JPS5730738A (en) 1980-07-29 1980-07-29 Production of rubber composition

Publications (2)

Publication Number Publication Date
JPS5730738A JPS5730738A (en) 1982-02-19
JPS6255537B2 true JPS6255537B2 (en) 1987-11-20

Family

ID=14347814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10319880A Granted JPS5730738A (en) 1980-04-28 1980-07-29 Production of rubber composition

Country Status (1)

Country Link
JP (1) JPS5730738A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617343A (en) * 1984-06-21 1986-01-14 Mitsui Petrochem Ind Ltd Low-specific gravity rubber composition
JPS6137831A (en) * 1984-07-31 1986-02-22 Mitsui Petrochem Ind Ltd Rubber composition
JP4342814B2 (en) * 2003-02-28 2009-10-14 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire using the same
JP4384862B2 (en) * 2003-02-28 2009-12-16 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire using the same
JP4384873B2 (en) * 2003-05-13 2009-12-16 住友ゴム工業株式会社 Rubber composition for bead apex and pneumatic tire using the same

Also Published As

Publication number Publication date
JPS5730738A (en) 1982-02-19

Similar Documents

Publication Publication Date Title
US4659754A (en) Dispersions of fibres in rubber
CA2292404C (en) Rubber powders and process for production thereof
US3846365A (en) Process for the production of pourable elastomer particles
CA1183628A (en) Silica-polymer mixtures
GB2026499A (en) Process for the preparation of a pulverulent filled rubber
US3998778A (en) Pourable elastomeric particles
US5599868A (en) Process for compounding filler materials and polymers and products therefrom
US4138375A (en) Process for the production of pulverulent, pourable elastomer-filler mixtures optionally containing plasticizer oil
JPS6119651B2 (en)
AU2002322876A1 (en) Process for regeneration of rubber from scrap
WO2003014207A1 (en) Process for regeneration of rubber from scrap
EP0272459B1 (en) Masterbatch with fiber and liquid elastomer
US6800126B2 (en) Preparation and use of composite of rubber and carbon black aggregates and articles of manufacture, including tires, having a component comprised thereof
JPS6255537B2 (en)
US11034822B2 (en) Method for producing recycled thermoplastic rubber masterbatch with improved green strength and tack
JP7470324B2 (en) Method for producing the composition
US4380607A (en) Rubber composition having high modulus of elasticity and process for preparing same
EP0039240B1 (en) Process for the preparation of rubber compositions having a high modulus of elasticity
JP3228913B2 (en) Method for producing rubber composition
GB2147589A (en) Preparing fibre-reinforcing rubbery polymers
JPS5842633A (en) Production of rubber composition
JPS6142936B2 (en)
JP7422878B2 (en) A method for producing a rubber composition, a rubber composition produced by the method, and a tire produced using the same
JPS6255542B2 (en)
JPS6255536B2 (en)