JPS6255378B2 - - Google Patents

Info

Publication number
JPS6255378B2
JPS6255378B2 JP58005214A JP521483A JPS6255378B2 JP S6255378 B2 JPS6255378 B2 JP S6255378B2 JP 58005214 A JP58005214 A JP 58005214A JP 521483 A JP521483 A JP 521483A JP S6255378 B2 JPS6255378 B2 JP S6255378B2
Authority
JP
Japan
Prior art keywords
armature
separately excited
motor
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58005214A
Other languages
Japanese (ja)
Other versions
JPS59132718A (en
Inventor
Tatsuaki Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP521483A priority Critical patent/JPS59132718A/en
Publication of JPS59132718A publication Critical patent/JPS59132718A/en
Publication of JPS6255378B2 publication Critical patent/JPS6255378B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は他励磁直流電動機の保護装置に係り、
特に出力電圧の変動が大きい直流電源を使用する
ものに好適な他励磁直流電動機の保護装置に関す
る。
[Detailed Description of the Invention] The present invention relates to a protection device for a separately excited DC motor,
The present invention relates to a protection device for separately excited DC motors, which is particularly suitable for those using DC power supplies with large fluctuations in output voltage.

他励磁直流電動機は、繁雑で大きな面積を占有
する付帯設備を設けなくても、自由にその速度制
御を行なうことができる。このため、最近、他励
磁直流電動機を車両の電動機として使用すること
が考えられている。ところが、車両に供給される
架線の電源電圧はその変動が大きく、特に電源電
圧の上昇に対しては、この他励磁直流電動機を保
護する装置が必要となる。このような保護装置と
しては、電機子回路の過電流検出を行ない、その
検出により電機子回路を遮断する装置、又は電機
子回路の電圧を基準指令値と比較し、半導体整流
装置の出力電圧を抑える装置が考えられる。この
後者の保護装置を以下に説明する。
The speed of a separately excited DC motor can be freely controlled without the need for complicated and large area-occupying auxiliary equipment. For this reason, recently, it has been considered to use separately excited DC motors as motors for vehicles. However, the power supply voltage of the overhead wire supplied to the vehicle fluctuates widely, and in particular, a device for protecting the excited DC motor is required in response to increases in the power supply voltage. Such protection devices include a device that detects overcurrent in the armature circuit and shuts off the armature circuit based on the detection, or a device that compares the voltage of the armature circuit with a reference command value and adjusts the output voltage of the semiconductor rectifier. A device to suppress this could be considered. This latter protection device will be described below.

第1図は従来の保護装置の回路図である。図
で、1は電源からの交流を直流に整流してこれを
電機子回路に供給する電機子回路用半導体整流装
置、2は同じく界磁回路用半導体整流装置、3は
他励磁直流電動機の電機子、4はその補極巻線、
5は他励磁界磁巻線、6はリアクトルである。7
は電機子回路に挿入された検出用抵抗、8は検出
用抵抗7の両端電圧を検出する電圧検出器、9は
ある定められた基準電圧を発生する基準指令値発
生器、10は上記基準電圧から電圧検出器8で検
出された電圧を減算する減算器である。
FIG. 1 is a circuit diagram of a conventional protection device. In the figure, 1 is a semiconductor rectifier for the armature circuit which rectifies the AC from the power supply into DC and supplies it to the armature circuit, 2 is the same semiconductor rectifier for the field circuit, and 3 is the electric motor of the separately excited DC motor. child, 4 is its commutator winding,
5 is a separately excited field winding, and 6 is a reactor. 7
is a detection resistor inserted in the armature circuit, 8 is a voltage detector that detects the voltage across the detection resistor 7, 9 is a reference command value generator that generates a certain reference voltage, and 10 is the reference voltage mentioned above. This is a subtracter that subtracts the voltage detected by the voltage detector 8 from .

この従来の保護装置の動作を第2図および第3
図に示す電圧および電流波形図を参照して説明す
る。第2図は半導体整流装置1,2の出力電圧の
波形図、第3図は電機子回路の電流の波形図であ
る。今、時刻t1において、半導体整流装置1,2
の出力電圧が電圧V1から電圧V2に上昇したとす
る。この場合、電機子電流が増大し、これが過電
流になるとフラツシユオーバーを発生し、他に設
置されている保護装置が動作して電動機が停止し
てしまう。又、フラツシユオーバーにまでは至ら
なくても火花が激しく発生し、ブラツシの摩耗が
甚だしくなる。ところで、この第1図に示される
従来装置にあつては、電流の増加に応じて電圧検
出器8の出力電圧が増加し、これが基準電圧を超
えると、これに応じた信号が半導体整流装置1の
ゲートに印加される。したがつて、半導体整流装
置1の出力電圧はその上昇を抑えられて、フラツ
シユオーバー又は火花の発生を防止する。
The operation of this conventional protection device is shown in Figures 2 and 3.
This will be explained with reference to the voltage and current waveform diagrams shown in the figure. FIG. 2 is a waveform diagram of the output voltages of the semiconductor rectifiers 1 and 2, and FIG. 3 is a waveform diagram of the current in the armature circuit. Now, at time t 1 , semiconductor rectifiers 1 and 2
Suppose that the output voltage of increases from voltage V 1 to voltage V 2 . In this case, the armature current increases, and if this becomes an overcurrent, a flashover occurs, which causes other installed protection devices to operate and stop the motor. Further, even if flashover does not occur, sparks are generated violently, resulting in severe wear of the brush. By the way, in the conventional device shown in FIG. 1, the output voltage of the voltage detector 8 increases in accordance with an increase in current, and when this exceeds the reference voltage, a corresponding signal is sent to the semiconductor rectifier 1. is applied to the gate of Therefore, the output voltage of the semiconductor rectifier 1 is suppressed from increasing, thereby preventing flashover or sparks from occurring.

しかしながら、直流電動機は一般に整流機能改
善の目的で第1図に示すようにリアクトル6が挿
入され、回路の時定数が大きいので、前述の回路
を遮断する従来装置および第1図に示す従来装置
における電流を検出する手段では、検出に時間を
要し、フラツシユオーバーや火花発生に対応でき
ないという欠点があつた。さらに、第3図に示す
ように、電流の増加が過電流検出設定値I1に達し
ない程度の変動であれば、直流電動機は長時間弱
め界磁領域で運転されることになり、その整流性
能を著るしく悪化させるという欠点もあつた。第
4図は、上記第1の欠点である検出の時間遅れを
示す電機子回路の電流の波形図である。時刻t1
おいて第2図に示す電圧上昇が発生した場合、時
刻t2に至つてようやく電流が過電流検出設定値に
達する。回路定数により異なるが、時刻t1、t2
の時間は10ms〜50msである。次いで、これを
検出する電圧検出器8、減算器10における検出
時間(約20ms)を要し、時刻t3になつて初めて
減算器10から信号が出力される。このように、
出力電圧が上昇してそれに応じた信号が出力され
るまで相当の時間を要するのである。しかも、例
えば電機子回路を遮断する従来装置においては、
その遮断が継電器により行なわれる場合、その開
極時間に時刻t3から時刻t4までの時間(約50m
s)、さらに開極後開極によるアークが完全に遮
断されるのに時刻t4から時刻t5までの時間(約50
ms)を要するのである。そして、この時間遅れ
の間、フラツシユオーバーや火花の発生を防止す
ることはできない。
However, DC motors generally have a reactor 6 inserted as shown in Figure 1 for the purpose of improving the rectification function, and the time constant of the circuit is large. Means for detecting current have disadvantages in that it takes time to detect and cannot cope with flashovers and sparks. Furthermore, as shown in Figure 3, if the increase in current fluctuates to the extent that it does not reach the overcurrent detection set value I1 , the DC motor will be operated in the field weakening region for a long time, and the rectification It also had the disadvantage of significantly deteriorating performance. FIG. 4 is a waveform diagram of the current in the armature circuit showing the first drawback, which is the detection time delay. When the voltage rise shown in FIG. 2 occurs at time t 1 , the current finally reaches the overcurrent detection setting value at time t 2 . The time between time t 1 and t 2 is 10 ms to 50 ms, although it varies depending on the circuit constants. Next, a detection time (approximately 20 ms) is required for the voltage detector 8 and the subtracter 10 to detect this, and a signal is output from the subtracter 10 for the first time at time t3 . in this way,
It takes a considerable amount of time until the output voltage increases and a signal corresponding to the increase is output. Moreover, for example, in the conventional device that interrupts the armature circuit,
If the interruption is performed by a relay, the opening time is the period from time t 3 to time t 4 (approximately 50 m
s), and the time from time t 4 to time t 5 (approximately 50
ms). During this time delay, flashover and sparks cannot be prevented.

本発明の目的は、上記従来の欠点を除き、過電
流を時間遅れなく検出することができ、ひいて
は、回転子におけるフラツシユオーバーや火花の
発生を未然に防止することができる他励磁直流電
動機の保護装置を提供するにある。
An object of the present invention is to eliminate the above-mentioned conventional drawbacks, and to provide a separately excited DC motor that can detect overcurrent without time delay and prevent flashover and sparks in the rotor. To provide protective equipment.

この目的を達成するため、本発明は、直流電源
により駆動される電機子および他励磁界磁巻線よ
り成る他励磁直流電動機において、前記直流電源
の出力電圧と前記他励磁直流電動機の誘導起電力
との差の電圧を検出する差電圧検出手段と、前記
他励磁直流電動機の電機子電流を抑制する抵抗お
よび前記差電圧検出手段により検出された値が所
定値以上になつたとき前記抵抗を回路に挿入する
開閉素子より成る保護手段とを設けたことを特徴
とする。
In order to achieve this object, the present invention provides a separately excited DC motor comprising an armature and separately excited field windings driven by a DC power supply, in which the output voltage of the DC power supply and the induced electromotive force of the separately excited DC motor are and a resistor for suppressing the armature current of the separately excited DC motor, and a circuit that connects the resistor when the value detected by the differential voltage detector exceeds a predetermined value. The invention is characterized in that it is provided with a protection means consisting of a switching element inserted into the opening/closing element.

以下、本発明を図示の実施例に基づいて説明す
る。
Hereinafter, the present invention will be explained based on illustrated embodiments.

第5図は本発明の一実施例に係る他励磁直流電
動機の保護装置の回路図である。図で、第1図に
示す部分と同一部分については同一符号を付して
説明を省略する。11は半導体整流装置1の出力
電圧を検出する電源電圧検出器、12は電機子3
の刷子間の電圧(誘導起電力)を検出する電機子
電圧検出器、13は電源電圧検出器11と電機子
電圧検出器12の検出値を入力して両者の差の電
圧を検出する差電圧検出器である。差電圧検出器
13からは、差の電圧が所定値以上のとき作動信
号が出力される。14は分流抵抗、15は分流回
路開閉器であり、両者は直列に接続されて分流回
路を構成し、この分流回路は電機子3に対して並
列に接続される。16は直列抵抗、17は直列抵
抗16に並列に接続された開閉器であり、直列抵
抗16と開閉器17の並列回路は電機子3に直列
に接続される。開閉器15および開閉器17は差
電圧検出器13の出力信号により作動するように
構成されている。なお、開閉器15は常時開放状
態、開閉器17は常時閉成状態にある。
FIG. 5 is a circuit diagram of a protection device for a separately excited DC motor according to an embodiment of the present invention. In the figure, parts that are the same as those shown in FIG. 1 are designated by the same reference numerals, and description thereof will be omitted. 11 is a power supply voltage detector that detects the output voltage of the semiconductor rectifier 1; 12 is an armature 3;
An armature voltage detector 13 detects the voltage (induced electromotive force) between the brushes of It is a detector. The differential voltage detector 13 outputs an activation signal when the differential voltage is greater than or equal to a predetermined value. 14 is a shunt resistor, and 15 is a shunt circuit switch, both of which are connected in series to form a shunt circuit, and this shunt circuit is connected in parallel to the armature 3. 16 is a series resistor, 17 is a switch connected in parallel to the series resistor 16, and a parallel circuit of the series resistor 16 and switch 17 is connected in series to the armature 3. The switch 15 and the switch 17 are configured to be operated by the output signal of the differential voltage detector 13. Note that the switch 15 is always open, and the switch 17 is always closed.

次に、本実施例の動作を第6図a,b,cに示
すタイムチヤートを参照しながら説明する。半導
体整流装置1の出力電圧が通常の電圧V1にある
とき、差電圧検出器13からは作動信号は出力さ
れず、開閉器15は開放状態、開閉器17は閉成
状態にあり、電動機は通常状態で運転される。
今、時刻t1で、半導体整流装置1,2の出力電圧
が急激に電圧V2に上昇した場合(第6図a)、界
磁回路の方は他励磁界磁巻線5のインダクタンス
が大きいため電流の立上がりが遅く、かつ、界磁
磁束の遅れもあり、電機子3に発生する誘導起電
力の上昇は遅れる(第6図a)。したがつて、電
機子3に発生する誘導起電力と半導体整流装置1
の出力電圧との電圧の差は大きくなり、第3図又
は第4図に示すような電機子回路電流が流れよう
とする。ここで、前記電圧の差が大きく、所定値
を超えた値であると、差電圧検出器13からは作
動信号が開閉器15,17に出力され、開閉器1
5,17は僅かな時間遅れをもつて時刻t2におい
て作動し(第6図c)、開閉器15を閉じて分流
回路を接続し、開閉器17を開いて直列抵抗16
を投入する。このため、電機子回路に流れようと
した過渡的な過電流は、分流抵抗14のみの分流
回路に流れる(第6図c)とともに、直列抵抗1
6も同時に投入されるため、急激に減衰する(第
6図b)。第6図aに示されるように、時刻t2
直列抵抗16が挿入されると、一点鎖線で示す電
圧降下分Aが発生し、電機子3においては電源電
圧上昇前における電圧V1と誘導起電力との差と
ほぼ等しい差を維持することができる。そして、
電圧の上昇による電動機回転数の増大により誘導
起電力が立上り、電源電圧との差が小さくなつた
時点で差電圧検出器13の出力信号がなくなり、
これにより開閉器17を閉じて直列抵抗16を短
絡し、この短絡時の過渡電流が定常状態に戻つた
時点で遅れて開閉器15を開く。
Next, the operation of this embodiment will be explained with reference to the time charts shown in FIGS. 6a, b, and c. When the output voltage of the semiconductor rectifier 1 is at the normal voltage V1 , the differential voltage detector 13 does not output an operating signal, the switch 15 is in an open state, the switch 17 is in a closed state, and the motor is in a closed state. Operated under normal conditions.
Now, if the output voltages of the semiconductor rectifiers 1 and 2 suddenly rise to voltage V 2 at time t 1 (Fig. 6a), the inductance of the separately excited field winding 5 in the field circuit is large. Therefore, the rise of the current is slow and there is also a delay in the field magnetic flux, so that the rise of the induced electromotive force generated in the armature 3 is delayed (Fig. 6a). Therefore, the induced electromotive force generated in the armature 3 and the semiconductor rectifier 1
The voltage difference between the output voltage and the output voltage becomes large, and an armature circuit current as shown in FIG. 3 or 4 tends to flow. Here, if the voltage difference is large and exceeds a predetermined value, the differential voltage detector 13 outputs an activation signal to the switches 15 and 17, and the switch 1
5 and 17 are activated at time t2 with a slight time delay (Fig. 6c), the switch 15 is closed to connect the shunt circuit, and the switch 17 is opened to connect the series resistor 16.
Insert. Therefore, the transient overcurrent that attempts to flow into the armature circuit flows into the shunt circuit consisting of only the shunt resistor 14 (Fig. 6c), and at the same time, the
Since 6 is also introduced at the same time, it is rapidly attenuated (Fig. 6b). As shown in FIG. 6a, when the series resistor 16 is inserted at time t2 , a voltage drop A shown by the dashed line occurs, and in the armature 3, the voltage V1 before the power supply voltage rises and the induction It is possible to maintain a difference approximately equal to the difference with the electromotive force. and,
The induced electromotive force rises due to the increase in motor rotation speed due to the increase in voltage, and at the point when the difference with the power supply voltage becomes small, the output signal of the differential voltage detector 13 disappears.
As a result, the switch 17 is closed and the series resistor 16 is short-circuited, and the switch 15 is opened after a delay when the transient current at the time of the short-circuit returns to a steady state.

このように、本実施例では、電源電圧と電機子
の誘導起電力との電圧差を直接検出し、これに応
じて電機子の並列に分流回路を接続し、同時に電
機子に直列に抵抗を挿入するようにしたので、電
源電圧の上昇を直ちに検出して過渡電流がピーク
値に達する前に電機子を保護し、フラツシユオー
バーが火花の発生を防ぐことができる。
In this way, in this embodiment, the voltage difference between the power supply voltage and the induced electromotive force of the armature is directly detected, and accordingly, a shunt circuit is connected in parallel with the armature, and at the same time, a resistor is connected in series with the armature. By inserting it, it is possible to immediately detect a rise in the power supply voltage, protect the armature before the transient current reaches its peak value, and prevent sparks from occurring due to flashover.

第7図は、本発明の他の実施例に係る他励磁直
流電動機の保護装置の回路図である。図で、第5
図に示す部分と同一部分には同一符号を付して説
明を省略する。本実施例の回路構成は、第5図に
示す実施例の回路構成に対して、抵抗18と、こ
の抵抗18に並列接続された開閉器19とを電機
子3に直列に接続付加したものである。開閉器1
9は、開閉器15,17と同じく、差電圧検出器
13の作動信号で作動(接点開放)するようにな
つている。
FIG. 7 is a circuit diagram of a protection device for a separately excited DC motor according to another embodiment of the present invention. In the figure, the fifth
Components that are the same as those shown in the figures are given the same reference numerals and explanations will be omitted. The circuit configuration of this embodiment differs from the circuit configuration of the embodiment shown in FIG. 5 by adding a resistor 18 and a switch 19 connected in parallel to the resistor 18 in series with the armature 3. be. Switch 1
Like the switches 15 and 17, the switch 9 is operated (contact opening) by an operating signal from the differential voltage detector 13.

半導体整流装置1の出力電圧が上昇し、電機子
3の誘導起電力との差が所定値を超えると、差電
圧検出器13から作動信号が出力され、開閉器1
5を閉成し、開閉器17,19を開放する。これ
により、電機子3に並列に分流回路が接続される
とともに電機子3に直列に抵抗16と抵抗18が
挿入される。その結果、第5図に示す実施例と同
じく、電機子3を保護し、フラツシユオーバーや
火花の発生を防ぐことができる。誘導起電力が立
上がり、電源電圧との差が小さくなつた時点で差
電圧検出器13の作動信号がなくなり、これによ
りまず開閉器17,19のうちの一方を閉じて抵
抗16,18の一方を短絡し、次いで他方の開閉
器を閉じて他方の抵抗を短絡し、最後に開閉器1
5を開放する。このような開閉器の順次動作は、
適当なタイマを使用することにより容易に行なう
ことができる。
When the output voltage of the semiconductor rectifier 1 increases and the difference between it and the induced electromotive force of the armature 3 exceeds a predetermined value, the differential voltage detector 13 outputs an activation signal, and the switch 1
5 is closed, and switches 17 and 19 are opened. As a result, a shunt circuit is connected in parallel to the armature 3, and a resistor 16 and a resistor 18 are inserted in series with the armature 3. As a result, as in the embodiment shown in FIG. 5, the armature 3 can be protected and flashover and sparks can be prevented. When the induced electromotive force rises and the difference with the power supply voltage becomes small, the activation signal of the differential voltage detector 13 disappears, which first closes one of the switches 17 and 19 and closes one of the resistors 16 and 18. short-circuit, then close the other switch to short-circuit the other resistor, and finally switch 1
Open 5. The sequential operation of such a switch is
This can be easily done by using an appropriate timer.

本実施例では、電源電圧と電機子の誘導起電力
との差の電圧を直接検出し、これに応じて電機子
に並列に分流回路を接続し、同時に電機子に直列
に抵抗を挿入するようにしたので、さきの実施例
のものと同じ効果を奏するばかりでなく、電機子
に直列に挿入する抵抗を2つに分け、挿入した抵
抗を電機子回路から除くとき時間遅れをもたせて
除くようにしたので、そのときの過渡電流を抑制
することができる。
In this embodiment, the voltage difference between the power supply voltage and the induced electromotive force of the armature is directly detected, and accordingly, a shunt circuit is connected in parallel to the armature, and at the same time, a resistor is inserted in series with the armature. Therefore, not only does it have the same effect as the previous embodiment, but it also divides the resistor inserted in series into the armature into two parts, so that when the inserted resistor is removed from the armature circuit, it is removed with a time delay. Therefore, the transient current at that time can be suppressed.

なお、以上は他励磁直流電動機を車両の電動機
として使用する場合について述べたが、これに限
ることはなく、その電圧に可成りの変動を生ずる
電源に接続される他励磁直流電動機であれば、本
発明を適用することができる。又、上記各実施例
においては、分流回路と直列抵抗のいずれをも使
用するようにしたが、いずれか一方のみであつて
もよい。さらに、各開閉器は機械的開閉器として
図示されているが、電子的開閉器を適用すること
ができるのは当然である。
Although the above description is about the case where the separately excited DC motor is used as a vehicle electric motor, it is not limited to this, and any separately excited DC motor that is connected to a power source that causes considerable fluctuations in its voltage can be used. The present invention can be applied. Further, in each of the above embodiments, both a shunt circuit and a series resistor are used, but only one of them may be used. Further, although each switch is illustrated as a mechanical switch, it is of course possible to apply an electronic switch.

以上述べたように、本発明では、電源電圧と電
機子の誘導起電力との差の電圧を直接検出し、こ
の差の電圧が所定値を超えたとき、電機子回路に
備えた保護手段を作動させるようにしたので、電
源電圧の上昇を直ちに検出して過渡電流がピーク
値に達する前に電機子を保護し、フラツシユオー
バーや火花の発生を防止することができる。
As described above, in the present invention, the voltage difference between the power supply voltage and the induced electromotive force of the armature is directly detected, and when this voltage difference exceeds a predetermined value, the protection means provided in the armature circuit is activated. Since it is activated, it is possible to immediately detect a rise in the power supply voltage, protect the armature before the transient current reaches its peak value, and prevent flashover and sparks from occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の他励磁直流電動機の保護装置の
回路図、第2図は半導体整流装置の出力電圧波形
図、第3図は電機子回路の電流の波形図、第4図
は従来装置における検出、作動の時間遅れを説明
する電機子回路の電流の波形図、第5図は本発明
の一実施例に係る他励磁直流電動機の保護装置の
回路図、第6図a,b,cは第5図に示す回路の
動作を説明するタイムチヤート、第7図は本発明
の他の実施例に係る他励磁直流電動機の保護装置
の回路図である。 1,2……半導体整流装置、3……電機子、5
……他励磁界磁巻線、6……リアクトル、11…
…電源電圧検出器、12……電機子電圧検出器、
13……差電圧検出器、14……分流抵抗、1
5,17……開閉器、16……直列抵抗。
Figure 1 is a circuit diagram of a conventional separately-excited DC motor protection device, Figure 2 is an output voltage waveform diagram of a semiconductor rectifier, Figure 3 is a current waveform diagram of an armature circuit, and Figure 4 is a diagram of a conventional device. FIG. 5 is a circuit diagram of a protection device for a separately excited DC motor according to an embodiment of the present invention; FIGS. FIG. 5 is a time chart explaining the operation of the circuit shown in FIG. 5, and FIG. 7 is a circuit diagram of a protection device for a separately excited DC motor according to another embodiment of the present invention. 1, 2... Semiconductor rectifier, 3... Armature, 5
...Separately excited field winding, 6...Reactor, 11...
...power supply voltage detector, 12...armature voltage detector,
13... Differential voltage detector, 14... Shunt resistor, 1
5, 17...Switch, 16...Series resistance.

Claims (1)

【特許請求の範囲】 1 直流電源により駆動される電機子および他励
磁界磁巻線より成る他励磁直流電動機において、
前記直流電源の出力電圧と前記他励磁直流電動機
の誘導起電力との差の電圧を検出する差電圧検手
段と、前記他励磁直流電動機の電機子電流を抑制
する抵抗および前記差電圧検出手段により検出さ
れた値が所定値以上になつたとき前記抵抗を回路
に挿入する開閉素子より成る保護手段とを設けた
ことを特徴とする他励磁直流電動機の保護装置。 2 特許請求の範囲第1項において、前記抵抗お
よび前記開閉素子は、これらの直列回路が、前記
他励磁直流電動機の電機子に並列に接続されてい
ることを特徴とする他励磁直流電動機の保護装
置。 3 特許請求の範囲第1項において、前記抵抗お
よび前記開閉素子は、これらの並列回路が、前記
他励磁直流電動機の電機子に直列に接続されてい
ることを特徴とする他励磁直流電動機の保護装
置。
[Claims] 1. A separately excited DC motor comprising an armature and a separately excited field winding driven by a DC power source,
A differential voltage detection means for detecting a voltage difference between the output voltage of the DC power supply and the induced electromotive force of the separately excited DC motor, a resistor for suppressing the armature current of the separately excited DC motor, and the differential voltage detection means. 1. A protection device for a separately excited DC motor, comprising a protection means comprising a switching element that inserts the resistor into a circuit when a detected value exceeds a predetermined value. 2. Protection of a separately excited DC motor according to claim 1, wherein a series circuit of the resistor and the switching element is connected in parallel to an armature of the separately excited DC motor. Device. 3. Protection of a separately excited DC motor according to claim 1, wherein a parallel circuit of the resistor and the switching element is connected in series to an armature of the separately excited DC motor. Device.
JP521483A 1983-01-18 1983-01-18 Device for protecting separately-excited dc motor Granted JPS59132718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP521483A JPS59132718A (en) 1983-01-18 1983-01-18 Device for protecting separately-excited dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP521483A JPS59132718A (en) 1983-01-18 1983-01-18 Device for protecting separately-excited dc motor

Publications (2)

Publication Number Publication Date
JPS59132718A JPS59132718A (en) 1984-07-30
JPS6255378B2 true JPS6255378B2 (en) 1987-11-19

Family

ID=11604935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP521483A Granted JPS59132718A (en) 1983-01-18 1983-01-18 Device for protecting separately-excited dc motor

Country Status (1)

Country Link
JP (1) JPS59132718A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6138268B2 (en) 2012-11-21 2017-05-31 ソムニック インク. Apparatus and method for empathic computing
EP3262490A4 (en) 2015-02-23 2018-10-17 Somniq, Inc. Empathetic user interface, systems, and methods for interfacing with empathetic computing device
USD806711S1 (en) 2015-12-11 2018-01-02 SomniQ, Inc. Portable electronic device
WO2017100641A1 (en) 2015-12-11 2017-06-15 SomniQ, Inc. Apparatus, system, and methods for interfacing with a user and/or external apparatus by stationary state detection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250328Y2 (en) * 1973-05-19 1977-11-15

Also Published As

Publication number Publication date
JPS59132718A (en) 1984-07-30

Similar Documents

Publication Publication Date Title
EP1443623B1 (en) A system and method for controlling load dump voltage of a synchronous machine
US5528444A (en) Automatic overvoltage protection for an alternator in a locomotive propulsion system
US5453901A (en) Detection and protection of excitation system from diode failure
US3210603A (en) Generator protection
US5953189A (en) Circuit for the protected power supply of an electrical load
US4118749A (en) Field overvoltage protecting apparatus for synchronous machine
US4112475A (en) D-C motor flashover protection
JPS6255378B2 (en)
US4594632A (en) Overvoltage protection circuit for synchronous machinerotor
JPH0731001A (en) Power converter for ac electric vehicle and protective operation method therefor
JPS6112450B2 (en)
JPH0681560B2 (en) Device for limiting the terminal voltage of an alternator
US3368109A (en) Generator flashover protection circuit arrangements
SU1358033A1 (en) Arrangement for protecting three-phase induction motor against emergency duty
JPS6245480Y2 (en)
JPH0564423A (en) Chopper unit
US4388580A (en) Magnetic device for controlling starting of a single phase induction motor
SU1394316A1 (en) Method of protecting a three-phase power supply line against emergency conditions
SU1534615A1 (en) Device for protection of three-phase electric motor from operation in case of break and assymetry of supply circuit phases
KR0143199B1 (en) Voltage regulator for vehicle with over charge protecting function
SU401549A1 (en) THYRISTOR-PULSE CONVERTER FOR MINING ELECTRIC POTENTIAL
JPS607475B2 (en) Induction motor operation control device
SU1683118A1 (en) Device for protecting three-phase motor against failure
SU826487A1 (en) Device for temperature protection of induction electric motor
JPS58159699A (en) Exciter for electric machine