JPS6255444B2 - - Google Patents

Info

Publication number
JPS6255444B2
JPS6255444B2 JP53160886A JP16088678A JPS6255444B2 JP S6255444 B2 JPS6255444 B2 JP S6255444B2 JP 53160886 A JP53160886 A JP 53160886A JP 16088678 A JP16088678 A JP 16088678A JP S6255444 B2 JPS6255444 B2 JP S6255444B2
Authority
JP
Japan
Prior art keywords
stand
rolling
plate thickness
deformation resistance
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53160886A
Other languages
Japanese (ja)
Other versions
JPS5586614A (en
Inventor
Yoshiharu Hamazaki
Koji Oominato
Junichi Kunugihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16088678A priority Critical patent/JPS5586614A/en
Publication of JPS5586614A publication Critical patent/JPS5586614A/en
Publication of JPS6255444B2 publication Critical patent/JPS6255444B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control

Description

【発明の詳細な説明】 本発明は圧延機の板厚制御装置に関し、特に圧
延機出側板厚偏差をなくそうとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plate thickness control device for a rolling mill, and is particularly intended to eliminate plate thickness deviation at the exit side of the rolling mill.

圧延機においては出側板厚を目標板厚にするよ
うに、被圧延材が圧延機に噛込まれる前に、圧下
位置と、ロール回転数とを予め予測計算し(この
予測計算を通常スケジユール計算と呼ぶ)、その
計算された値に圧下位置と、ロール回転数とを予
め設定しておく(この設定をプリセツトと呼ぶ)
ようになされている。
In a rolling mill, the rolling position and number of roll rotations are predicted and calculated in advance before the material to be rolled is bitten by the rolling mill, so that the exit side plate thickness is the target plate thickness. ), and set the rolling position and roll rotation speed to the calculated values in advance (this setting is called a preset).
It is done like this.

しかし実際には、被圧延材の変形抵抗の予測に
ついて予測誤差があつたり、圧延機入側での被圧
延材の板厚を把握する際に誤差があつたりすれ
ば、スケジユール計算における計算結果に予測計
算誤差が入ることになり、その結果圧延機出側板
厚は目標板厚にならないことが多い。
However, in reality, if there is a prediction error in predicting the deformation resistance of the material to be rolled, or if there is an error in determining the thickness of the material to be rolled at the entrance of the rolling mill, the calculation results in the schedule calculation may be affected. A prediction calculation error will be introduced, and as a result, the strip thickness at the exit of the rolling mill will often not be the target strip thickness.

そこで本発明は、このようなスケジユール計算
誤差による圧延機出側板厚の偏差をなくすように
しようとするものである。
Therefore, the present invention aims to eliminate the deviation in the thickness of the sheet at the exit side of the rolling mill due to such schedule calculation errors.

以下図面について本発明の一例を詳述しよう。
先ず第1図についてスケジユール計算を検討して
みるに、Hpは圧延機入側予測板厚、HAは圧延機
入側真の板厚、hAは圧延機出側真の板厚、hp
圧延機の出側目標板厚、Spはスケジユール計算
で得られた圧下位置設定値、S′は入側板厚予測誤
差及び変形抵抗予測誤差を考慮して修正した後の
圧下位置、Fpは入側板厚をHpとし、かつ圧下位
置をSpとしたときの予測圧延力、FAは入側板厚
をHAとし、かつ圧下位置をSpとしたときの予測
圧延力である。
An example of the present invention will be described in detail below with reference to the drawings.
First, considering the schedule calculation for Figure 1, H p is the predicted thickness at the entrance of the rolling mill, H A is the true thickness at the entrance of the rolling mill, h A is the true thickness at the exit of the rolling mill, h p is the target plate thickness on the exit side of the rolling mill, S p is the set value of the rolling position obtained by schedule calculation, S' is the rolling position after correction taking into account the prediction error of the plate thickness on the entry side and the prediction error of deformation resistance, F p is the predicted rolling force when the entrance plate thickness is H p and the rolling position is S p , and F A is the predicted rolling force when the entrance plate thickness is H A and the rolling position is S p . .

第1図において変形抵抗は等価的にFp−Hp
線(これをA直線という)又はFA−HA直線(こ
れをB直線という)の勾配に相当する。そこで入
側板厚について予測値がHpであるのに対して真
の値はHAでその分だけ誤差がある。また変形抵
抗についても、予測直線A線と、実際の直線B線
とが一致しなければ、圧延機出側の板厚はhA
なり目標板厚hpとの間に誤差が生ずることにな
る。
In FIG. 1, the deformation resistance equivalently corresponds to the slope of the F p -H p line (this is called the A line) or the F A -H A line (this is called the B line). Therefore, while the predicted value for the entry side plate thickness is H p , the true value is H A , and there is an error corresponding to that value. Regarding deformation resistance, if the predicted straight line A and the actual straight line B do not match, the plate thickness at the exit side of the rolling mill will be h A and an error will occur between it and the target plate thickness h p . .

以上の考察から、入側板厚の予測及び変形抵抗
の予測に誤差がある場合に、目標板厚hpを得る
ためには圧下位置をSpからS′にまで修正すれば
良いことが分る。
From the above considerations, it can be seen that if there is an error in the prediction of the entry side plate thickness and the prediction of the deformation resistance, in order to obtain the target plate thickness h p , it is sufficient to correct the rolling position from S p to S'. .

本発明はかかる原理に立つもので、第2図にお
いて被圧延材4が第iスタンドSTiのロール1a
に噛み込んだとき、圧下位置検出制御装置2aに
よつて検出された圧力位置SAiと、圧延力検出装
置3aによつて検出された圧延力FAiを用いて第
iスタンド出側板厚hAiを求めれば、 hAi=SAi+FAi/M+OFSi …(1) となる。ここでMiはミル定数、OFSiは油膜厚補
正を含む修正項である。
The present invention is based on this principle, and in FIG. 2, the rolled material 4 is the roll 1a of the i-th stand ST i .
, the thickness h Ai of the exit side of the i-th stand is determined using the pressure position S Ai detected by the rolling position detection control device 2a and the rolling force F Ai detected by the rolling force detection device 3a . If we calculate h Ai = S Ai + F Ai / M i + OFS i (1). Here, M i is a Mill constant, and OFS i is a correction term including oil film thickness correction.

一方スケジユール計算においては、圧延予測値
pは以下の式に基づいて得ている。
On the other hand, in the schedule calculation, the predicted rolling value F p is obtained based on the following formula.

pi=Kpi・Wpi・√′pipipi)・Qi…(2) Qi=f1(R′pi、Hpi、hpi) …(3) R′pi=f2(Ri、Fpi、Hpi、hpi) …(4) ここで、Riは第iスタンドのロール半径、Kpi
は第iスタンドの予測平均変形抵抗、Wpiは第i
スタンドの予測板幅、R′piは第iスタンドの予測
偏平ロール半径、f1(R′pi、Hpi、hpi)及びf2
(Ri、Fpi、Hpi、hpi)は関数である。
F pi =K pi・W pi・√′ pi ( pipi )・Q i …(2) Q i =f 1 (R′ pi , H pi , h pi )…(3) R′ pi = f 2 (R i , F pi , H pi , h pi ) ...(4) Here, R i is the roll radius of the i-th stand, K pi
is the predicted average deformation resistance of the i-th stand, W pi is the i-th stand
The predicted plate width of the stand, R′ pi is the predicted flat roll radius of the i-th stand, f 1 (R′ pi , H pi , h pi ) and f 2
(R i , F pi , H pi , h pi ) is a function.

従つて目標出側板厚hpiを得るための圧下位置
piは(1)式のゲージメータ式より Spi=hpi−Fpi/M−OFSi …(5) として求めることができる。
Therefore, the rolling down position S pi for obtaining the target exit side plate thickness h pi can be determined from the gauge meter equation (1) as S pi =h pi −F pi /M i −OFS i (5).

以上の式において、ミル定数Mi及びオフセツ
トOFSiは被圧延材の要因によつて変動するもの
ではなく、ミル機械系の要因に関係するので、予
測するにつきその予測精度をかなり高めることが
できる。
In the above equations, the mill constant M i and offset OFS i do not vary depending on the factors of the material to be rolled, but are related to factors of the mill mechanical system, so the prediction accuracy can be considerably improved. .

一方ロール半径Ri及び板幅Wpiは予め判つてい
るので、結局目標板厚hpiに圧延するための圧下
位置予測値Spiを正確に得るためには、圧延力F
piを正確に予測すること、換言すれば(2)式に基づ
いて平均変形抵抗Kpiと、入側板厚Hpiとを正確
に把握することが必要である。
On the other hand, since the roll radius R i and the strip width W pi are known in advance, in order to accurately obtain the predicted rolling position S pi for rolling to the target strip thickness h pi , the rolling force F
It is necessary to accurately predict pi , in other words, it is necessary to accurately grasp the average deformation resistance K pi and the entry side plate thickness H pi based on equation (2).

そこで第2図において第iスタンド出側板厚の
実測値hAiは(1)式のゲージメータ式から求めるこ
とができ、また第iスタンドの入側板厚実測値H
Aiは第iスタンドの前段の第(i−1)スタンド
の出側板厚実測値hA(i-1)が第iスタンド入側板
厚実測値となることを考慮すれば、 HAi=hA(i-1) =SA(i-1)+FA(i−1)/M(i−1)+OFS(i-
1)
…(6) として得ることができる。
Therefore, in Fig. 2, the measured value h Ai of the plate thickness on the exit side of the i-th stand can be obtained from the gauge meter formula of equation (1), and the measured value h Ai of the plate thickness on the inlet side of the i-th stand
Ai is the actual measured value of the plate thickness at the exit side of the (i-1)th stand before the i-th stand. Considering that A(i-1) is the actual measured value of the plate thickness at the inlet side of the i-th stand, H Ai = h A (i-1) =S A(i-1) +F A(i-1) /M (i-1) +OFS (i-
1)
…(6) can be obtained.

従つて予測計算に用いた平均変形抵抗Kpiと、
圧延されたときの実測値から得られた平均変形抵
抗KAiとの間には、次式の関係が成立つ。
Therefore, the average deformation resistance K pi used in the prediction calculation,
The following relationship holds true between the average deformation resistance K Ai obtained from the measured value during rolling.

この式により求めた値TRENDiは平均変形抵抗
修正係数と呼び、右辺は実測値及び予め判つてい
る値の関数であるので、容易に計算することがで
きる。
The value TREND i obtained by this formula is called the average deformation resistance correction coefficient, and since the right side is a function of the measured value and the value known in advance, it can be easily calculated.

なお(7)式で求めた平均変形抵抗修正係数
TRENDiは第iスタンド単独の演算結果である
が、第iスタンドより上流のスタンドでも同様の
演算を行わせ、第(i+1)スタンド以降の圧下
位置修正量を次式 により平均変形抵抗修正係数iを重みづけ
平均をとつて使用するようにしても良く、このよ
うにすればより安定な修正機能を維持できる。な
お(8)式において、αijは重みづけ係数である。
Note that the average deformation resistance correction coefficient obtained using equation (7)
TREND i is the calculation result for the i-th stand alone, but the same calculation is performed for the stands upstream from the i-th stand, and the amount of reduction position correction after the (i+1)th stand is calculated using the following formula. Accordingly, the average deformation resistance correction coefficient i may be weighted and used. In this way, a more stable correction function can be maintained. Note that in equation (8), α ij is a weighting coefficient.

しかるに第iスタンドでの被圧延機の塑性変形
要因である平均変形抵抗の予測誤差は、第(i+
1)スタンドに噛み込んだときも同じような予測
誤差を生じているであろうと考えられるし、また
第iスタンド出側板厚の予測誤差は第(i+1)
スタンドへの入側板厚予測誤差となる。従つて第
iスタンドに被圧延材が噛み込んだ時点で、第
(i+1)スタンドについての出側板厚誤差を予
測できるので、上述の第iスタンドの噛み込み時
の実測値による演算結果に基づいて第(i+1)
スタンドの圧下位置修正動作に入ると共に、第
(i+2)スタンド以降については、第(i+
1)スタンドの出側板厚を目標板厚となるように
修正することに基づいて入側板厚誤差はないと考
えて良く、結局平均変形抵抗の予測誤差に対して
だけ圧下修正動作を行えば良いことになる。
However, the prediction error of the average deformation resistance, which is a factor of plastic deformation of the rolling mill at the i-th stand, is
1) It is thought that a similar prediction error occurs when the stand is bitten, and the prediction error for the exit side plate thickness of the i-th stand is the (i+1)-th
This is an error in predicting the plate thickness at the entrance to the stand. Therefore, when the material to be rolled is bitten by the i-th stand, the exit plate thickness error for the (i+1)th stand can be predicted. (i+1)th
At the same time as the operation of correcting the lowered position of the stand begins, for the (i+2)th and subsequent stands, the (i+2)th
1) Based on correcting the thickness of the outlet side of the stand to match the target thickness, it can be assumed that there is no error in the thickness of the inlet side, and in the end, it is only necessary to perform the reduction correction operation for the prediction error of the average deformation resistance. It turns out.

すなわち、スケジユール計算で得た第(i+
1)スタンドの予測圧延力Fp(i+1)を、 但し、R′p(i+1)はF′p(i+1)、HA(i+1)により求め
た偏平ロール径、 Rp(i+1)はFp(i+1)、Hp(i+1)により求めた偏平
ロール径、 Q′p(i+1)はR′p(i+1)、HA(i+1)により求めた圧下
力関数、 Qp(i+1)はRp(i+1)、Hp(i+1)により求めた圧下
力関数である。
In other words, the (i+
1) The predicted rolling force F p(i+1) of the stand is However, R′ p(i+1) is the flat roll diameter obtained from F′ p(i+1) and H A(i+1) , R p(i+1) is F p(i+1) , The flat roll diameter obtained from H p(i+1) , Q′ p(i+1) is R′ p(i+1) , the rolling force function obtained from H A(i+1) , Q p(i +1) is the rolling force function determined from R p (i+1) and H p (i +1) .

のように、第iスタンド噛込時に得られた平均変
形抵抗修正係数TRENDiと、入側板厚実測値HA(
i+1)A(i+1)=hAi …(10) とを用いて修正し、第(i+1)スタンドの圧下
位置を、 S′p(i+1)=hp(i+1)−F′p(i+1)/M(i+1
−OFS(i+1)…(11) の式によつて再計算し、直ちに圧下位置を修正す
る。
As shown, the average deformation resistance correction coefficient TREND i obtained when the i-th stand is engaged and the actual measurement value of the entrance plate thickness H A (
i+1) H A(i+1) = h Ai ...(10), and correct the lowering position of the (i+1)th stand as S′ p(i+1) = h p(i+1) − F′ p(i+1) /M (i+1
)
−OFS (i+1) …Recalculate using the formula (11) and immediately correct the rolled position.

これに対して第(i+2)スタンド以降は前述
のように入側板厚予測誤差は零と考えて、 S′p(i+j)=hp(i+j)−F′p(i+j)/M(i+j
−OFS(i+j)…(13) の式を用いて圧下位置を修正する。なおj=2、
3、…である。
On the other hand, from the (i+2)th stand onwards, the entrance side plate thickness prediction error is assumed to be zero as mentioned above, S′ p(i+j) =h p(i+j) −F′ p(i+j) /M (i+j
)
−OFS (i+j) … Correct the roll position using the formula (13). Note that j=2,
3. It is...

この圧下位置修正動作は被圧延材が順次下流ス
タンドへ噛み込んで行くごとに同様にして繰返さ
れる。かかる修正手順を第3図にフローチヤート
として示している。
This rolling position correction operation is repeated in the same way each time the material to be rolled is bitten into the downstream stand. Such a correction procedure is shown as a flowchart in FIG.

以上この発明によれば、1のスタンドの出側に
おける被圧延材の板厚又は板厚偏差と、被圧延材
の変形抵抗又はその偏差とを、圧延力及び圧下位
置実測値から求め、かつ、上記変形抵抗又はその
偏差に基づいて、次のスタンド又はそれ以降のス
タンドにおいて修正すべき平均変形抵抗の修正係
数を求めるとともに、この修正係数とスタンド入
側での板厚実測値とを用いて出側板厚が目標板厚
となるように圧下位置を調整する板厚制御装置と
して構成したため、被圧延材が第1番目のスタン
ドに噛み込む前にスケジユール計算によつて得た
値に設定しておき、その後被圧延材が各スタンド
に噛み込まれるごとにその時の実測値に基づいて
被圧延材の塑性変形上の定数である平均変形抵抗
の予測誤差と出側板厚誤差とを求め、これら実測
値により得た平均変形抵抗修正係数によつて下流
スタンドの圧下位置の修正計算を行なうにつき、
被圧延材がスタンドから離れるにつれてウエイト
を変えて実状に合つた修正をすることができ、高
い精度で目標板厚の製品を得ることができる。
As described above, according to the present invention, the plate thickness or plate thickness deviation of the rolled material on the exit side of one stand, and the deformation resistance of the rolled material or its deviation are determined from the actual measured values of the rolling force and the rolling position, and Based on the above deformation resistance or its deviation, calculate the correction coefficient for the average deformation resistance to be corrected in the next stand or subsequent stands, and use this correction coefficient and the actual plate thickness value at the entrance side of the stand to calculate the Since it is configured as a plate thickness control device that adjusts the rolling position so that the side plate thickness becomes the target plate thickness, it is set to the value obtained by schedule calculation before the rolled material is caught in the first stand. After that, each time the rolled material is bitten by each stand, the prediction error of the average deformation resistance, which is a constant for the plastic deformation of the rolled material, and the exit side plate thickness error are calculated based on the actual measured values at that time, and these actual measured values are calculated. When calculating the correction of the rolling position of the downstream stand using the average deformation resistance correction coefficient obtained from
As the rolled material moves away from the stand, it is possible to change the weight and make corrections to suit the actual situation, making it possible to obtain a product with a target thickness with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理の説明に供する曲線図、
第2図は本発明に依る圧延機の板厚制御装置を示
す略線図、第3図はその動作の説明に供するフロ
ーチヤートである。 1a,1b:ロール、2a,2b:圧下位置検
出制御装置、3a,3b:圧延力検出装置。
FIG. 1 is a curve diagram for explaining the principle of the present invention;
FIG. 2 is a schematic diagram showing a plate thickness control device for a rolling mill according to the present invention, and FIG. 3 is a flowchart for explaining its operation. 1a, 1b: Rolls, 2a, 2b: Rolling position detection control device, 3a, 3b: Rolling force detection device.

Claims (1)

【特許請求の範囲】 1 スケジユール計算により得られる第iスタン
ドの予測圧延力及び被圧延材の板厚から求めた予
測変形抵抗Kpiと圧延されたときの実測圧延力及
び被圧延材の板厚から求めた実測変形抵抗KAi
から変形抵抗修正係数TRENDiを 但し、サフイツクスAiは第iスタンドの実測
値、Piは第iスタンドの予測値を示すものとし、
Fは圧延力、Wは板幅、R′は偏平ロール半径、
Hは入側板厚、hは出側板厚、Qは圧力関数であ
る。 により導出し、この変形抵抗修正係数に基づいて
第i+1スタンド以降の圧下位置を修正すること
を特徴とする圧延機の板厚制御装置。 2 第iスタンドより上流の各スタンドにおいて
それぞれ導出した変形抵抗修正係数の平均値によ
り第i+1スタンド以降の圧下位置を修正するこ
とを特徴とする圧延機の板厚制御装置。
[Claims] 1. From the predicted rolling force of the i-th stand obtained by schedule calculation and the predicted deformation resistance Kpi obtained from the thickness of the material to be rolled, the actual rolling force at the time of rolling, and the thickness of the material to be rolled. Determine the deformation resistance correction coefficient TRENDi from the obtained measured deformation resistance K Ai . However, saphitx Ai indicates the actual measured value of the i-th stand, Pi indicates the predicted value of the i-th stand,
F is rolling force, W is plate width, R′ is flat roll radius,
H is the inlet side plate thickness, h is the outlet side plate thickness, and Q is the pressure function. A plate thickness control device for a rolling mill, characterized in that the rolling mill position is corrected based on this deformation resistance correction coefficient. 2. A plate thickness control device for a rolling mill, characterized in that the rolling position after the i+1th stand is corrected based on the average value of deformation resistance correction coefficients derived for each stand upstream from the i-th stand.
JP16088678A 1978-12-25 1978-12-25 Thickness controller for rolling mill Granted JPS5586614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16088678A JPS5586614A (en) 1978-12-25 1978-12-25 Thickness controller for rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16088678A JPS5586614A (en) 1978-12-25 1978-12-25 Thickness controller for rolling mill

Publications (2)

Publication Number Publication Date
JPS5586614A JPS5586614A (en) 1980-06-30
JPS6255444B2 true JPS6255444B2 (en) 1987-11-19

Family

ID=15724483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16088678A Granted JPS5586614A (en) 1978-12-25 1978-12-25 Thickness controller for rolling mill

Country Status (1)

Country Link
JP (1) JPS5586614A (en)

Also Published As

Publication number Publication date
JPS5586614A (en) 1980-06-30

Similar Documents

Publication Publication Date Title
JPS6255444B2 (en)
JP2803573B2 (en) Manufacturing method of tapered steel plate
JP3062017B2 (en) Thickness control method in hot rolling
JPS649086B2 (en)
JPS6277110A (en) Dimension and shape straightening apparatus for hot rolling steel plate
JP2650575B2 (en) Thick plate width control rolling method
JP2009113100A (en) Plate thickness controller of rolling mill, and plate thickness control method of rolling mill
JP5565214B2 (en) Thickness control method of rolling mill
JPH0653283B2 (en) Adaptive control method in rolling mill
JP2825428B2 (en) Strip crown control method in rolling mill
JPH08187504A (en) Manufacture of tapered steel sheet
JP3152524B2 (en) Method of controlling thickness of rolled material in hot continuous rolling
JPH05111712A (en) Method for controlling sheet thickness/crown in continuous mill
JP3237559B2 (en) Thickness control method of hot continuous rolling mill
JP3350294B2 (en) Control method and control device for tandem mill
JPS62192209A (en) Plate thickness control method for rolling mill
JPH0636929B2 (en) Method for controlling strip width of rolled material
JP3355089B2 (en) Plate thickness control device and plate thickness control method
JPS6320604B2 (en)
JPH05104123A (en) Hot continuous rolling method
JPH0471606B2 (en)
JPS6150047B2 (en)
JPH0471605B2 (en)
JPS6225444B2 (en)
JPS6335327B2 (en)