JPS6059289B2 - High-strength Co-based heat-resistant alloy for gas turbines - Google Patents

High-strength Co-based heat-resistant alloy for gas turbines

Info

Publication number
JPS6059289B2
JPS6059289B2 JP21983782A JP21983782A JPS6059289B2 JP S6059289 B2 JPS6059289 B2 JP S6059289B2 JP 21983782 A JP21983782 A JP 21983782A JP 21983782 A JP21983782 A JP 21983782A JP S6059289 B2 JPS6059289 B2 JP S6059289B2
Authority
JP
Japan
Prior art keywords
strength
resistant alloy
gas turbines
based heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21983782A
Other languages
Japanese (ja)
Other versions
JPS59110757A (en
Inventor
潤也 大江
三郎 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP21983782A priority Critical patent/JPS6059289B2/en
Publication of JPS59110757A publication Critical patent/JPS59110757A/en
Publication of JPS6059289B2 publication Critical patent/JPS6059289B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、100O゜C以上の高温酸化性雰囲気にお
いて、すぐれた強度並びに耐酸化性を示し、特にこれら
の特性が要求されるガスタービンの構造材として使用す
るのに適したCo基耐熱合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention exhibits excellent strength and oxidation resistance in a high-temperature oxidizing atmosphere of 100 O°C or higher, and is particularly suitable for use as a structural material for gas turbines that require these properties. The present invention relates to a suitable Co-based heat-resistant alloy.

従来、一般に、高温の酸化性雰囲気にさらされるガスタ
ービンのタービンノズルやベーンなどの構造部材の製造
には、高温耐酸化性のすぐれた各種のCo基耐熱合金が
使用されている。
Conventionally, various Co-based heat-resistant alloys with excellent high-temperature oxidation resistance have been used to manufacture structural members such as turbine nozzles and vanes of gas turbines that are exposed to high-temperature oxidizing atmospheres.

一方、近年、ガスタービンの高性能化に伴い、、ガスタ
ービンの入口温度は上昇の一途をたどり、その温度は1
300℃を越える状態になつている。
On the other hand, in recent years, as the performance of gas turbines has improved, the inlet temperature of gas turbines has continued to rise, and the temperature has reached 1
The temperature has reached over 300 degrees Celsius.

しかし、上記の従来β0基耐熱合金製ガスタービン部材
が、上記のような1300℃以上の高温酸化性雰囲気に
さらされると、それ自身の温度は空冷された場合でも1
000℃以上に上昇してしまい、高温強度不足が原因で
、比較的短時間で使用寿命に至るものであつた。そこで
、本発明者等は、上述のような観点から、高温耐酸化性
は勿論のこと、特に高温強度にもすぐれた材料を開発す
べく研究を行なつた結果、重量%で、を含有し、さらに
必要に応じて、 のいずれか、または両方を含有し、 COおよび不可避不純物:残り、 からなる組成を有するCO基合金は、高温酸化性雰囲気
中、1000℃以上の温度において、すぐれた高温強度
を示すはかりてなく、すぐれた高温耐酸化性を示し、し
たがつてこのCO基耐熱合金を、これらの特性が要求さ
れるガスタービン部材の製造に用いると、この結果のガ
スタービン部材は、上記のような苛酷条件下においても
、著しく長期に亘つてすぐれた性能を発揮するという知
見を得たのである。
However, when the above-mentioned conventional β0-base heat-resistant alloy gas turbine member is exposed to the above-mentioned high-temperature oxidizing atmosphere of 1300°C or higher, its own temperature will decrease to 1
The temperature rose to over 1,000°C, and due to insufficient high-temperature strength, the service life was reached in a relatively short period of time. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a material that has not only high-temperature oxidation resistance but also particularly high-temperature strength. , further containing either or both of the following as necessary, and the remainder being CO and unavoidable impurities. When this CO-based heat resistant alloy is used in the manufacture of gas turbine components requiring these properties, the resulting gas turbine component exhibits exceptional strength and excellent high temperature oxidation resistance. They have found that even under the harsh conditions mentioned above, it exhibits excellent performance over an extremely long period of time.

この発明は、上記知見にもとづいてなされたものであつ
て、以下に成分組成範囲を上記の通りに限定した理由を
説明する。
This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below.

(a)C C成分には、素地に固溶するほか、Cr,W,およびH
fと結合して炭化物を形成し、もつて結晶粒内および結
晶粒界を強化すると共に、高温強度を向上させ、さらに
溶接性および鋳造性を改善する作用があるが、その含有
量が0.05%未満では前記作用に所望の効果が得られ
ず、一方0.6%を越えて含有させると靭性が劣化する
ようになることから、その含有量を0.05〜0.6%
と定めた。
(a) C The C component includes Cr, W, and H, in addition to solid solution in the base material.
It combines with f to form carbides, which strengthens the inside of grains and grain boundaries, improves high-temperature strength, and further improves weldability and castability, but if the content is 0. If the content is less than 0.05%, the desired effect cannot be obtained, while if the content exceeds 0.6%, the toughness will deteriorate, so the content should be reduced to 0.05 to 0.6%.
It was determined that

(b)SiSl成分は、脱酸作用をもつほか、溶湯の流
動性を向上させ、さらに高温耐酸化性を向上させる作用
をもつが、その含有量が0.1%未満では前記作用に所
望の効果が得られず、一方2%を越えて含有させると、
靭性および溶接性が劣化するようになることから、その
含有量を0.1〜2%と定めた。
(b) In addition to having a deoxidizing effect, the SiSl component also has the effect of improving the fluidity of the molten metal and further improving the high-temperature oxidation resistance, but if its content is less than 0.1%, the desired effect is not achieved. On the other hand, if the content exceeds 2%, no effect can be obtained.
Since toughness and weldability deteriorate, the content was set at 0.1 to 2%.

(c)Cr Cr成分は、すぐれた高温耐酸化性を確保する上で不可
欠なオーステナイト構成成分であるが、その含有量が1
8%未満では所望のすぐれた高温耐酸化性を確保するこ
とができず、一方25%を越えlて含有させると高温強
度および靭性が急激に低下するようなることから、その
含有量を18〜25%と定めた。
(c) Cr The Cr component is an essential austenite component for ensuring excellent high-temperature oxidation resistance.
If the content is less than 8%, the desired high-temperature oxidation resistance cannot be ensured, while if the content exceeds 25%, the high-temperature strength and toughness will decrease rapidly. It was set at 25%.

(d)W W成分には、Cと結合して高融点炭化物であるMC型炭
化物を形成し、一方M7C3型やM3C6型の低融点炭
化物の形成を抑制し、もつて高温強度を向上させると共
に、オーステナイト素地に固溶して、これを強化する作
用があるが、その含有量が10%未満では前記作用に所
望の効果が得られず、”一方20%を越えて含有させる
と、高温耐酸化性が急激に劣化するようになるばかりで
なく、靭性劣化の原因となるσ相などの金属間化合物が
形成されるようになることから、その含有量を10〜2
0%と定めた。
(d) W The W component combines with C to form MC type carbide, which is a high melting point carbide, while suppressing the formation of low melting point carbides of M7C3 type and M3C6 type, thereby improving high temperature strength. , which has the effect of solid solution in the austenite matrix and strengthens it, but if its content is less than 10%, the desired effect cannot be obtained. Not only will the hardness deteriorate rapidly, but also intermetallic compounds such as σ phase, which cause deterioration of toughness, will be formed.
It was set as 0%.

(e)Nl Ni成分には、Crとの共存において高温強度を向上さ
せ、さらにオーステナイト素地を構成して、これを良く
安定化し、かつ加工性を向上させる作用があるが、その
含有量が25%未満ては前記作用に所望の効果が得られ
ず、一方35%を越えて含有させると高温耐酸化性が劣
化するようになることから、その含有量を25〜35%
と定めた。
(e)Nl The Ni component has the effect of improving high-temperature strength when coexisting with Cr, further forming an austenitic matrix, stabilizing it well, and improving workability, but when its content is 25 If the content is less than 35%, the desired effect cannot be obtained, while if the content exceeds 35%, the high temperature oxidation resistance will deteriorate, so the content should be reduced to 25 to 35%.
It was determined that

(f)HfHf成分には、MC型あるいはM7C3型の
共晶炭化物を形成することなく、高融点炭化物てあるM
C型の初晶炭化物を形成して、高温耐酸化性および高温
強度を向上させ、さらに靭性も向上させる作用があるが
、その含有量が0.5%未満ては前記作用に所望の効果
が得られず、一方5%を越えて含有させても前記作用に
よソー層の向上効果は得られず、経済性を考慮して、そ
の含有量を0.5〜5%と定めた。
(f) HfHf component contains high melting point carbide without forming MC type or M7C3 type eutectic carbide.
Formation of C-type primary carbides has the effect of improving high-temperature oxidation resistance and high-temperature strength, as well as improving toughness, but if the content is less than 0.5%, the desired effect is not achieved. On the other hand, even if the content exceeds 5%, the effect of improving the saw layer cannot be obtained due to the above-mentioned action, so the content was determined to be 0.5 to 5% in consideration of economic efficiency.

(g)Mn Mn成分は、強力な脱酸作用をもつほか、オーステナイ
ト素地に固溶して、これを安定化し、かつ靭性を向上さ
せる作用をもつので、これらの特性が要求される場合に
必要に応じて含有されるが、その含有量が0.1%未満
では前記作用に所望の効果が得られず、一方2%を越え
て含有させると、高温耐酸化性に劣化傾向が現われるよ
うになることから、その含有量を0.1〜2%と定めた
(g) Mn In addition to having a strong deoxidizing effect, the Mn component has the effect of solid solution in the austenite matrix, stabilizing it, and improving toughness, so it is necessary when these properties are required. However, if the content is less than 0.1%, the desired effect cannot be obtained, while if the content exceeds 2%, the high temperature oxidation resistance tends to deteriorate. Therefore, its content was determined to be 0.1 to 2%.

(h)希土類元素これらの成分には、特にHfとの共存
において高温耐酸化性をよソー段と向上させる作用があ
るので、特にすぐれた高温耐酸化性が要求される場合に
必要に応じて含有されるが、その含有量が0.005%
未満ては前記作用に所望の効果が得られす、一方0.1
%を越えて含有させると、鋳造性および加工性に劣化傾
向が現われるようになることから、その含有量を0.0
05〜0.1%と定めた。
(h) Rare earth elements These elements have the effect of significantly improving high-temperature oxidation resistance, especially when coexisting with Hf, so they may be used as necessary when particularly excellent high-temperature oxidation resistance is required. Contains, but the content is 0.005%
The desired effect can be obtained with less than 0.1
If the content exceeds 0.0%, the castability and workability tend to deteriorate.
It was set at 0.05 to 0.1%.

なお、この発明のCO基耐熱合金における不可避不純物
のうち、特にFeに関しては、3%まで含有しても合金
特性が何ら損なわれることがないので、経済性を考慮し
て3%までの範囲で積極的に含有させる場合がある。つ
ぎに、この発明のCO基耐熱合金を実施例により具体的
に説明する。
Note that among the inevitable impurities in the CO-based heat-resistant alloy of the present invention, particularly regarding Fe, the alloy properties are not impaired in any way even if it is contained up to 3%. It may be actively included. Next, the CO-based heat-resistant alloy of the present invention will be specifically explained with reference to Examples.

実施例 通常の溶解法によりそれぞれ第1表に示される成分組成
をもつた本発明CO基耐熱合金1〜23および比較CO
基耐熱合金1〜7を溶製し、口ストワックス精密鋳造法
を用いて、平行部外径:7WfSφ×平行部長さ:50
rfn×チャック部外径:25醜φ×全長:9−の寸法
をもつた試験片素材に鋳造した。
Examples CO-based heat-resistant alloys 1 to 23 of the present invention and comparative CO alloys having the compositions shown in Table 1 were prepared by a conventional melting method.
The base heat-resistant alloys 1 to 7 were melted, and using the wax precision casting method, parallel part outer diameter: 7WfSφ x parallel part length: 50
A test piece material having the following dimensions: rfn x outer diameter of chuck part: 25mm x total length: 9- was cast.

ついで、この試験片素材より、高温強度を評価する目的
でクリープラプチヤー試験片を削り出し、この試験片を
用い、雰囲気:大気中、加熱温度:1100℃、付加荷
重:3.5k9/?2の条件でクリープラプチヤー試験
を行ない、破断寿命および破断絞りを測定した。また、
上記クリープラプチヤー試験後の試験片のチャック部か
ら直径:10mφ×高さ:1『の寸法をもつた試験片を
切出し、この試験片を用い、大気中、温度1100℃に
1時間保持後、脱スケールを1サイクルとし、10サイ
クルを行なつた後の酸化減量を測定する高温耐酸化性試
験を行なつた。
Next, a creep lap tear test piece was cut out from this test piece material for the purpose of evaluating high temperature strength, and using this test piece, atmosphere: air, heating temperature: 1100°C, added load: 3.5k9/? A creep rapture test was conducted under the conditions of 2 to measure the life at break and the area of area at break. Also,
A test piece with dimensions of diameter: 10 mφ x height: 1'' was cut out from the chuck part of the test piece after the above creep lap tear test, and after holding the test piece at a temperature of 1100°C in the atmosphere for 1 hour using this test piece, A high temperature oxidation resistance test was conducted to measure the oxidation loss after 10 cycles of descaling.

Claims (1)

【特許請求の範囲】 1 C:0.05〜0.6%、 Si:0.1〜2%、 Cr:18〜25%、 W:10〜20%、 Ni:25〜35%、 Hf:0.5〜5%、 Coおよび不可避不純物:残り、 からなる組成(以上重量%)を有することを特徴とする
ガスタービン用高強度Co基耐熱合金。 2 C:0.05〜0.6%、 Si:0.1〜2%、 Cr:18〜25%、 W:10〜20%、 Ni:25〜35%、 Hf:0.5〜5%、 Mn:0.1〜2%、 Coおよび不可避不純物:残り、 からなる組成(以上重量%)を有することを特徴とする
ガスタービン用高強度Co基耐熱合金。 3 C:0.05〜0.6%、 Si:0.1〜2%、 Cr:18〜25%、 W:10〜20%、 Ni:25〜35%、 Hf:0.5〜5%、 希土類元素:0.005〜0.1%、 Coおよび不可避不純物:残り、 からなる組成(以上重量%)を有することを特徴とする
ガスタービン用高強度Co基耐熱合金。 4 C:0.05〜0.6%、 Si:0.1〜2%、 Cr:18〜25%、 W:10〜20%、 Ni:25〜35%、 Hf:0.5〜5%、 Mn:0.1〜2%、 希土類元素:0.005〜0.1%、 Coおよび不可避不純物:残り、 からなる組成(以上重量%)を有することを特徴とする
ガスタービン用高強度Co基耐熱合金。
[Claims] 1 C: 0.05-0.6%, Si: 0.1-2%, Cr: 18-25%, W: 10-20%, Ni: 25-35%, Hf: 1. A high-strength Co-based heat-resistant alloy for gas turbines, characterized in that it has a composition (the above weight %) consisting of: 0.5 to 5%, the remainder being Co and unavoidable impurities. 2C: 0.05-0.6%, Si: 0.1-2%, Cr: 18-25%, W: 10-20%, Ni: 25-35%, Hf: 0.5-5% , Mn: 0.1 to 2%, Co and unavoidable impurities: remainder, A high-strength Co-based heat-resistant alloy for gas turbines, characterized in that it has a composition (the above weight %) consisting of: 3C: 0.05-0.6%, Si: 0.1-2%, Cr: 18-25%, W: 10-20%, Ni: 25-35%, Hf: 0.5-5% , rare earth elements: 0.005 to 0.1%, Co and unavoidable impurities: the remainder, A high-strength Co-based heat-resistant alloy for gas turbines, characterized in that it has a composition (the above weight %) consisting of the following. 4C: 0.05-0.6%, Si: 0.1-2%, Cr: 18-25%, W: 10-20%, Ni: 25-35%, Hf: 0.5-5% , Mn: 0.1 to 2%, rare earth elements: 0.005 to 0.1%, Co and unavoidable impurities: remainder, High strength Co for gas turbines characterized by having the following composition (the above weight %) Base heat-resistant alloy.
JP21983782A 1982-12-15 1982-12-15 High-strength Co-based heat-resistant alloy for gas turbines Expired JPS6059289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21983782A JPS6059289B2 (en) 1982-12-15 1982-12-15 High-strength Co-based heat-resistant alloy for gas turbines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21983782A JPS6059289B2 (en) 1982-12-15 1982-12-15 High-strength Co-based heat-resistant alloy for gas turbines

Publications (2)

Publication Number Publication Date
JPS59110757A JPS59110757A (en) 1984-06-26
JPS6059289B2 true JPS6059289B2 (en) 1985-12-24

Family

ID=16741822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21983782A Expired JPS6059289B2 (en) 1982-12-15 1982-12-15 High-strength Co-based heat-resistant alloy for gas turbines

Country Status (1)

Country Link
JP (1) JPS6059289B2 (en)

Also Published As

Publication number Publication date
JPS59110757A (en) 1984-06-26

Similar Documents

Publication Publication Date Title
JP2002144080A (en) Ni BASED HEAT RESISTANT BRAZING FILLER METAL
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JPS6254390B2 (en)
JPH0243813B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPS6254389B2 (en)
JPS6330381B2 (en)
JPH06287667A (en) Heat resistant cast co-base alloy
JPS59179752A (en) Heat resistant co base alloy
JPH0243816B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JPH0243814B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPH0243815B2 (en) GASUTAABINYOKOKYODOC0KITAINETSUGOKIN
JPS6330382B2 (en)
JPS6059289B2 (en) High-strength Co-based heat-resistant alloy for gas turbines
JPH0243812B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPS6249344B2 (en)
JPS6221064B2 (en)
JPS6330385B2 (en)
JPH06287666A (en) Heat resistant cast co-base alloy
JPS6330384B2 (en)
JPS6033332A (en) Heat resistant co-base alloy for glass fiber molding spinner
JPH07224337A (en) Heat resistant cast co-base alloy and gas turbine stator blade using the same
JPH0232339B2 (en)
JPS6254386B2 (en)
JPS6349735B2 (en)