JPS6255496B2 - - Google Patents

Info

Publication number
JPS6255496B2
JPS6255496B2 JP6996080A JP6996080A JPS6255496B2 JP S6255496 B2 JPS6255496 B2 JP S6255496B2 JP 6996080 A JP6996080 A JP 6996080A JP 6996080 A JP6996080 A JP 6996080A JP S6255496 B2 JPS6255496 B2 JP S6255496B2
Authority
JP
Japan
Prior art keywords
powder
conductive
plastic
heat treatment
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6996080A
Other languages
Japanese (ja)
Other versions
JPS56166039A (en
Inventor
Hajime Ina
Koichi Nakajima
Tatsuo Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP6996080A priority Critical patent/JPS56166039A/en
Publication of JPS56166039A publication Critical patent/JPS56166039A/en
Publication of JPS6255496B2 publication Critical patent/JPS6255496B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性のあるプラスチツク成形品の製
造方法に関するものである。 プラスチツクまたはエラストマーへの導電性の
付与のために、炭素とか金属などの導電性材料粉
末を混合して複合化することは公知である。そし
て、この複合化に際して、圧延ロール、ブラベン
ダーなどによる導電性材料の均一分散がはかられ
ている。かかる従来の方法でプラスチツク導電材
料を製造した場合、導電性を高くするために大量
の導電性材料の混合が必要であるとか、また大量
の導電性材料の混入のために機械的強度の低下が
大きいといつた問題があつた。 本発明はかかる問題の少いプラスチツク導電材
料の製造方法を提供するものである。すなわち、
本発明のプラスチツク導電材料の製造方法は、熱
可塑性プラスチツク粉体と該プラスチツク粉体の
平均粒径の1/10以下の平均粒径をもつ導電性粉体
とを機械的に混合し、該プラスチツク粉体表面に
該導電性粉体を被覆する工程と、導電性粉体が被
覆されたプラスチツク粉体を加圧成形して成形体
を形成する工程と、得られた成形体を該成形体の
形状を保持しつつ可能なかぎり高い温度に保持し
て熱処理を行う工程とよりなることを特徴とする
ものである。 ここで熱可塑性プラスチツク粉体とは、ポリエ
チレン、ポリスチレン、ナイロン等の粉状体を意
味する。多くの熱可塑性プラスチツクの重合によ
り得られる原形態が粉状となつているが、本発明
ではかかる製造原形態の粉体を使用することがで
きる。粉体の粒度については、製造する導電材料
の機械的強度の向上のためには細かければ細かい
程好ましい。しかし、同時に導電性粉体の配合量
を増加する必要がある。導電性粉体の配合量もあ
まり多くなく、かつ機械的強度も高いという相反
する目標を満足さすためには、粒度分布の巾の大
きいプラスチツク粉末を使用するのが好ましい。
例えば、製造原形態のポリエチレン粉末は、粒径
250mμ未満の微粉体30〜40%、250mμ以上の粗
大粉体60〜70%、平均粒径400〜500mμである
が、このような粒度巾の広い粉体の使用は好まし
い。 導電性粉体としては、炭素粉とかニツケル粉、
銅粉等の金属粉が使用できる。導電性粉体の粒度
は細かければ細い程好ましいが、得られるプラス
チツク導電材料の導電特性は主としてプラスチツ
ク粉体の粒径との関係で定まる。すなわち、導電
性粉体の平均粒径はプラスチツク粉体の平均粒径
の1/10以下であることが好ましい。導電性粉体の
平均粒径がプラスチツク粉体の平均粒径の1/10を
超える場合には、導電性粉体の配合量増加による
導電特性向上に対する寄与が低くなる。 プラスチツク粉体と導電性粉体の配合割合につ
いては、希望する導電特性に応じて任意に選択す
ることができる。目標とする導電特性に対して、
導電性粉体の最小の配合割合はプラスチツク粉体
の表面に最小限二重層を形成するに必要な配合割
合である。この二重層の形成に要する導電性粉体
の配合割合と、プラスチツク粉体および導電性粉
体の平均粒径の比との間にはつぎの理論式が成立
する。 β=100〔1+(φ/4)α〕-1 ここで、βは導電性粉体の配合割合(%) αは両粉体の平均粒径比 φは導電性粉体の形状に関する因子で1.11〜
1.37である。 この理論式よりαが1/10のときのβは22〜26
%、αが1/50のときのβは5.5〜6.5%、αが1/10
0のときのβは2.9〜3.5%、αが1/1000のときの
βは0.29〜0.36%となる。 しかしながら、実験値は理論値より大きく変
り、プラスチツク粉体と導電性粉体の配合割合に
ついては、導電性粉体の導電特性とともに、希望
する導電特性に基ずいて任意に選択する必要があ
る。 プラスチツク粉体と導電性粉体以外にはガラス
繊維等の補強剤等を使用目的に応じて配合するこ
とができる。なお、プラスチツクに対する種々の
添加剤、例えば、酸化防止剤とか、炭酸カルシウ
ム等の充填剤については個々のプラスチツク粉体
中に均一に分散させて使用することができる。 プラスチツク粉体と導電性粉体とを機械的に混
合する手段としてはミキサー、ボールミルあるい
は擂潰機などの粉砕混合機その他の粉砕をともな
わない粉体混合機を使用することができる。擂潰
機等の粉砕混合機を使用する場合には、混合中に
導電性粉体がプラスチツク粉体の表面に突きささ
る等で、プラスチツク粉体表面に安定した導電性
粉体の被覆層が得られる。 原料の混合粉体を加圧成形する工程は一定形状
の混合粉体を成形型内あるいは成形ローラ間で加
圧圧密化された成形体を得る工程である。成形型
内で加圧する場合には成形型の形状に応じた成形
品が、また成形ローラを使用する場合には板状あ
るいは棒状の成形体が得られる。加圧成形時には
特別の加温を必要としない。通常の場合室温で実
施することができる。圧密体の結合力を高くする
等の目的のために加温下で加圧成形することも可
能である。しかし加温のため原料混合粉体が流動
化することはさけなければならない。原料混合粉
体が流動化し、大きく塑性変形すると次の熱処理
工程で大きな変形が生じ目的とする形状の材料が
得られない。また導電特性も低下する。成形時の
圧力は大きければ大きいほど、成形体の機械的強
度向上に対しては好ましいが、熱処理工程への移
送中に形状がくずれない程度に十分な圧力であれ
ばよい。通常2トン/cm2程度で成形される。 熱処理工程は圧密化された成形体を高温下に保
持し成形された形状を保持しつつ、プラスチツク
粉体どうしを接合するものである。この工程によ
り互いに接しているプラスチツク粉体どうしが接
合し強い結合が得られる。またプラスチツク粉体
の表面を被覆している導電性粉体はプラスチツク
粉体で形成される間隙に押し込められる状態とな
り導電性粉体自体も互いに接合して網目状構造を
形成する。このため、熱処理を施すことにより成
形体の機械強度と導電特性は共に向上する。 熱処理条件のうち、まず温度はプラスチツク粉
体の融点あるいはガラス転位点を中心とする温度
が一応のめやすとなる。しかし、プラスチツクの
分子量が非常に高いため流動性が乏しい等の場合
には融点あるいはガラス転位点より30℃以上も高
い温度で処理することも可能である。熱処理時間
は長い程好ましい。一般に熱処理時間は熱処理温
度と密接に関連し、熱処理温度が10℃高くなる
と、熱処理時間は約1/2の時間で同一の熱処理効
果が期待できる。なお、熱処理時の劣化を防止す
るため、不活性ガス下で熱処理することも好まし
いことである。また、高周波照射による誘導加熱
を用いて熱処理時間の短縮を図ることも可能であ
る。 上記熱処理工程によりプラスチツク導電材料が
完成する。この熱処理工程の後で、さらに得られ
たプラスチツク導電材料に高電圧を印加すると、
導電特性がさらに向上する。印加する電圧、時間
は数百ボルト/cm以上、好ましくは2000V/cm以
上がよい。通電時間は1〜2秒でよい。電圧は絶
縁破壊よりはるかに小さい圧であるが、局所放電
によるプラスチツクの炭化の可能性については、
高電圧印加を繰返しても機械的強度変化が認めら
れないことから、導電性粉体の単なる再配置と推
定される。 以下、試験結果を示して、本発明をさらに詳細
に説明する。 試験例 1 熱可塑性プラスチツク粉体として製造原形態の
高密度ポリエチレン粉体(以下、HDPE粉体と称
す)を用いた。このHDPE粉体の粒度分布は粒径
500mμ以上のもの30%、500〜250mμ35%、250
〜150mμ17%、150mμ以下18%である。導電性
粉体としては粒径約500Åのアセチレンブラツク
(以下、AB粉体と称す)を用いた。このHDPE粉
体とAB粉体をAB粉体の容量%で0.25%〜15%配
合した14種類の組成の原料を作り、各原料ごとに
容量1の擂潰機で1時間擂潰し、原料混合粉末
を調製した。次に円柱状の成形型に原料混合粉末
を入れ室温において5t/cm2の圧力で圧密化し直径
100mm、厚さ5mmの板状成形体を得た。次にAB粉
体の配合割合が3%以下の板状成形体については
134℃で1時間、4%の板状成形体については140
℃で1時間、6%以上の板状成形体については
160℃で1時間熱処理を行なつた。このようにし
て14種類の導電材料を得た。次に各導電材料の体
積固有抵抗率(Pv)を求めた。結果をAB粉体の
配合量との関連で第1図の実線(白丸)で示す。
なお、参考までに押出機でHDPE粉体とAB粉体
とを混合して原料を調製し、射出成形した材料の
体積固有抵抗率(Pv)とAB配合量との関係を第
1図の破線で示す。第1図より、本発明の製造方
法で得られる導電材料は導電粉体の配合割合が低
くとも体積固有抵抗率(Ωcm)が小さく、導電特
性がすぐれているのがわかる。 なお、本発明の方法で得られる導電材料の引張
強さは205〜215Kg/cm2であり、溶融加圧成形法で
得た材料の引張強さとほぼ同一であつた。 試験例 2 試験例1で用いたのと同一のHDPE粉体と導電
性粉体として粒径5〜6mμのニツケル金属粉体
(以下、Ni粉体と称す)とを用いて、種々の配合
割合の混合粉を作り、各々擂潰機で1時間擂潰し
て原料混合粉体を調製した。次に試験例1と同様
に加圧成形し、圧密化された成形体を得た。参考
までに一部の圧密化された成形体の体積固有抵抗
率(Ωcm)を測定した。次に134℃で60分間熱処
理を行い導電材料を製造し、各導電材料の体積固
有抵抗率を測定した。次に、一部の導電材料につ
いては2000V/cmの高電圧を1分間印圧し、その
体積固有抵抗率を測定した。 これら体積固有抵抗率とNi粉体配合量との関
係を第2図に示す。第2図中、白菱印は圧密化さ
れた成形体の体積固有抵抗率を、白丸印は熱処理
後の導電材料の体積固有抵抗率を、黒丸印は熱処
理後さらに高電圧印加処理を施した導電材料の体
積固有抵抗率を示す。 第2図より、熱処理を実施することにより、ま
た熱処理と高電圧印加処理とを実施することによ
り、材料の導電特性が著しく向上するのがわか
る。たとえば、Pv102〜103Ω−cmの材料をえるに
要するNi粉体配合量は加圧成形体では20%であ
るが、熱処理によつて15℃に、さらに高電圧印加
によつて12%に低減することができる。さらに、
粉体取扱いで起り易い品質のバラツキが均質化で
きる。因に均一分散の溶融加圧成形法によると同
程度の電導性を得るに要するNi粉体配合量は25
〜30%であるので、本発明によるとNi粉体配合
量を1/2以下に低減することが可能になる。 つぎに、出発原料のHDPE粉体と粒径と成形体
の引張り強さの関係を表に示す。ただし、Ni粉
体の配合量は20容量%である。
The present invention relates to a method for manufacturing electrically conductive plastic molded articles. In order to impart electrical conductivity to plastics or elastomers, it is known to mix and compose powders of electrically conductive materials such as carbon and metals. When forming the composite, the conductive material is uniformly dispersed using a rolling roll, a Brabender, or the like. When producing plastic conductive materials using such conventional methods, it is necessary to mix a large amount of conductive material to increase the conductivity, and the mechanical strength may decrease due to the mixing of a large amount of conductive material. I had a big problem. The present invention provides a method of manufacturing a plastic conductive material that is free from such problems. That is,
The method for producing a plastic conductive material of the present invention includes mechanically mixing thermoplastic plastic powder and conductive powder having an average particle size of 1/10 or less of the average particle size of the plastic powder. A step of coating the powder surface with the conductive powder, a step of press-molding the plastic powder coated with the conductive powder to form a molded object, and a step of molding the obtained molded object into the molded object. This process is characterized by a step of performing heat treatment while maintaining the shape at a temperature as high as possible. The thermoplastic plastic powder herein refers to powdered materials such as polyethylene, polystyrene, and nylon. The original form obtained by polymerization of many thermoplastic plastics is powder, and in the present invention, powder in such original form can be used. Regarding the particle size of the powder, the finer it is, the more preferable it is in order to improve the mechanical strength of the conductive material to be manufactured. However, at the same time, it is necessary to increase the amount of conductive powder mixed. In order to satisfy the conflicting goals of not requiring too much conductive powder and having high mechanical strength, it is preferable to use plastic powder with a wide particle size distribution.
For example, polyethylene powder in its original manufacturing form has a particle size of
30 to 40% of fine powder is less than 250 mμ, 60 to 70% is coarse powder of 250 mμ or more, and the average particle size is 400 to 500 mμ, but it is preferable to use powder with a wide particle size range. Examples of conductive powder include carbon powder, nickel powder,
Metal powder such as copper powder can be used. The finer the particle size of the conductive powder, the better, but the conductive properties of the resulting plastic conductive material are determined primarily by the relationship with the particle size of the plastic powder. That is, the average particle size of the conductive powder is preferably 1/10 or less of the average particle size of the plastic powder. When the average particle size of the conductive powder exceeds 1/10 of the average particle size of the plastic powder, the contribution of increasing the amount of the conductive powder to the improvement of the conductive properties becomes low. The mixing ratio of plastic powder and conductive powder can be arbitrarily selected depending on the desired conductive properties. For the target conductive properties,
The minimum blending ratio of the conductive powder is the blending ratio necessary to form a minimum double layer on the surface of the plastic powder. The following theoretical formula holds true between the blending ratio of the conductive powder required to form this double layer and the ratio of the average particle diameters of the plastic powder and the conductive powder. β=100 [1+(φ/4)α] -1 Here, β is the blending ratio of conductive powder (%) α is the average particle size ratio of both powders φ is a factor related to the shape of the conductive powder 1.11~
It is 1.37. From this theoretical formula, when α is 1/10, β is 22 to 26
%, when α is 1/50, β is 5.5 to 6.5%, α is 1/10
When β is 0, β is 2.9 to 3.5%, and when α is 1/1000, β is 0.29 to 0.36%. However, the experimental values vary greatly from the theoretical values, and the blending ratio of plastic powder and conductive powder must be arbitrarily selected based on the desired conductive properties as well as the conductive properties of the conductive powder. In addition to the plastic powder and the conductive powder, reinforcing agents such as glass fibers can be added depending on the purpose of use. Note that various additives for plastics, such as antioxidants and fillers such as calcium carbonate, can be used by uniformly dispersing them in individual plastic powders. As a means for mechanically mixing the plastic powder and the conductive powder, a grinding mixer such as a mixer, a ball mill, a crusher, or other powder mixer that does not involve grinding can be used. When using a grinding mixer such as a crusher, the conductive powder may stick to the surface of the plastic powder during mixing, resulting in a stable coating layer of conductive powder on the surface of the plastic powder. can get. The process of pressure-molding the mixed powder of raw materials is a process of obtaining a molded body in which the mixed powder of a certain shape is pressed and compacted in a mold or between forming rollers. When pressurizing in a mold, a molded product corresponding to the shape of the mold can be obtained, and when using a molding roller, a plate-shaped or rod-shaped molded product can be obtained. No special heating is required during pressure molding. It can usually be carried out at room temperature. It is also possible to perform pressure molding under heating for the purpose of increasing the bonding strength of the compacted body. However, fluidization of the raw material mixed powder due to heating must be avoided. If the raw material mixed powder is fluidized and undergoes large plastic deformation, large deformation occurs in the next heat treatment step, making it impossible to obtain a material in the desired shape. Moreover, the conductive properties are also deteriorated. The higher the pressure during molding, the better it is for improving the mechanical strength of the molded product, but it is sufficient if the pressure is sufficient to prevent the shape from deforming during transfer to the heat treatment step. It is usually molded at around 2 tons/ cm2 . The heat treatment process is a process in which the compacted molded body is held at a high temperature to maintain the molded shape and join the plastic powders together. This process bonds the plastic powders that are in contact with each other, creating a strong bond. Further, the conductive powder covering the surface of the plastic powder is forced into the gap formed by the plastic powder, and the conductive powder itself is bonded to each other to form a network structure. Therefore, by applying heat treatment, both the mechanical strength and conductive properties of the molded body are improved. Among the heat treatment conditions, first, the temperature should be set around the melting point or glass transition point of the plastic powder. However, in cases where the plastic has very high molecular weight and poor fluidity, it is also possible to treat it at a temperature 30° C. or more higher than the melting point or glass transition point. The longer the heat treatment time, the better. Generally, heat treatment time is closely related to heat treatment temperature, and if the heat treatment temperature increases by 10°C, the same heat treatment effect can be expected with approximately 1/2 the heat treatment time. Note that in order to prevent deterioration during heat treatment, it is also preferable to perform heat treatment under an inert gas. It is also possible to shorten the heat treatment time by using induction heating using high frequency irradiation. The plastic conductive material is completed through the above heat treatment process. After this heat treatment step, applying a high voltage to the resulting plastic conductive material will result in
Conductive properties are further improved. The voltage and time to be applied are several hundred volts/cm or more, preferably 2000 V/cm or more. The current application time may be 1 to 2 seconds. Although the voltage is much lower than the dielectric breakdown, the possibility of carbonization of plastic due to local discharge is
Since no change in mechanical strength was observed even after repeated application of high voltage, it is presumed that this was simply a rearrangement of the conductive powder. Hereinafter, the present invention will be explained in further detail by showing test results. Test Example 1 High-density polyethylene powder (hereinafter referred to as HDPE powder) in its original form was used as the thermoplastic plastic powder. The particle size distribution of this HDPE powder is the particle size
30% for 500mμ or more, 35% for 500-250mμ, 250
~150mμ 17%, 150mμ or less 18%. Acetylene black (hereinafter referred to as AB powder) with a particle size of about 500 Å was used as the conductive powder. Raw materials with 14 different compositions were made by blending this HDPE powder and AB powder at a volume percentage of AB powder of 0.25% to 15%, and each raw material was crushed for 1 hour using a crusher with a capacity of 1 to mix the raw materials. A powder was prepared. Next, the raw mixed powder is put into a cylindrical mold and compacted under a pressure of 5t/ cm2 at room temperature.
A plate-shaped molded product having a size of 100 mm and a thickness of 5 mm was obtained. Next, regarding plate-shaped compacts with a blending ratio of AB powder of 3% or less,
1 hour at 134℃, 140 for 4% plate-shaped compacts
℃ for 1 hour, for plate-shaped compacts of 6% or more.
Heat treatment was performed at 160°C for 1 hour. In this way, 14 types of conductive materials were obtained. Next, the specific volume resistivity (Pv) of each conductive material was determined. The results are shown by the solid line (white circles) in Figure 1 in relation to the amount of AB powder blended.
For reference, a raw material was prepared by mixing HDPE powder and AB powder in an extruder, and the relationship between the specific volume resistivity (Pv) of the injection-molded material and the amount of AB blended is shown by the broken line in Figure 1. Indicated by From FIG. 1, it can be seen that the conductive material obtained by the manufacturing method of the present invention has a small volume resistivity (Ωcm) and excellent conductive properties even if the blending ratio of conductive powder is low. The tensile strength of the conductive material obtained by the method of the present invention was 205 to 215 Kg/cm 2 , which was almost the same as the tensile strength of the material obtained by melt-pressing. Test Example 2 Using the same HDPE powder as used in Test Example 1 and nickel metal powder (hereinafter referred to as Ni powder) with a particle size of 5 to 6 mμ as a conductive powder, various blending ratios were prepared. A mixed powder was prepared, and each powder was crushed in a crusher for 1 hour to prepare a raw material mixed powder. Next, pressure molding was performed in the same manner as in Test Example 1 to obtain a compacted molded body. For reference, the volume resistivity (Ωcm) of some compacted bodies was measured. Next, conductive materials were manufactured by heat treatment at 134° C. for 60 minutes, and the specific volume resistivity of each conductive material was measured. Next, for some of the conductive materials, a high voltage of 2000 V/cm was applied for 1 minute, and the specific volume resistivity was measured. The relationship between these specific volume resistivities and the Ni powder content is shown in FIG. 2. In Figure 2, the white diamond mark indicates the volume resistivity of the compacted compact, the open circle mark indicates the volume resistivity of the conductive material after heat treatment, and the black circle mark indicates the volume resistivity of the conductive material subjected to high voltage application treatment after heat treatment. Indicates the specific volume resistivity of the material. From FIG. 2, it can be seen that the conductive properties of the material are significantly improved by heat treatment, or by heat treatment and high voltage application treatment. For example, the amount of Ni powder required to obtain a material with Pv10 2 - 10 3 Ω-cm is 20% in a pressure molded product, but it can be increased to 12% by heat treatment to 15°C and further by applying a high voltage. can be reduced to moreover,
Quality variations that tend to occur when handling powder can be homogenized. Incidentally, according to the melt-pressing method with uniform dispersion, the amount of Ni powder required to obtain the same level of conductivity is 25
~30%, so according to the present invention, it is possible to reduce the amount of Ni powder blended to 1/2 or less. Next, the relationship between the starting raw material HDPE powder, particle size, and tensile strength of the molded body is shown in the table. However, the amount of Ni powder mixed is 20% by volume.

【表】 表において粒径を明示した原料は予め出発原料
を篩分したものである。因に溶融加圧成形法によ
る値を併記した。表から明らかなように、本発明
法で150mμ以下の粒径の出発原料のとき最大の
引張強さであるが、未篩分の製造原形態そのまま
の粉体を用いたときでも、従来の溶融加圧成形法
に比べて同程度の引張強さを有する導電材料を得
ることができる。
[Table] The raw materials whose particle sizes are specified in the table are the starting materials that have been sieved in advance. In addition, the values obtained using the melt pressure molding method are also listed. As is clear from the table, the tensile strength is maximum when using the starting material with a particle size of 150 mμ or less in the method of the present invention, but even when using the unsieved powder in its original form, it is A conductive material having tensile strength comparable to that obtained by pressure molding can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるアセチレンカーボンブラ
ツクの配合量と成形体の体積抵抗率Ω−cmとの試
験結果を示し、出発原料は製造原形態の高密度ポ
リエチレン粉体そのままを用いたものである。第
2図は本発明による高密度ポリエチレン粉体とニ
ツケル粉体とについて、圧縮成形体に熱処理並び
に高電圧印加処理を施すことによる体積抵抗率の
増大効果を示す実験結果である。ただし高密度ポ
リエチレンの粒径は250〜500mμである。
FIG. 1 shows the test results of the amount of acetylene carbon black blended according to the present invention and the volume resistivity Ω-cm of a molded article, using high-density polyethylene powder in its original form as a starting material. FIG. 2 shows experimental results showing the effect of increasing the volume resistivity of high-density polyethylene powder and nickel powder according to the present invention by subjecting compression molded bodies to heat treatment and high voltage application treatment. However, the particle size of high-density polyethylene is 250 to 500 mμ.

Claims (1)

【特許請求の範囲】 1 熱可塑性プラスチツク粉体と該プラスチツク
粉体の平均粒径の1/10以下の平均粒径をもつ導電
性粉体とを機械的に混合し、該プラスチツク粉体
表面に該導電性粉体を被覆する工程と、 導電性粉体が被覆されたプラスチツク粉体を加
圧成形して成形体を形成する工程と、 得られた成形体を該成形体の形状を保持しつつ
可能なかぎり高い温度に保持して熱処理を行う工
程 とよりなることを特徴とするプラスチツク導電材
料の製造方法。 2 熱処理工程のあとで成形体に高電圧印加を行
なう特許請求の範囲第1項記載のプラスチツク導
電材料の製造方法。
[Claims] 1. Thermoplastic plastic powder and conductive powder having an average particle size of 1/10 or less of the average particle size of the plastic powder are mechanically mixed, and the surface of the plastic powder is coated on the surface of the plastic powder. a step of coating the conductive powder; a step of press-molding the plastic powder coated with the conductive powder to form a molded body; 1. A method for producing a plastic conductive material, comprising the steps of heat treatment while holding the material at a temperature as high as possible. 2. The method for producing a plastic conductive material according to claim 1, wherein a high voltage is applied to the molded body after the heat treatment step.
JP6996080A 1980-05-26 1980-05-26 Method of producing electrically-conductive plastic material Granted JPS56166039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6996080A JPS56166039A (en) 1980-05-26 1980-05-26 Method of producing electrically-conductive plastic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6996080A JPS56166039A (en) 1980-05-26 1980-05-26 Method of producing electrically-conductive plastic material

Publications (2)

Publication Number Publication Date
JPS56166039A JPS56166039A (en) 1981-12-19
JPS6255496B2 true JPS6255496B2 (en) 1987-11-19

Family

ID=13417720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6996080A Granted JPS56166039A (en) 1980-05-26 1980-05-26 Method of producing electrically-conductive plastic material

Country Status (1)

Country Link
JP (1) JPS56166039A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634752B2 (en) * 1998-12-28 2005-03-30 大阪瓦斯株式会社 Resin molding
JP4963831B2 (en) * 2005-12-22 2012-06-27 昭和電工株式会社 Semiconductive structure, conductive and / or thermally conductive structure, method for producing the structure, and use thereof
JP2012140625A (en) * 2012-01-23 2012-07-26 Nitto Denko Corp Adhesive heat-conducting member and method for producing the same
JP6025508B2 (en) * 2012-11-02 2016-11-16 大倉工業株式会社 Method for producing conductive film

Also Published As

Publication number Publication date
JPS56166039A (en) 1981-12-19

Similar Documents

Publication Publication Date Title
CN101913593B (en) Graphite material for producing nanogate carbon and preparation method thereof
KR100241677B1 (en) Manufacturing method of high strength metal powder processed product coated with thermoplastic material
US2683669A (en) Conductive plastics and method of making the same
US4302413A (en) Process for preparing extrudable polyimide granules
US2509652A (en) Method of manufacturing abrasive articles
US2526059A (en) Fixed electrical resistor
GB903090A (en) Filling of polytetrafluoroethylene
US20030104257A1 (en) Method for bipolar plate manufacturing
JPS6255496B2 (en)
US1856680A (en) Dynamo brush
US2683181A (en) Negative electric plates for alkaline accumulators and methods for making same
CN113278218B (en) Conductive composite material with isolation structure and preparation method thereof
US20060208384A1 (en) Method for producing an electroconductive composite material
US4820465A (en) Method for producing a shaped synthetic member
EP0273876A1 (en) Spot welding electrode and method for making it
JPS5923971B2 (en) Method for manufacturing conductive polyolefin resin molded body
JPS6013962B2 (en) Manufacturing method of isotropic special carbon material
KR102319995B1 (en) Fabrication method of electric contact materials
JPH04249861A (en) Manufacture of nonaqueous electrolyte battery
RU2015022C1 (en) Method for production of polymer sheet materials for electrodes
RU2707001C1 (en) Method of producing electrotechnical articles from powder compositions based on carbon
US838419A (en) Treatment and utilization of waste vulcanized rubber and ebonite.
US3255283A (en) Method for electrode fabrication
JP2793919B2 (en) Method for producing raw material compound for metal powder injection molding
US1897626A (en) Method of producing rubber articles