JPS6254178B2 - - Google Patents
Info
- Publication number
- JPS6254178B2 JPS6254178B2 JP4340881A JP4340881A JPS6254178B2 JP S6254178 B2 JPS6254178 B2 JP S6254178B2 JP 4340881 A JP4340881 A JP 4340881A JP 4340881 A JP4340881 A JP 4340881A JP S6254178 B2 JPS6254178 B2 JP S6254178B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- content
- affected zone
- resistant alloy
- cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 24
- 239000000956 alloy Substances 0.000 claims description 24
- 238000005336 cracking Methods 0.000 claims description 20
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 238000009750 centrifugal casting Methods 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910018559 Ni—Nb Inorganic materials 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 238000003466 welding Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000010953 base metal Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 231100000989 no adverse effect Toxicity 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Description
本発明は遠心鋳造管用耐熱合金に関し、特に溶
接に際して溶接熱影響部に欠陥を発生しない遠心
鋳造管用耐熱合金に関するものである。
遠心鋳造管用耐熱合金の中でも比較的新しいも
のとして0.3C−24Cr−24Ni−1.5Nb型(以下C−
Cr−Ni−Nb型と略記する)の合金が知られてお
り、この合金はHK−40材(0.4C−25Cr−20Ni)
の様な従来の耐熱合金に比べて優れた機械的諸性
能を有しており、最近特に注目を集めている。し
かしながら上記C−Cr−Ni−Nb型耐熱合金はHK
−40材等に比べて溶接性が悪く、特に溶接熱影響
部に割れが発生し易いという重大な問題がある。
即ち上記耐熱合金はHK−40材に比べてC量の少
ない完全オーステナイト鋼である為鋼中の炭化物
量も少なく、従つて鋳造ミクロ組織が大きいが、
これに反比例して粒界面積が小さくなつてこの部
分の不純物介在物濃度が高くなる。しかるに溶接
熱影響部に存在するこれらの不純介在物は溶接熱
の影響による分解及びマトリツクスとの反応等を
通じて粒界ミクロ偏析の原因となり、その結果こ
の部分の融点を低下させ、収縮応力によつて溶接
熱影響部に割れを発生させ易くなる。上記耐熱合
金の上記特性は本質的欠陥であるが、この中にあ
つて、Nbは炭化物を形成してクリープ破断強度
の向上に寄与する反面で鋼中のC、S、O等と反
応して結晶粒界に偏析し、溶接熱影響部の割れ感
受性を高める作用があり、溶接々続を不可欠とす
る遠心鋳造管材として使用した場合しばしば継手
部が割れを起こす。例えば第1図は、公知のC−
Cr−Ni−Nb型耐熱合金を共金系ワイヤTIG溶接
して得た熱影響部を示す断面顕微鏡写真(100
倍)であり、結晶粒界に沿つて割れが発生してい
る。
従つてC−Cr−Ni−Nb型耐熱合金の遠心鋳造
管用材料としての適性を高める為には、溶接熱影
響部の割れを助長するNbの含有量を低減するの
が有効と考えられるが、Nbを少なくしすぎると
C−Cr−Ni−Nb型耐熱合金本来の機械的性質
(特にクリープ破断強度)を満足できなくなるか
ら、耐割れ性の改善策としてNb量の低減のみに
頼ることはできない。
本発明者等は上記の様な事情に着目し、C−
Cr−Ni−Nb型耐熱合金に要求される本来の機械
的諸特性を確保すると共に、溶接熱影響部の耐割
れ性を改善すべく、Nb以外の合金元素の含有率
等について総合的な研究を進めてきた。
その結果、C−Cr−Ni−Nb型耐熱合金におけ
るNb含有率の低い領域では、C含有率を従来材
よりも高めることによつて溶接熱影響部の耐割れ
性が大幅に改善されることを知り、かかる知見に
基づいて本発明を完成した。即ち本発明の遠心鋳
造管用耐熱合金とは、C:0.40〜0.50%(重量
%:以下同じ)、Si:1.0%以下、Mn:1.0%以
下、Ni:23〜26%、Cr:23〜26%及びNb:0.8〜
1.4%を含み、残部が鉄及び不可避不純物からな
るところに要旨が存在する。
本発明では、C−Cr−Ni−Nb型耐熱合金中の
Nb量を、該合金に要求される機械的諸特性を阻
害しない範囲で比較的低レベルに抑え、溶接熱影
響部の割れ感受性を低下させることについては、
比較的多量のCを含有させることによつて目的を
達成し得ることになつた。鋼材中のCは一般に素
材を硬質化させ割れ感受性を高めると考えられて
いるが、後記確認実験でも明らかにする如く、C
−Cr−Ni−Nb型耐熱合金の低Nb量領域ではC量
を増加することによつて溶接熱影響部の割れ感受
性は大幅に低下する。この様な傾向が得られる理
由は必ずしも明確でないが、1つの理由は次の様
に考えることができる。即ちNb含有量が高いと
低融点の含Nb系化合物が結晶粒界に偏析して割
れ感受性を高めるが、Nb量を比較的低レベルに
抑え且つ多量のCを含有させると、Nbが安定な
炭化物として固定されるとともに、全体の炭化物
量が増加して結晶粒が微細化し、不純介在物の集
中的な偏析が防止される結果、熱影響部の割れが
抑制されるものと考えられる。しかしながらC量
が多すぎると、C本来の硬質化作用が顕著に現わ
れ感受性はかえつて高まる。この様な傾向のもと
で、実験的に確認した最も好ましいC含有率は
0.40〜0.50%の範囲であり、この範囲内であれば
硬質化による悪影響は殆んど認められず、炭化物
による結晶粒微細化効果のみが有効に発揮され
て、熱影響部の割れ感受性を大幅に低減させるこ
とができる。
またNbは前述の知く溶接熱影響部の割れを助
長する作用があり、これを防止する為には1.4%
以下に抑える必要がある。しかしながら少なすぎ
るとNb本来の機械的性能向上効果が有効に発揮
されず、C−Cr−Ni−Nb型耐熱合金に要求され
る本来の特性が得られなくなるので、少なくとも
0.8%以上含有させなければならない。
ちなみに第2図は、下記第1表に示す基本組成
の溶製原料を使用してC及びNb含有率の異なる
複数のC−Cr−Ni−Nb型耐熱合金を製造し、得
られた遠心鋳造管(外径145mmφ、内径110mmφ、
長さ3000mm)を、共金ワイヤを用いてTIG溶接
{ホツトTIG溶接、200A×10cm/分×(10〜12)
V}して得た溶接熱影響部の割れ観察結果を示し
たものである。
The present invention relates to a heat-resistant alloy for centrifugally cast pipes, and more particularly to a heat-resistant alloy for centrifugally cast pipes that does not cause defects in the weld heat affected zone during welding. Among the heat-resistant alloys for centrifugally cast pipes, the 0.3C-24Cr-24Ni-1.5Nb type (hereinafter referred to as C-
Cr-Ni-Nb type alloy) is known, and this alloy is HK-40 material (0.4C-25Cr-20Ni).
It has been attracting particular attention recently as it has superior mechanical performance compared to conventional heat-resistant alloys such as. However, the above C-Cr-Ni-Nb type heat-resistant alloy is HK
There is a serious problem in that it has poor weldability compared to -40 materials and is particularly prone to cracking in the weld heat-affected zone.
In other words, since the heat-resistant alloy mentioned above is a completely austenitic steel with a lower C content than the HK-40 material, the amount of carbides in the steel is also lower, and therefore the casting microstructure is larger.
Inversely proportional to this, the grain boundary area becomes smaller and the concentration of impurity inclusions in this portion becomes higher. However, these impurity inclusions existing in the weld heat affected zone cause grain boundary microsegregation through decomposition due to the influence of welding heat and reaction with the matrix, and as a result, the melting point of this part decreases, and the Cracks are likely to occur in the weld heat affected zone. The above characteristics of the heat-resistant alloy are essential defects, but Nb forms carbides and contributes to improving creep rupture strength, but on the other hand, Nb reacts with C, S, O, etc. in the steel. It segregates at grain boundaries and has the effect of increasing the cracking susceptibility of the weld heat-affected zone, often causing cracks in joints when used as centrifugally cast pipe materials that require continuous welding. For example, FIG. 1 shows the well-known C-
Cross-sectional micrograph (100
), and cracks occur along grain boundaries. Therefore, in order to improve the suitability of the C-Cr-Ni-Nb type heat-resistant alloy as a material for centrifugally cast pipes, it is considered effective to reduce the Nb content, which promotes cracking in the weld heat-affected zone. If Nb is reduced too much, the inherent mechanical properties (especially creep rupture strength) of the C-Cr-Ni-Nb type heat-resistant alloy cannot be satisfied, so reducing the amount of Nb alone cannot be relied upon as a measure to improve cracking resistance. . The present inventors focused on the above-mentioned circumstances, and C-
Comprehensive research on the content of alloying elements other than Nb in order to ensure the original mechanical properties required for Cr-Ni-Nb type heat-resistant alloys and improve the cracking resistance of the weld heat affected zone. We have been progressing. As a result, in the region of low Nb content in C-Cr-Ni-Nb type heat-resistant alloys, the cracking resistance of the weld heat affected zone is significantly improved by increasing the C content compared to conventional materials. The present invention was completed based on this knowledge. That is, the heat-resistant alloy for centrifugally cast pipes of the present invention is C: 0.40 to 0.50% (weight %: same below), Si: 1.0% or less, Mn: 1.0% or less, Ni: 23 to 26%, Cr: 23 to 26 % and Nb: 0.8~
The gist is that it contains 1.4%, with the remainder consisting of iron and unavoidable impurities. In the present invention, in the C-Cr-Ni-Nb type heat-resistant alloy,
In order to suppress the amount of Nb to a relatively low level within a range that does not impede the mechanical properties required for the alloy, and to reduce the cracking susceptibility of the weld heat affected zone,
It was found that the objective could be achieved by containing a relatively large amount of C. C in steel materials is generally thought to harden the material and increase its susceptibility to cracking, but as will be clarified in the confirmation experiment below, C
In the low Nb content region of -Cr-Ni-Nb type heat-resistant alloys, increasing the C content significantly reduces the cracking susceptibility of the weld heat affected zone. The reason why such a tendency is obtained is not necessarily clear, but one reason can be considered as follows. In other words, when the Nb content is high, Nb-containing compounds with low melting points segregate at grain boundaries and increase cracking susceptibility, but when the Nb content is kept at a relatively low level and a large amount of C is included, Nb becomes stable. It is considered that the impurity inclusions are fixed as carbides, the total amount of carbides increases, the crystal grains become finer, and intensive segregation of impurity inclusions is prevented, thereby suppressing cracking in the heat-affected zone. However, if the amount of C is too large, the inherent hardening effect of C becomes noticeable and the sensitivity increases. Under these trends, the most preferable C content confirmed experimentally is
It is in the range of 0.40 to 0.50%, and within this range, there is almost no adverse effect due to hardening, and only the grain refining effect of carbide is effectively exerted, greatly reducing the cracking susceptibility of the heat affected zone. can be reduced to In addition, as mentioned above, Nb has the effect of promoting cracking in the weld heat-affected zone, and in order to prevent this, 1.4%
It is necessary to keep it below. However, if the amount is too small, the inherent mechanical performance improvement effect of Nb will not be effectively exhibited, and the original properties required for C-Cr-Ni-Nb type heat-resistant alloys will not be obtained, so at least
It must be contained at least 0.8%. Incidentally, Figure 2 shows the results of centrifugal casting obtained by manufacturing multiple C-Cr-Ni-Nb type heat-resistant alloys with different C and Nb contents using melted raw materials with the basic composition shown in Table 1 below. Pipe (outer diameter 145mmφ, inner diameter 110mmφ,
TIG welding (hot TIG welding, 200A x 10cm/min x (10-12)) using matching metal wire (length 3000mm)
This figure shows the results of observation of cracks in the weld heat-affected zone obtained by
母材より引張試験片を採取し、これに溶接熱影
響部に相当する熱履歴(最高加熱温度:1320℃=
粒界液化温度)を加え1100℃に冷却された段階で
引張試験を行なつたときの破断時の断面減少率を
測定する。
高温延性(断面積減率)=A−A′/A×100(%)
A:試験前の供試片の断面積(mm2)
A′:破断時の供試片の断面積(mm2)
A tensile test piece was taken from the base metal, and the thermal history corresponding to the weld heat affected zone (maximum heating temperature: 1320℃ =
When the sample is cooled to 1100°C, a tensile test is performed and the area reduction rate at break is measured. High temperature ductility (cross-sectional area reduction rate) = A-A'/A x 100 (%) A: Cross-sectional area of the specimen before the test (mm 2 ) A': Cross-sectional area of the specimen at fracture (mm 2 )
【表】
第3図からも明らかな様に、NSTはC及びNb
の含有率には殆んど影響されずほぼ一定である
が、L.BTRはC及びNbの含有率による影響が相
当違う。即ちC量が0.30%の場合Nb量を変えて
もL.BTRは殆んど変わらないが、C量が0.40%の
場合は、Nb量を減少することによつてL.BTRは
上昇傾向を示し、Nb量が1.4%以下になるとC量
による影響が明確に表われてくる。一般に熱影響
部の液化割れ感受性は脆化温度幅(NSTとL.
BTRとの差)が小さい程良好であることが確認
されており、第3図の結果から考えるとC量を
0.35%以上とし且つNb量を1.4%以下にしてやれ
ば、上記脆化温度幅が小さくなり割れ感受性を低
くすることが明白である。事実第4図の結果をみ
るとその傾向が明確に現われている。
前述の如く本発明では特にNb量を0.8〜1.4%の
比較的低レベルに抑えると共に、C量を0.40〜
0.50%の比較的高レベルにすることによつて、母
材の機械的諸特性を損なうことなく溶接熱影響部
の割れ感受性を大幅に低減することができた。
次に他の必須成分の作用及び含有範囲設定の理
由を説明する。
Si:1.0%以下
Siは酸化されて不純介在物となり結晶粒界に析
出するから、継手性能改善の目的からすれば極め
て有害な元素である。しかし種々の実験の結果
1.0%以下、より好ましくは0.5%以下であれば継
手性能に殆んど悪影響を及ぼさないことが確認さ
れた。
Mn:1.0%以下
脱酸剤として有効であると共に強度を高める作
用があるが、1.0%を越えると延性が乏しくなる
と共に、耐熱性が悪化する。
Ni:23〜26%
オーステナイト組織を安定化すると共に耐熱性
を高めるのに極めて重要な成分であり、23%未満
ではこれらの効果が有効に発揮されない。しかし
これらNiの効果は26%程度で飽和状態に達し、
それ以上添加しても改善効果はそれ以上向上せず
経済的負担が高まるだけである。
Cr:23〜26%
耐熱性、耐食性、抗クリープ性、耐酸化性等を
高めるのに重要な元素であり、23%未満ではこれ
らの効果が有効に発揮されない。しかし26%を越
えると異相析出の恐れが生じ脆化傾向が現われ
る。
本発明は概略以上の様に構成されており、特に
CとNbの含有率を特定範囲に設定することによ
つて、機械的諸特性及び溶接熱影響部の割れ感受
性を改善し、卓越した性能のC−Cr−Ni−Nb型
耐熱合金を提供し得ることになつたものであり、
リフオーマチユーブ(天然ガスやナフサにスチー
ムを加えてH2とCOを製造するときに用いる反応
管)の如く苛酷な条件で使用する遠心鋳造管等を
はじめとする種々の遠心鋳造管用の材料として極
めて実用価値の高いものである。[Table] As is clear from Figure 3, NST is C and Nb
L.BTR is almost constant and is almost unaffected by the content of C and Nb, but the influence of the content of C and Nb varies considerably. In other words, when the C content is 0.30%, L.BTR hardly changes even if the Nb content is changed, but when the C content is 0.40%, L.BTR tends to increase by decreasing the Nb content. When the Nb content is 1.4% or less, the influence of the C content becomes clear. Generally, the liquefaction cracking susceptibility of the heat affected zone is determined by the embrittlement temperature range (NST and L).
It has been confirmed that the smaller the difference (difference from BTR), the better. Considering the results in Figure 3,
It is clear that if the Nb content is 0.35% or more and the Nb content is 1.4% or less, the above-mentioned embrittlement temperature range becomes smaller and cracking susceptibility is lowered. In fact, looking at the results in Figure 4, this trend is clearly visible. As mentioned above, in the present invention, in particular, the Nb content is suppressed to a relatively low level of 0.8 to 1.4%, and the C content is suppressed to a relatively low level of 0.40 to 1.4%.
By setting it at a relatively high level of 0.50%, it was possible to significantly reduce the cracking susceptibility of the weld heat affected zone without impairing the mechanical properties of the base metal. Next, the effects of other essential components and the reasons for setting their content ranges will be explained. Si: 1.0% or less Si is oxidized and becomes impure inclusions that precipitate at grain boundaries, so it is an extremely harmful element from the perspective of improving joint performance. However, the results of various experiments
It was confirmed that a content of 1.0% or less, more preferably 0.5% or less, has almost no adverse effect on joint performance. Mn: 1.0% or less It is effective as a deoxidizer and has the effect of increasing strength, but if it exceeds 1.0%, ductility becomes poor and heat resistance deteriorates. Ni: 23-26% This is an extremely important component for stabilizing the austenite structure and increasing heat resistance, and if it is less than 23%, these effects will not be effectively exhibited. However, these effects of Ni reach saturation at around 26%.
Even if more than that is added, the improvement effect will not be further improved and the economic burden will only increase. Cr: 23-26% This is an important element for increasing heat resistance, corrosion resistance, creep resistance, oxidation resistance, etc. If it is less than 23%, these effects will not be effectively exhibited. However, if it exceeds 26%, there is a risk of foreign phase precipitation and a tendency towards embrittlement appears. The present invention is roughly constructed as described above, and in particular, by setting the content of C and Nb within a specific range, various mechanical properties and cracking susceptibility of the weld heat affected zone are improved, resulting in excellent performance. It has become possible to provide a C-Cr-Ni-Nb type heat-resistant alloy,
As a material for various centrifugally cast tubes, including those used under harsh conditions such as reflow tubes (reaction tubes used to produce H2 and CO by adding steam to natural gas or naphtha). It has extremely high practical value.
第1図は従来のC−Cr−Ni−Nb型耐熱合金の
溶接熱影響部にみられる割れ状況を示す図面代用
顕微鏡写真、第2図はC及びNbの含有率が熱影
響部の割れに与える影響を示すグラフ、第3図は
Nb含有率とNST及びL.BTRの関係を示すグラ
フ、第4図はNb含有率と断面積減少率の関係を
示すグラフである。
Figure 1 is a photomicrograph substituted for a drawing showing the cracking observed in the heat affected zone of a conventional C-Cr-Ni-Nb type heat-resistant alloy. Figure 2 shows that the content of C and Nb causes cracking in the heat affected zone The graph showing the influence, Figure 3, is
FIG. 4 is a graph showing the relationship between Nb content and NST and L.BTR. FIG. 4 is a graph showing the relationship between Nb content and cross-sectional area reduction rate.
Claims (1)
Si:1.0%以下、Mn:1.0%以下、Ni:23〜26%、
Cr:23〜26%、Nb:0.8〜1.4%、残部鉄及び不
可避不純物からなることを特徴とする耐溶接割れ
性の改善された遠心鋳造管用耐熱合金。 2 特許請求の範囲第1項において、Siを0.5%
以下としてなる遠心鋳造管用耐熱合金。 3 特許請求の範囲第1又は2項において、遠心
鋳造管がリフオーマチユーブである耐熱合金。[Claims] 1C: 0.40 to 0.50% (weight%: the same applies hereinafter),
Si: 1.0% or less, Mn: 1.0% or less, Ni: 23-26%,
A heat-resistant alloy for centrifugally cast pipes with improved weld cracking resistance, characterized by comprising Cr: 23 to 26%, Nb: 0.8 to 1.4%, the balance being iron and unavoidable impurities. 2 In claim 1, Si is 0.5%
A heat-resistant alloy for centrifugal casting pipes as follows: 3. The heat-resistant alloy according to claim 1 or 2, wherein the centrifugally cast tube is a reformed tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4340881A JPS57158354A (en) | 1981-03-24 | 1981-03-24 | Heat resistant alloy for centrifugally cast pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4340881A JPS57158354A (en) | 1981-03-24 | 1981-03-24 | Heat resistant alloy for centrifugally cast pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57158354A JPS57158354A (en) | 1982-09-30 |
JPS6254178B2 true JPS6254178B2 (en) | 1987-11-13 |
Family
ID=12662914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4340881A Granted JPS57158354A (en) | 1981-03-24 | 1981-03-24 | Heat resistant alloy for centrifugally cast pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57158354A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4769636B2 (en) * | 2006-05-24 | 2011-09-07 | 杉山 弘昭 | Shell locker, collective shell lock, and continuous shell lock |
-
1981
- 1981-03-24 JP JP4340881A patent/JPS57158354A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57158354A (en) | 1982-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU600771B2 (en) | Ferritic stainless steel and processing therefore | |
CA3080315A1 (en) | Austenitic heat-resistant steel weld metal, welded joint, welding material for austenitic heat-resistant steel, and method of manufacturing welded joint | |
JP3322097B2 (en) | High strength, high corrosion resistant ferritic steel welding material with excellent weldability | |
US4585478A (en) | Heat resisting steel | |
GB2131832A (en) | Steel material exhibiting superior hydrogen cracking resistance in a wet sour gas environment | |
JPS6344814B2 (en) | ||
WO2000036173A1 (en) | Steel for boiler excellent in butt seam weldability and electroseamed steel pipe for boiler using the same | |
JP2622530B2 (en) | Welding material for austenitic steel with excellent high-temperature strength | |
JP2021049570A (en) | Austenitic stainless steel weld joint | |
JP2021049572A (en) | Austenitic stainless steel weld joint | |
JPH0760481A (en) | Welding material for high-cr and high-n austenitic steel | |
JPS6254178B2 (en) | ||
JPS634897B2 (en) | ||
JP6107170B2 (en) | Welding material for austenitic heat-resistant steel, weld metal and welded joint produced using the same | |
JPH01100247A (en) | Austenitic corrosion-resisting cast steel | |
JPH11277293A (en) | Welding metal and welding joint excellent in reheat crack resistance | |
JPH0796390A (en) | Wire for welding 9cr-1mo steel | |
JP2004058062A (en) | Welding material for highly corrosion resistant austenitic steel and weld metal | |
JPH07124785A (en) | Seamless flux cored wire for heat resistant ferritic stainless steel | |
JP2800661B2 (en) | Welding material for high Cr high N austenitic steel | |
JP7360032B2 (en) | Austenitic heat resistant steel welded joints | |
JPS6034628B2 (en) | Heat-resistant alloy for centrifugal casting pipes | |
JPS5848277B2 (en) | Welding wire for stainless steel hot coil build-up welding | |
JPH05195138A (en) | Heat resistant alloy having excellent carburization resistance and high creep rupture strength under conditions of high temperature and low stress | |
JPH04110419A (en) | Production of high ni stainless steel plate |