JPS59179752A - Heat resistant co base alloy - Google Patents

Heat resistant co base alloy

Info

Publication number
JPS59179752A
JPS59179752A JP5335483A JP5335483A JPS59179752A JP S59179752 A JPS59179752 A JP S59179752A JP 5335483 A JP5335483 A JP 5335483A JP 5335483 A JP5335483 A JP 5335483A JP S59179752 A JPS59179752 A JP S59179752A
Authority
JP
Japan
Prior art keywords
alloy
content
resistance
oxidation resistance
molten glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5335483A
Other languages
Japanese (ja)
Other versions
JPS6254387B2 (en
Inventor
Junya Oe
大江 潤也
Saburo Wakita
三郎 脇田
Kiichi Yamatsuta
山蔦 紀一
Seiji Goto
省二 後藤
Yukinori Kutsukake
沓掛 行徳
Masuo Sugizaki
杉崎 満壽雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Mitsubishi Metal Corp
AGC Inc
Original Assignee
Asahi Fiber Glass Co Ltd
Asahi Glass Co Ltd
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd, Asahi Glass Co Ltd, Mitsubishi Metal Corp filed Critical Asahi Fiber Glass Co Ltd
Priority to JP5335483A priority Critical patent/JPS59179752A/en
Publication of JPS59179752A publication Critical patent/JPS59179752A/en
Publication of JPS6254387B2 publication Critical patent/JPS6254387B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a heat resistant Co base alloy having superior oxidation resistance and strength at high temp. and superior resistance to erosion due to molten glass by adding specified elements to Co as an essential component. CONSTITUTION:This heat resistant Co alloy consists of 0.05-0.6% C, 0.1-2% Si, 18-24% Cr, 10-20% W, 18-24% Ni, 0.5-5% Hf and the balance Co. The alloy may further contain 0.1-2% Mn and/or 0.005-0.1% rare earth element. The alloy has superior oxidation resistance and strength at high temp. and high resistance to erosion due to molten glass, and it is suitable for use as the material of a spinner for forming glass fiber.

Description

【発明の詳細な説明】 この発明は、特に耐溶融ガラス侵食性にすぐれ、したが
ってガラス繊維成形用スピナーなどの製造に用いるのに
適したCo基耐熱合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Co-based heat-resistant alloy that has particularly excellent resistance to erosion of molten glass and is therefore suitable for use in manufacturing spinners for forming glass fibers.

一般に、ガラス繊維は、スピナー内K100O℃程度に
加熱した溶融ガラスを装入し、このスピナーf 170
0 r、p、m、程度の回転数で高速回転して、前記ス
ピナーの側壁にそって放射状に穿設した多数の細孔から
溶融ガラスを遠心力にて噴出させることによって成形さ
れるものであるため、前記スピナーには、高温耐酸化性
、高温強度、特に高温クリープラブチャー強度、および
耐溶融ガラス侵食性を具備することが要求される。
Generally, glass fibers are prepared by charging molten glass heated to about K100°C in a spinner, and using this spinner f170
It is formed by rotating at a high speed of about 0 r, p, m, and ejecting molten glass by centrifugal force from a large number of pores drilled radially along the side wall of the spinner. Therefore, the spinner is required to have high-temperature oxidation resistance, high-temperature strength, particularly high-temperature creep rupture strength, and molten glass erosion resistance.

従来、このガラス繊維成形用スピナーの製造に使用され
る代表的合金として、重量%で、28チCr−13%N
i−10%W−1,5%Ta −coからなる組成をも
ったCo基耐熱合金があるが、この従来c。
Conventionally, as a typical alloy used for manufacturing spinners for forming glass fibers, 28% Cr-13%N (by weight) has been used.
There is a Co-based heat-resistant alloy having a composition of i-10%W-1,5%Ta-co, but this conventional c.

基耐熱合金は、特に耐溶融ガラス侵食性が不十分である
ために、比較的早期に、スピナー側壁の細孔の孔径が許
容限度以上に大きくなってしまい、使用寿命に至るもの
であった。
The base heat-resistant alloy has particularly insufficient molten glass erosion resistance, so that the pore diameter of the spinner side wall becomes larger than the allowable limit at a relatively early stage, leading to the end of its service life.

そこで、本発明者等は、上述のような観点から、高温耐
酸化性、高温強度(高温クリープラブチャー強度)、お
よび耐溶融ガラス侵食性を具備した合金を開発すべく研
究を行なった結果、重量%で、C:0.05−0.6%
、 Si:0.1〜2チ、 W ° 10〜20係、 Ni:18〜24 係、 Hf:0.5〜5 チ、 を含有し、さらに必要に応じて、 Mn : 0.1〜2%、 希土類元素:0.005〜0.1係、 のうちのいずれか、または両方を含有し、残りがcoと
不可避不純物からなる組成を有するCo基耐熱合金は、
すぐれた高温耐酸化性および高温強度(高温クリープラ
ブチャー強度)を有するばかシでなく、すぐれた耐溶融
ガラス侵食性を具備し、したがって、このCo基耐熱合
金を、特にガラス繊維成形用スピナーの製造に用いた場
合、この結果のスピナーはきわめて長期に亘ってすぐれ
た性能を発揮するという知見を得たのである。
Therefore, from the above-mentioned viewpoints, the present inventors conducted research to develop an alloy with high-temperature oxidation resistance, high-temperature strength (high-temperature creep rupture strength), and molten glass erosion resistance. In weight%, C: 0.05-0.6%
, Si: 0.1-2%, W ° 10-20%, Ni: 18-24%, Hf: 0.5-5%, and if necessary, Mn: 0.1-2%. %, Rare earth element: 0.005 to 0.1, Co-based heat-resistant alloy containing one or both of the following, with the remainder consisting of Co and unavoidable impurities:
This Co-based heat-resistant alloy has not only excellent high-temperature oxidation resistance and high-temperature strength (high-temperature creep rupture strength), but also excellent molten glass erosion resistance. It has been found that when used in production, the resulting spinner exhibits excellent performance over an extremely long period of time.

この発明は、上記知見にもとづいてなされたものであっ
て、以下に成分組成範囲を上記の通りに限定した理由を
説明する。
This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below.

(a)  C C成分には、素地に固溶するほか、Or、W、およびH
fと結合して炭化物を形成し、もって結晶粒内および結
晶粒界を強化すると共に、高温強度を向上させ、さらに
溶接性および鋳造性を改善する作用があるが、その含有
量が0.05%未満では前記作用に所望の効果が得られ
ず、一方Q、 6 % i越えて含有させると靭性が劣
化するようになることから、その含有量’に0.05〜
06%と定めた。
(a) C The C component includes Or, W, and H, in addition to solid solution in the base material.
It combines with f to form carbides, thereby strengthening the inside of grains and grain boundaries, improving high-temperature strength, and further improving weldability and castability, but its content is 0.05 If the content is less than 6%, the desired effect cannot be obtained, while if the content exceeds 6%, the toughness will deteriorate.
It was set at 0.6%.

(b)  5i Si成分は、脱酸作用をもつほか、溶湯の流動性を向上
させ、さらに高温耐酸化性を向上させる作用をもつが、
その含有量が0.1%未満では前記作用に所望の効果が
得られず、一方2チを越えて含有させると、靭性および
溶接性が劣化するようになることから、その含有量t 
0.1〜2%と定めた。
(b) In addition to having a deoxidizing effect, the 5i Si component also has the effect of improving the fluidity of the molten metal and further improving the high-temperature oxidation resistance.
If the content is less than 0.1%, the desired effect cannot be obtained, while if the content exceeds 2%, the toughness and weldability will deteriorate.
It was set at 0.1 to 2%.

(c)  0r Cir成分は、すぐれた高温耐酸化性を確保する上で不
可欠なオーステナイト構成成分であるが、その含有量が
18%未満では所望のすぐiた高温耐酸化性を確保する
ことができず、一方25チを越えて含有させると高温強
度および靭性が急激に低下するようになることから、そ
の含有量を18〜25チと定めた。
(c) The 0rCir component is an essential austenite component for ensuring excellent high-temperature oxidation resistance, but if its content is less than 18%, it is difficult to ensure the desired high-temperature oxidation resistance. On the other hand, if the content exceeds 25 inches, the high temperature strength and toughness will drop sharply, so the content was set at 18 to 25 inches.

(d)   w W成分には、Cと結合して高融点炭化物であるMC型炭
化物を形成し、一方M703型やM23C6型の低融点
炭化物の形成を抑制し、もって高温強度を向上させると
共に、オーステナイト素地に固溶して、これを強化する
作用があるが、その含有量が1゜チ未満では前記作用に
所望の効果が得られず、一方20%を越えて含有させる
と、高温耐酸化性が急激に劣化するようになるばかって
なく、靭性劣化の原因となるσ相などの金属間化合物が
形成されるようになることから、その含有量を10〜2
0チと定めた。
(d) w The W component combines with C to form MC type carbide, which is a high melting point carbide, while suppressing the formation of low melting point carbides of M703 type and M23C6 type, thereby improving high temperature strength, It dissolves in solid solution in the austenite matrix and has the effect of strengthening it, but if the content is less than 1%, the desired effect cannot be obtained, while if the content exceeds 20%, the high temperature oxidation resistance Not only will the toughness deteriorate rapidly, but also intermetallic compounds such as σ phase, which cause deterioration of toughness, will be formed, so the content should be increased by 10 to 2.
It was set as 0chi.

(e)  Ni N1成分には、Orとの共存において高温強度を向上さ
せ、さらにオーステナイト素地を構成して、これを良く
安定化し、かつ加工性を向上させる作用があるが、その
含有量が18チ未満では前記作用に所望の効果が得られ
ず、一方24%’e越えて含有させると高温耐酸化性が
劣化するようになることから、その含有量を18〜24
%と定めた。
(e) The Ni N1 component has the effect of improving high-temperature strength in coexistence with Or, further forming an austenite matrix, stabilizing it well, and improving workability, but when its content is 18 If the content is less than 24%'e, the desired effect cannot be obtained, while if the content exceeds 24%'e, the high temperature oxidation resistance will deteriorate.
%.

(fl   Hf Hf成分には、MC型あるいはM7C3型の共晶炭化物
を形成することなく、高融点炭化物であるMC型の初晶
炭化物を形成して、高温耐酸化性および高温強度を向上
させ、さらに一段と耐溶融ガラス侵食性を向上させる作
用があるが、その含有量が0.5%未満では前記作用に
所望の効果が得られず、一方5%を越えて含有させても
前記作用により一層の向上効果は得られず、経済性を考
慮して、その含有量ヲ0.5〜5%と定めた。
(fl Hf The Hf component does not form MC type or M7C3 type eutectic carbide, but forms MC type primary carbide, which is a high melting point carbide, to improve high temperature oxidation resistance and high temperature strength, Furthermore, it has the effect of further improving the erosion resistance of molten glass, but if the content is less than 0.5%, the desired effect cannot be obtained, while if it is contained in excess of 5%, the above effect is further enhanced. However, in consideration of economic efficiency, the content was set at 0.5 to 5%.

(g)  Mn Mn成分は、強力な脱酸作用をもつほか、オーステナイ
ト素地に固溶して、これを安定化し、かつ靭性を向上さ
せる作用をもつので、これらの特性が要求される場合に
必要に応じて含有されるが、その含有量が0.1%未満
では前記作用に所望の効果が得られず、一方2係を越え
て含有させると、高温耐酸化性に劣化傾向が現われるよ
うになることから、その含有量’i 0.1〜2条と定
めた。
(g) Mn In addition to having a strong deoxidizing effect, the Mn component has the effect of solid-dissolving into the austenite matrix, stabilizing it, and improving toughness, so it is necessary when these properties are required. However, if the content is less than 0.1%, the desired effect cannot be obtained, while if the content exceeds 2%, the high temperature oxidation resistance tends to deteriorate. Therefore, the content 'i was determined to be 0.1 to 2 articles.

(h)  希土類元素 これらの成分には、特にHfとの共存において高温耐酸
化性をよυ一段と向上させる作用があるので、特にすぐ
れた高温耐酸化性が要求される場合に必要に応じて含有
されるが、その含有量が0.005係未満では前記作用
に所望の効果が得られず、一方0.1%を越えて含有さ
せると、鋳造性および加工性に劣化傾向が現われるよう
になることから、その含有量i0.005〜0.1%と
定めた。
(h) Rare earth elements These components have the effect of further improving high-temperature oxidation resistance, especially when coexisting with Hf, so they may be included as necessary when particularly excellent high-temperature oxidation resistance is required. However, if the content is less than 0.005%, the desired effect cannot be obtained, while if the content exceeds 0.1%, castability and workability tend to deteriorate. Therefore, the content i was determined to be 0.005 to 0.1%.

なお、この発明のCO基耐熱合金における不可避不純物
のうち、特にFeに関しては、3%まで含有しても合金
特性が何ら損なわれることがないので、経済性を考慮し
て3%までの範囲で積極的に含有させる場合がある。
Note that among the inevitable impurities in the CO-based heat-resistant alloy of the present invention, particularly regarding Fe, the alloy properties are not impaired in any way even if it is contained up to 3%. It may be actively included.

つぎに、この発明のCO基耐熱合金を実施例によシ具体
的に説明する。
Next, the CO-based heat-resistant alloy of the present invention will be specifically explained using examples.

実施例 通常の溶解法によりそれぞれ第1表に示される成分組成
をもった本発明CO基耐熱合金1〜21および比較CO
基耐熱合金1〜9を溶製し、ロストワックス精密鋳造法
を用いて、平行部外径ニア咽φ×平行部長さ 50 m
+n Xチャック部外径、25謳φ×全長:90間の寸
法をもった試験片素材に鋳造した。ついで、この試験片
累月より、高温強度を評価する目的でクリープラブチャ
ー試験片を削り出し、この試験片を用い、雰囲気:大気
中、加熱温度口1100℃、伺加荷重応カニ3.5に9
/−の条件でクリープラブチャー試験を行ない、破断寿
命を測定した。
Examples CO-based heat-resistant alloys 1 to 21 of the present invention and comparative CO alloys having the compositions shown in Table 1 were prepared by a conventional melting method.
The base heat-resistant alloys 1 to 9 are melted and cast using the lost wax precision casting method. Parallel part outer diameter near throat φ x parallel part length 50 m
+ n Next, from this test piece, a creep-loveture test piece was cut out for the purpose of evaluating high-temperature strength, and using this test piece, the atmosphere: air, heating temperature opening: 1100°C, load response: 3.5 9
A creep rupture test was conducted under the conditions of /- to measure the rupture life.

また、上記クリープラブチャー試験後の試験片のチャッ
ク部から直径:10問φ×高さ:10wnの寸法をもっ
た試験片を切出し、この試験片を用い、大気中、温度:
1100℃に10時間保持後、脱スケールを1サイクル
とし、10サイクルを行なった後の酸化減量を測定する
高温耐酸化性試験を行なった。
In addition, a test piece with dimensions of diameter: 10 questions φ x height: 10wn was cut out from the chuck part of the test piece after the above-mentioned creep-loveture test, and using this test piece, the test piece was placed in the atmosphere at a temperature of:
After holding at 1100° C. for 10 hours, one cycle of descaling was performed, and a high temperature oxidation resistance test was conducted to measure the oxidation loss after 10 cycles.

さらに、耐溶融ガラス侵食性を評価する目的で、上記の
試験片素材より浸漬部寸法が直径:6mmφ×長さ:1
6冒となる試験片を切出し、この試験片を、温度:11
20℃の溶融ガラス中に120時間浸漬の溶融ガラス浸
漬試験を行ない、試験後の腐食減量の割合を測定した。
Furthermore, for the purpose of evaluating the erosion resistance of molten glass, the immersion part dimensions were determined from the above test piece material as diameter: 6 mmφ x length: 1.
6. Cut out a test piece and heat the test piece at a temperature of 11
A molten glass immersion test was conducted in which the samples were immersed in molten glass at 20° C. for 120 hours, and the rate of corrosion loss after the test was measured.

これらの測定結果を第1表に合せて示した。These measurement results are also shown in Table 1.

第1表に示される結果から、本発明CO基耐熱合るのに
対して、比較Co基耐熱合金1〜9に見られるように、
構成成分のうちのいずれかの成分含有量(第1表に※印
を付したもの)がこの発明の範囲から外れると、前記の
特性のうちの少なくともいずれかの特性が劣ったものに
なることが明らかである。
From the results shown in Table 1, it can be seen that while the present invention's CO-based heat-resistant alloys have good heat resistance, as seen in Comparative Co-based heat-resistant alloys 1 to 9,
If the content of any of the constituent components (marked with * in Table 1) falls outside the scope of this invention, at least one of the above properties will be inferior. is clear.

上述のように、この発明のCO基耐熱合金は、すぐれた
高温強度および高温耐酸化性を有し、かつ耐溶融ガラス
侵食性にもすぐれているので、特にこれらの特性が要求
されるガラス繊維成形用スピナーの製造に用いた場合に
は、著しく長期に亘ってすぐれた性能を発揮するのであ
る。
As mentioned above, the CO-based heat-resistant alloy of the present invention has excellent high-temperature strength and high-temperature oxidation resistance, and is also excellent in molten glass erosion resistance, so it can be used especially for glass fibers that require these properties. When used in the production of molding spinners, it exhibits excellent performance over an extremely long period of time.

出願人 三菱金属株式会社外2名 代理人 富 1)和 夫 外1名 第1頁の続き ■出 願 人 旭硝子株式会社 東京都千代田区丸の内口丁目1 番2号Applicant: 2 people other than Mitsubishi Metals Corporation Agent Tomi 1) Kazuo and 1 other person Continuation of page 1 ■Person Asahi Glass Co., Ltd. 1 Marunouchiguchi-chome, Chiyoda-ku, Tokyo number 2

Claims (4)

【特許請求の範囲】[Claims] (1)  c : 0.05〜0.6%、Si:0.1
〜2チ、 Cr:18〜24%、 W:10〜20%、 N118〜24%、 Hf:0.5〜5%、 を含有し、残りがCOと不可避不純物からなる組成(以
上重量%)を有することを特徴とするCo基耐熱合金。
(1) c: 0.05-0.6%, Si: 0.1
~2%, Cr: 18~24%, W: 10~20%, N118~24%, Hf: 0.5~5%, with the remainder consisting of CO and inevitable impurities (wt%) A Co-based heat-resistant alloy characterized by having the following.
(2)  C! : 0.05〜0.6%、Sl 01
〜2チ、 Or:18〜24%、 W:10〜20%、 Ni:18〜24 φ、 Hf:Q、5〜5 %、 を含有し、さらに、 Mn:Q、1〜2%、 を含有し、残りがCOと不可避不純物からなる組成(以
上重量%)を有すること全特徴とするCO基耐熱合金。
(2) C! : 0.05-0.6%, Sl 01
Contains ~2%, Or: 18~24%, W: 10~20%, Ni: 18~24φ, Hf:Q, 5~5%, and further contains Mn:Q, 1~2%. A CO-based heat-resistant alloy having a composition (weight %) with the remainder consisting of CO and unavoidable impurities.
(3)  c : 0.05〜0.6%、8i:Q、1
〜2%、 Cr  二  l  8−24  % 、W。10〜2
0チ、 N118〜24係、 Hf:0.5〜5%、 を含有し、さらに、 希土類元素 0.005〜01%、 全含有し、残シがCOと不可避不純物からなる組成(基
土重量%)′f:有することを特徴とするCO基耐熱合
金。
(3) c: 0.05-0.6%, 8i:Q, 1
~2%, Cr218-24%, W. 10-2
Composition (base weight %)'f: A CO-based heat-resistant alloy characterized by having.
(4)  O: 0.05〜06チ、 S10.1〜2チ、 Cr:18−24 %、 W : 10〜20%、 Ni:1 8〜24%、 Hf:0.5〜5%、 を含有し、さらに、 Mn : 0.1〜2%、 希土類元素: 0.005〜0.1 %、全含有し、残
りがcoと不可避不純物からなる組成(以上重量%)を
有することを特徴とするco基耐熱合金。
(4) O: 0.05-06cm, S10.1-2cm, Cr: 18-24%, W: 10-20%, Ni: 18-24%, Hf: 0.5-5%, and further contains Mn: 0.1 to 2%, rare earth elements: 0.005 to 0.1%, and the remainder is Co and unavoidable impurities (weight %). Co-based heat-resistant alloy.
JP5335483A 1983-03-29 1983-03-29 Heat resistant co base alloy Granted JPS59179752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5335483A JPS59179752A (en) 1983-03-29 1983-03-29 Heat resistant co base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5335483A JPS59179752A (en) 1983-03-29 1983-03-29 Heat resistant co base alloy

Publications (2)

Publication Number Publication Date
JPS59179752A true JPS59179752A (en) 1984-10-12
JPS6254387B2 JPS6254387B2 (en) 1987-11-14

Family

ID=12940454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5335483A Granted JPS59179752A (en) 1983-03-29 1983-03-29 Heat resistant co base alloy

Country Status (1)

Country Link
JP (1) JPS59179752A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668265A (en) * 1985-06-18 1987-05-26 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy and method of making fibers
US4668266A (en) * 1985-06-18 1987-05-26 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy having a high chromium content and method of making fibers
US4765817A (en) * 1985-06-18 1988-08-23 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy containing hafnium
US4767432A (en) * 1985-06-18 1988-08-30 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy containing hafnium and a high proportion of chromium
US4820324A (en) * 1987-05-18 1989-04-11 Owens-Corning Fiberglas Corporation Glass corrosion resistant cobalt-based alloy having high strength

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668265A (en) * 1985-06-18 1987-05-26 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy and method of making fibers
US4668266A (en) * 1985-06-18 1987-05-26 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy having a high chromium content and method of making fibers
US4765817A (en) * 1985-06-18 1988-08-23 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy containing hafnium
US4767432A (en) * 1985-06-18 1988-08-30 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy containing hafnium and a high proportion of chromium
US4820324A (en) * 1987-05-18 1989-04-11 Owens-Corning Fiberglas Corporation Glass corrosion resistant cobalt-based alloy having high strength

Also Published As

Publication number Publication date
JPS6254387B2 (en) 1987-11-14

Similar Documents

Publication Publication Date Title
JPS59179752A (en) Heat resistant co base alloy
JPS6059039A (en) Heat resistant co alloy for spinner for forming glass fiber
JPS6254389B2 (en)
JPS60224731A (en) Heat resistant co-base alloy
JPS60224732A (en) Heat resistant co-base alloy
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JPS61547A (en) Co-base high-strength heat-resistant alloy for gas turbine
JPS6033332A (en) Heat resistant co-base alloy for glass fiber molding spinner
JPH06287667A (en) Heat resistant cast co-base alloy
JPH0243814B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPH0243816B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JPS6112842A (en) Co-base heat-resistant alloy for spinner manufacturing glass fiber
JPH0243815B2 (en) GASUTAABINYOKOKYODOC0KITAINETSUGOKIN
JPH0243812B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPS6249344B2 (en)
US1932843A (en) Aluminum alloys
JPS60262935A (en) Co base heat resisting alloy for glass fiber forming spinner
JPS6221064B2 (en)
JPS6059289B2 (en) High-strength Co-based heat-resistant alloy for gas turbines
JPH06287666A (en) Heat resistant cast co-base alloy
JPS60262934A (en) Co base heat resisting alloy
JPS6254386B2 (en)
JPH07224337A (en) Heat resistant cast co-base alloy and gas turbine stator blade using the same
US1932846A (en) Aluminum alloys