JPS6254387B2 - - Google Patents

Info

Publication number
JPS6254387B2
JPS6254387B2 JP5335483A JP5335483A JPS6254387B2 JP S6254387 B2 JPS6254387 B2 JP S6254387B2 JP 5335483 A JP5335483 A JP 5335483A JP 5335483 A JP5335483 A JP 5335483A JP S6254387 B2 JPS6254387 B2 JP S6254387B2
Authority
JP
Japan
Prior art keywords
molten glass
based heat
temperature
content
resistant alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5335483A
Other languages
Japanese (ja)
Other versions
JPS59179752A (en
Inventor
Junya Ooe
Saburo Wakita
Kiichi Yamatsuta
Seiji Goto
Yukinori Kutsukake
Masuo Sugizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Mitsubishi Metal Corp filed Critical Asahi Glass Co Ltd
Priority to JP5335483A priority Critical patent/JPS59179752A/en
Publication of JPS59179752A publication Critical patent/JPS59179752A/en
Publication of JPS6254387B2 publication Critical patent/JPS6254387B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、特に耐溶融ガラス侵食性にすぐ
れ、したがつてガラス繊維成形用スピナーなどの
溶融ガラス接触部材の製造に用いるのに適した
Co基耐熱合金に関するものである。 一般に、ガラス繊維は、スピナー内に1000℃程
度に加熱した溶融ガラスを装入し、このスピナー
を1700r.p.m.程度の回転数で高速回転して、前記
スピナーの側壁にそつて放射状に穿設した多数の
細孔から溶融ガラスを遠心力にて噴出させること
によつて成形されるものであるため、前記スピナ
ーには、高温耐酸化性、高温強度、特に高温クリ
ープラプチヤー強度、および耐溶融ガラス侵食性
を具備することが要求される。 従来、このガラス繊維成形用スピナーの製造に
使用される代表的合金として、重量%で、28%
Cr−13%Ni−10%W−1.5%Ta−Coからなる組成
をもつたCo基耐熱合金があるが、この従来Co基
耐熱合金は、特に耐溶融ガラス侵食性が不十分で
あるために、比較的早期に、スピナー側壁の細孔
の孔径が許容限度以上に大きくなつてしまい、使
用寿命に至るものであつた。 そこで、本発明者等は、上述のような観点か
ら、高温耐酸化性、高温強度(高温クリープラプ
チヤー強度)、および耐溶融ガラス侵食性を具備
した合金を開発すべく研究を行なつた結果、重量
%で、 C:0.05〜0.6%、 Si:0.1〜2%、 Cr:18〜24%、 W:10〜20%、 Ni:18〜24%、 Hf:0.5〜5%、 を含有し、さらに必要に応じて、 Mn:0.1〜2%、 希土類元素:0.005〜0.1%、 のうちのいずれか、または両方を含有し、残りが
Coと不可避不純物からなる組成を有するCo基耐
熱合金は、すぐれた高温耐酸化性および高温強度
(高温クリープラプチヤー強度)を有するばかり
でなく、すぐれた耐溶融ガラス侵食性を具備し、
したがつて、このCo基耐熱合金を、特にガラス
繊維成形用スピナーなどの溶融ガラス接触部材の
製造に用いた場合、この結果の部材はきわめて長
期に亘つてすぐれた性能を発揮するという知見を
得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に成分組成範囲を上記の通りに
限定した理由を説明する。 (a) C C成分には、素地に固溶するほか、Cr、
W、およびHfと結合して炭化物を形成し、も
つて結晶粒内および結晶粒界を強化すると共
に、高温強度を向上させ、さらに溶接性および
鋳造性を改善する作用があるが、その含有量が
0.05%未満では前記作用に所望の効果が得られ
ず、一方0.6%を越えて含有させると靭性が劣
化するようになることから、その含有量を0.05
〜0.6%と定めた。 (b) Si Si成分は、脱酸作用をもつほか、溶湯の流動
性を向上させ、さらに高温耐酸化性を向上させ
る作用をもつが、その含有量が0.1%未満では
前記作用に所望の効果が得られず、一方2%を
越えて含有させると、靭性および溶接性が劣化
するようになることから、その含有量を0.1〜
2%と定めた。 (c) Cr Cr成分は、すぐれた高温耐酸化性を確保す
る上で不可欠なオーステナイト構成成分である
が、その含有量が18%未満では所望のすぐれた
高温耐酸化性を確保することができず、一方25
%を越えて含有させると高温強度および靭性が
急激に低下するようになることから、その含有
量を18〜25%と定めた。 (d) W W成分には、Cと結合して高融点炭化物であ
るMC型炭化物を形成し、一方M7C3型やM23C6
型の低融点炭化物の形成を抑制し、もつて高温
強度を向上させると共に、オーステナイト素地
に固溶して、これを強化する作用があるが、そ
の含有量が10%未満では前記作用に所望の効果
が得られず、一方20%を越えて含有させると、
高温耐酸化性が急激に劣化するようになるばか
りでなく、靭性劣化の原因となるσ相などの金
属間化合物が形成されるようになることから、
その含有量を10〜20%と定めた。 (e) Ni Ni成分には、Crとの共存において高温強度
を向上させ、さらにオーステナイト素地を構成
して、これを良く安定化し、かつ加工性を向上
させる作用があるが、その含有量が18%未満で
は前記作用に所望の効果が得られず、一方24%
を越えて含有させると高温耐酸化性が劣化する
ようになることから、その含有量を18〜24%と
定めた。 (f) Hf Hf成分には、MC型あるいはM7C3型の共晶
炭化物を形成することなく、高融点炭化物であ
るMC型の初晶炭化物を形成して、高温耐酸化
性および高温強度を向上させ、さらに一段と耐
溶融ガラス侵食性を向上させる作用があるが、
その含有量が0.5%未満では前記作用に所望の
効果が得られず、一方5%を越えて含有させて
も前記作用により一層の向上効果は得られず、
経済性を考慮して、その含有量を0.5〜5%と
定めた。 (g) Mn Mn成分は、強力な脱酸作用をもつほか、オ
ーステナイト素地に固溶して、これを安定化
し、かつ靭性を向上させる作用をもつもので、
これらの特性が要求される場合に必要に応じて
含有されるが、その含有量が0.1%未満では前
記作用に所望の効果が得られず、一方2%を越
えて含有させると、高温耐酸化性に劣化傾向が
現われるようになることから、その含有量を
0.1〜2%と定めた。 (h) 希土類元素 これらの成分には、特にHfとの共存におい
て高温耐酸化性をより一段と向上させる作用が
あるので、特にすぐれた高温耐酸化性が要求さ
れる場合に必要に応じて含有されるが、その含
有量が0.005%未満では前記作用に所望の効果
が得られず、一方0.1%を越えて含有させる
と、鋳造性および加工性に劣化傾向が現われる
ようになることから、その含有量を0.005〜0.1
%と定めた。 なお、この発明のCo基耐熱合金における不
可避不純物のうち、特にFeに関しては、3%
まで含有しても合金特性が何ら損なわれること
がないので、経済性を考慮して3%までの範囲
で積極的に含有させる場合がある。 つぎに、この発明のCo基耐熱合金を実施例に
より具体的に説明する。 実施例 通常の溶解法によりそれぞれ第1表に示される
成分組成をもつた本発明Co基耐熱合金1〜〜21
および比較Co基耐熱合金1〜9を溶製し、ロス
トワツクス精密鋳造法を用いて、平行部外径:7
mmφ×平行部長さ:50mm×チヤツク部外径:25mm
φ×全長:90mmの寸法をもつた試験片素材に鋳造
した。ついで、この試験片素材より、高温強度を
評価する目的でクリープラプチヤー試験片を削り
出し、この試験片を用い、雰囲気:大気中、加熱
温度:1100℃、付加荷重応力:3.5Kg/mm2の条件
でクリープラプチヤー試験を行ない、破断寿命を
測定した。 また、上記クリープラプチヤー試験後の試験片
のチヤツク部から直径:10mmφ×高さ:10mmの寸
法をもつた試験片を切出し、この試験片を用い、
大気中、温度:1100℃に10時間保持後、脱スケー
ルを1サイクルとし、10サイクルを行なつた後の
酸化減量を測定する高温耐酸化性試験を行なつ
た。 さらに、耐溶融ガラス侵食性を評価する目的
で、上記の試験片素材より浸漬部寸法が直径:6
mmφ×長さ:16mmとなる試験片を切出し、この試
験片を、温度:1120℃の溶融ガラス中に120時間
浸漬の溶融ガラス浸漬試験を行ない、試験後の
This invention has particularly excellent molten glass erosion resistance, and is therefore suitable for use in manufacturing molten glass contact members such as spinners for forming glass fibers.
This relates to Co-based heat-resistant alloys. Generally, glass fibers are made by charging molten glass heated to about 1000°C into a spinner, rotating the spinner at a high speed of about 1700 rpm, and drilling radially along the side wall of the spinner. Since the spinner is formed by ejecting molten glass using centrifugal force from a large number of pores, the spinner is required to have high-temperature oxidation resistance, high-temperature strength, especially high-temperature creep rapture strength, and molten glass resistance. It is required to have erosive properties. Traditionally, the typical alloy used to manufacture this glass fiber molding spinner is 28% by weight.
There is a Co-based heat-resistant alloy with a composition consisting of Cr-13%Ni-10%W-1.5%Ta-Co, but this conventional Co-based heat-resistant alloy has a particularly poor resistance to molten glass erosion. The pore diameter of the pores in the spinner side wall became larger than the allowable limit relatively early, and the service life was reached. Therefore, from the above-mentioned viewpoints, the present inventors conducted research to develop an alloy with high-temperature oxidation resistance, high-temperature strength (high-temperature creep rupture strength), and molten glass erosion resistance. Contains, in weight%, C: 0.05-0.6%, Si: 0.1-2%, Cr: 18-24%, W: 10-20%, Ni: 18-24%, Hf: 0.5-5%. , further contains either or both of Mn: 0.1-2%, rare earth elements: 0.005-0.1%, and the rest is
The Co-based heat-resistant alloy, which has a composition consisting of Co and inevitable impurities, not only has excellent high-temperature oxidation resistance and high-temperature strength (high-temperature creep rapture strength), but also has excellent molten glass erosion resistance.
Therefore, we have found that when this Co-based heat-resistant alloy is used in the production of molten glass contact parts, particularly spinners for forming glass fibers, the resulting parts exhibit excellent performance over an extremely long period of time. It was. This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below. (a) C The C component includes Cr, Cr, in addition to solid solution in the base material.
It combines with W and Hf to form carbides, which has the effect of strengthening grains and grain boundaries, improving high-temperature strength, and further improving weldability and castability. but
If the content is less than 0.05%, the desired effect cannot be obtained, while if the content exceeds 0.6%, the toughness will deteriorate, so the content should be reduced to 0.05%.
It was set at ~0.6%. (b) Si In addition to having a deoxidizing effect, the Si component also has the effect of improving the fluidity of the molten metal and further improving the high-temperature oxidation resistance, but if its content is less than 0.1%, the desired effect is not achieved. On the other hand, if the content exceeds 2%, the toughness and weldability will deteriorate.
It was set at 2%. (c) Cr The Cr component is an essential austenite component for ensuring excellent high-temperature oxidation resistance, but if its content is less than 18%, the desired excellent high-temperature oxidation resistance cannot be achieved. zu, on the other hand 25
Since high-temperature strength and toughness will rapidly decrease if the content exceeds 18% to 25%. (d) W The W component combines with C to form MC type carbide, which is a high melting point carbide, while M 7 C 3 type and M 23 C 6 type carbide.
It has the effect of suppressing the formation of low-melting point carbides in the mold, improving high-temperature strength, and solid-dissolving into the austenite matrix to strengthen it. However, if its content is less than 10%, the desired effect is not achieved. However, if the content exceeds 20%, no effect can be obtained.
Not only does high-temperature oxidation resistance rapidly deteriorate, but also intermetallic compounds such as σ phase, which cause toughness deterioration, begin to form.
Its content was set at 10-20%. (e) Ni The Ni component has the effect of improving high-temperature strength when coexisting with Cr, forming an austenite matrix, stabilizing it well, and improving workability. If it is less than 24%, the desired effect cannot be obtained.
Since high-temperature oxidation resistance will deteriorate if the content exceeds 18% to 24%. (f) Hf The Hf component does not form MC type or M 7 C 3 type eutectic carbide, but forms MC type primary carbide, which is a high melting point carbide, to improve high temperature oxidation resistance and high temperature strength. It has the effect of improving the corrosion resistance of molten glass and further improving the erosion resistance of molten glass.
If the content is less than 0.5%, the desired effect cannot be obtained in the above action, and on the other hand, if the content exceeds 5%, the effect of further improving the action cannot be obtained.
Considering economic efficiency, the content was determined to be 0.5 to 5%. (g) Mn In addition to having a strong deoxidizing effect, the Mn component has the effect of solid-dissolving into the austenite matrix, stabilizing it, and improving toughness.
It is included as necessary when these properties are required, but if the content is less than 0.1%, the desired effect will not be obtained, while if the content exceeds 2%, high temperature oxidation resistance Since a tendency toward deterioration appears in the quality, the content should be reduced.
It was set at 0.1-2%. (h) Rare earth elements These components have the effect of further improving high-temperature oxidation resistance, especially when coexisting with Hf, so they may be included as necessary when particularly excellent high-temperature oxidation resistance is required. However, if the content is less than 0.005%, the desired effect cannot be obtained, while if the content exceeds 0.1%, the castability and processability tend to deteriorate. Amount 0.005~0.1
%. Furthermore, among the inevitable impurities in the Co-based heat-resistant alloy of this invention, especially regarding Fe, 3%
Even if it is contained up to 3%, the alloy properties will not be impaired in any way, so in consideration of economic efficiency, it may be actively included in the range of up to 3%. Next, the Co-based heat-resistant alloy of the present invention will be specifically explained with reference to Examples. Examples Co-based heat-resistant alloys 1 to 21 of the present invention having the compositions shown in Table 1 by ordinary melting method
And Comparative Co-based heat-resistant alloys 1 to 9 were melted, and using the lost wax precision casting method, the outer diameter of the parallel part was 7.
mmφ x parallel length: 50mm x chuck outside diameter: 25mm
A test piece material with dimensions of φ x total length: 90 mm was cast. Next, a creep lap tear test piece was cut from this test piece material for the purpose of evaluating high temperature strength, and using this test piece, atmosphere: air, heating temperature: 1100℃, added load stress: 3.5Kg/mm 2 A creep burst test was conducted under the following conditions to measure the rupture life. In addition, a test piece with dimensions of diameter: 10 mmφ x height: 10 mm was cut out from the chuck part of the test piece after the above-mentioned creep rapture test, and using this test piece,
After holding in the air at a temperature of 1100°C for 10 hours, one cycle of descaling was performed, and a high-temperature oxidation resistance test was conducted to measure the oxidation loss after 10 cycles. Furthermore, for the purpose of evaluating the molten glass erosion resistance, the immersion part dimension was 6 mm in diameter from the above test piece material.
A test piece with mmφ x length: 16 mm was cut out, and this test piece was subjected to a molten glass immersion test in which it was immersed in molten glass at a temperature of 1120°C for 120 hours.

【表】 腐食減量の割合を測定した。これらの測定結果を
第1表に合せて示した。 第1表に示される結果から、本発明Co基耐熱
合金1〜21は、いずれもすぐれた高温強度、高温
耐酸化性、および耐溶融ガラス侵食性を具備して
いるのに対して、比較Co基耐熱合金1〜9に見
られるように、構成成分のうちのいずれかの成分
含有量(第1表に※印を付したもの)がこの発明
の範囲から外れると、前記の特性のうちの少なく
ともいずれかの特性が劣つたものになることが明
らかである。 上述のように、この発明のCo基耐熱合金は、
すぐれた高温強度および高温耐酸化性を有し、か
つ耐溶融ガラス侵食性にもすぐれているので、特
にこれらの特性が要求されるガラス繊維成形用ス
ピナーなどの溶融ガラス接触部材の製造に用いた
場合には、著しく長期に亘つてすぐれた性能を発
揮するのである。
[Table] The percentage of corrosion loss was measured. These measurement results are also shown in Table 1. From the results shown in Table 1, the Co-based heat-resistant alloys 1 to 21 of the present invention all have excellent high-temperature strength, high-temperature oxidation resistance, and molten glass erosion resistance, while the comparative Co As seen in Base Heat Resistant Alloys 1 to 9, if the content of any of the constituent components (those marked with * in Table 1) falls outside the scope of this invention, some of the above-mentioned properties may change. It is clear that at least one of the characteristics will be inferior. As mentioned above, the Co-based heat-resistant alloy of the present invention is
It has excellent high-temperature strength and high-temperature oxidation resistance, as well as excellent resistance to molten glass erosion, so it is especially used in the manufacture of molten glass contact parts such as spinners for glass fiber molding, which require these properties. In some cases, they exhibit excellent performance over an extremely long period of time.

Claims (1)

【特許請求の範囲】 1 C:0.05〜0.6%、Si:0.1〜2% Cr:18〜24%、W:10〜20%、 Ni:18〜24%、Hf:0.5〜5% を含有し、残りがCoと不可壁不純物からなる組
成(以上重量%)を有することを特徴とする溶融
ガラス接触部材用Co基耐熱合金。 2 C:0.05〜0.6%、Si:0.1〜2%、 Cr:18〜24%、W:10〜20%、 Ni:18〜24%、Hf:0.5〜5%、 を含有し、さらに、 Mn:0.1〜2%、 を含有し、残りがCoと不可壁不純物からなる組
成(以上重量%)を有することを特徴とする溶融
ガラス接触部材用Co基耐熱合金。 3 C:0.05〜0.6%、Si:0.1〜2%、 Cr:18〜24%、W:10〜20%、 Ni:18〜24%、Hf:0.5〜5%、を含有し、さ
らに、 希土類元素のうちの1種以上:0.005〜0.1%、 を含有し、残りがCoと不可壁不純物からなる組
成(以上重量%)を有することを特徴とする溶融
ガラス接触部材用Co基耐熱合金。 4 C:0.05〜0.6%、Si:0.1〜2%、 Cr:18〜24%、W:10〜20%、 Ni:18〜24%、Hf:0.5〜5%、 を含有し、さらに、 Mn:0.1〜2%と 希土類元素のうちの1種以上:0.005〜0.1%、 を含有し、残りがCoと不可避不純物からなる組
成(以上重量%)を有することを特徴とする溶融
ガラス接触部材用Co基耐熱合金。
[Claims] 1 Contains C: 0.05-0.6%, Si: 0.1-2%, Cr: 18-24%, W: 10-20%, Ni: 18-24%, Hf: 0.5-5%. A Co-based heat-resistant alloy for a molten glass contact member, characterized in that the remainder is Co and non-wall impurities (weight %). 2 Contains C: 0.05-0.6%, Si: 0.1-2%, Cr: 18-24%, W: 10-20%, Ni: 18-24%, Hf: 0.5-5%, and further contains Mn. A Co-based heat-resistant alloy for a molten glass contact member, characterized in that it contains: 0.1 to 2%, and the remainder consists of Co and non-wall impurities (weight %). 3 Contains C: 0.05-0.6%, Si: 0.1-2%, Cr: 18-24%, W: 10-20%, Ni: 18-24%, Hf: 0.5-5%, and further contains rare earth elements. 1. A Co-based heat-resistant alloy for a molten glass contact member, characterized in that it contains one or more of the following elements: 0.005 to 0.1%, with the remainder consisting of Co and non-wall impurities (weight percent). 4 Contains C: 0.05-0.6%, Si: 0.1-2%, Cr: 18-24%, W: 10-20%, Ni: 18-24%, Hf: 0.5-5%, and further contains Mn. 0.1 to 2%, and one or more rare earth elements: 0.005 to 0.1%, with the remainder consisting of Co and unavoidable impurities (weight %). Co-based heat-resistant alloy.
JP5335483A 1983-03-29 1983-03-29 Heat resistant co base alloy Granted JPS59179752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5335483A JPS59179752A (en) 1983-03-29 1983-03-29 Heat resistant co base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5335483A JPS59179752A (en) 1983-03-29 1983-03-29 Heat resistant co base alloy

Publications (2)

Publication Number Publication Date
JPS59179752A JPS59179752A (en) 1984-10-12
JPS6254387B2 true JPS6254387B2 (en) 1987-11-14

Family

ID=12940454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5335483A Granted JPS59179752A (en) 1983-03-29 1983-03-29 Heat resistant co base alloy

Country Status (1)

Country Link
JP (1) JPS59179752A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767432A (en) * 1985-06-18 1988-08-30 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy containing hafnium and a high proportion of chromium
US4765817A (en) * 1985-06-18 1988-08-23 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy containing hafnium
US4668265A (en) * 1985-06-18 1987-05-26 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy and method of making fibers
US4668266A (en) * 1985-06-18 1987-05-26 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy having a high chromium content and method of making fibers
US4820324A (en) * 1987-05-18 1989-04-11 Owens-Corning Fiberglas Corporation Glass corrosion resistant cobalt-based alloy having high strength

Also Published As

Publication number Publication date
JPS59179752A (en) 1984-10-12

Similar Documents

Publication Publication Date Title
US5422072A (en) Enhanced Co-based alloy
JPS6254390B2 (en)
JPS6254389B2 (en)
JPS6254387B2 (en)
JPS6330381B2 (en)
JPS6330382B2 (en)
JPH0243813B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPS6033332A (en) Heat resistant co-base alloy for glass fiber molding spinner
JPH0243814B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPS5974266A (en) High hardness fe-ni-cr alloy for valve and valve seat for engine
JPH0243816B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPH0243815B2 (en) GASUTAABINYOKOKYODOC0KITAINETSUGOKIN
JPS6330384B2 (en)
JPH0243812B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPS6112842A (en) Co-base heat-resistant alloy for spinner manufacturing glass fiber
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JPS6221064B2 (en)
JPS6254386B2 (en)
JPS6349735B2 (en)
JPH0232339B2 (en)
JP3303023B2 (en) Co-based alloy with excellent high-temperature strength
JPS6059289B2 (en) High-strength Co-based heat-resistant alloy for gas turbines
JPH07224337A (en) Heat resistant cast co-base alloy and gas turbine stator blade using the same
KR940008942B1 (en) Making method of cobalt base metal
JPH06287666A (en) Heat resistant cast co-base alloy