JPS6254058A - Cold-rolled steel sheet with high ductility and its manufacture - Google Patents

Cold-rolled steel sheet with high ductility and its manufacture

Info

Publication number
JPS6254058A
JPS6254058A JP60193411A JP19341185A JPS6254058A JP S6254058 A JPS6254058 A JP S6254058A JP 60193411 A JP60193411 A JP 60193411A JP 19341185 A JP19341185 A JP 19341185A JP S6254058 A JPS6254058 A JP S6254058A
Authority
JP
Japan
Prior art keywords
temperature
less
cold
rolling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60193411A
Other languages
Japanese (ja)
Inventor
Kazunori Osawa
一典 大澤
Takashi Obara
隆史 小原
Susumu Sato
進 佐藤
Kozo Sumiyama
角山 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60193411A priority Critical patent/JPS6254058A/en
Publication of JPS6254058A publication Critical patent/JPS6254058A/en
Priority to JP3137274A priority patent/JPH0711025B2/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cold rolled steel sheet having high ductility and excellent in drawability, etc., by subjecting a steel having a specific composition reduced in the amounts of C, Al, N, Mn, etc., and increased in O quantity to hot and cold rollings under controlled conditions and then to continuous annealing at low temp. CONSTITUTION:The steel consisting of <=0.001% C, <=0.1% Mn, <=0.001% N, <=0.015% solAl, 0.003-0.020% O and the balance Fe with inevitable impurities and containing, if necessary, <=0.02% Ti and/or <=0.01% Nb is used as a stock. This steel is heated to the Ac3 point or above to undergo hot rolling. At this time, rollings are carried out so that the draft at the above hot rolling in the temp. range not exceeding the recrystallization temp. or the total draft of the above draft and the one at subsequent cold rolling is >=70%. Thereafter continuous annealing is carried out at a temp. between the recrystallization temp. and <750 deg.C. In this way, the cold-rolled steel sheet for forming working having an overall elongation of >=60% can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は各種成形加工等の用途に使用される冷延鋼板
に関し、特に全伸び率で60%以上の高延性を有しかつ
低温焼鈍可能な冷延鋼板およびその製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to cold-rolled steel sheets used for various forming processes, etc., and particularly to cold-rolled steel sheets that have high ductility of 60% or more in terms of total elongation and can be annealed at low temperatures. The present invention relates to a rolled steel plate and a method for manufacturing the same.

従来の技術 従来、延性や絞り性等の加工性の優れた冷延鋼板を製造
する方法としては、炭素量が0.03〜0.06%程度
の低炭素Alキルト鋼を素材として、圧延後箱焼鈍を施
すことによる方法が一般的であった。しかしながら箱焼
鈍法は、処理に長時間を要して生産性が著しく低いのみ
ならず、コイル状態で熱処理されるためにコイルの半径
方向で加熱昇温速度や冷却速度にばらつきが生じ、その
ためコイル全体にわたって均質な特性を得ることができ
ないという根本的な問題があった。
Conventional technology Conventionally, as a method for manufacturing cold rolled steel sheets with excellent workability such as ductility and drawability, low carbon Al quilt steel with a carbon content of about 0.03 to 0.06% is used as a raw material, and after rolling, A common method was to perform box annealing. However, the box annealing method not only requires a long time for processing and is extremely low in productivity, but also because the coil is heat treated in the coil state, the heating temperature rise rate and cooling rate vary in the radial direction of the coil. There was a fundamental problem in that it was not possible to obtain uniform characteristics throughout.

そこで最近では箱焼鈍法の欠点を解消するために連続焼
鈍法を適用することか゛多くなっている。
Therefore, recently, continuous annealing is increasingly being applied to overcome the drawbacks of box annealing.

しかしながら連続焼鈍法を適用した場合、急速加熱を伴
なうため、箱焼鈍法の場合と比較して鋼板の再結晶温度
が50〜100℃も高くなり、そのため結晶の成長性も
悪くなり、また急速冷却となるため鋼中に固)容してい
るCの析出が充分に進行せず、その結果前られる鋼板は
硬質で延性、絞り性、耐時効性な−どが箱焼鈍法により
得られた鋼板よりも劣ってしまう問題が市る。またNに
関しても・、連続焼鈍法では短時間の加熱であるため鋼
中に固溶しているNがAINとして析出しにくく、焼鈍
後も鋼中に固溶Nが多足に残存し、このことも連続焼鈍
法で得られた鋼板の加工性が低いことの一因となってい
る。
However, when continuous annealing is applied, rapid heating is involved, so the recrystallization temperature of the steel sheet is 50 to 100°C higher than in case of box annealing, resulting in poor crystal growth. Due to rapid cooling, the precipitation of carbon contained in the steel does not progress sufficiently, and as a result, the steel plate produced is hard and has good ductility, drawability, and aging resistance, which cannot be obtained by box annealing. There is a problem that it is inferior to steel plate. Regarding N, in the continuous annealing method, since the heating time is short, it is difficult for N dissolved in the steel to precipitate as AIN, and even after annealing, a large amount of N dissolved in the steel remains in the steel. This is also one of the reasons why the workability of steel sheets obtained by continuous annealing is low.

このような連続焼鈍法の欠点を解決する方法の一つとし
ては、特公昭50−1341号公報において提案されて
いる方法がある。この提案の方法は、熱間圧延時に高温
で巻取ることにより、延性や絞り性の向上に有利な方位
の粒成長、おるいは鋼中に固)容されているCやNの析
出を促進させ、さらに連続焼鈍工程において一旦急速冷
却させた後に300〜500℃で数秒〜数分の過時効処
理を行なうことにより未析出の固溶Cの析出を促進ざゼ
、これによって耐時効性の改善を図るものでおる。しか
しながらこの提案の方法の如く熱間圧延工程で高温で巻
取ることは酸洗性の低下を招く問題がおり、さらにこの
提案の方法で製造された冷延鋼板も、箱焼鈍法により得
られた冷延鋼板と比較して未だ絞り性や延性が劣り、前
記欠点を根本的には解決し1蝉なかったのが実情である
One of the methods for solving the drawbacks of the continuous annealing method is the method proposed in Japanese Patent Publication No. 1341/1983. This proposed method promotes grain growth in an orientation that is advantageous for improving ductility and drawability, or the precipitation of C and N contained in the steel, by coiling at a high temperature during hot rolling. Furthermore, after rapid cooling in the continuous annealing process, overaging treatment is performed at 300 to 500°C for several seconds to several minutes to promote the precipitation of unprecipitated solid solution C, thereby improving aging resistance. This is something that aims to achieve this goal. However, winding at a high temperature during the hot rolling process as in this proposed method has the problem of reducing pickling properties, and furthermore, the cold rolled steel sheet produced by this proposed method is also similar to that obtained by box annealing. The reality is that the drawability and ductility are still inferior to cold-rolled steel sheets, and the above drawbacks have not been fundamentally solved.

一方、連続焼鈍材の材質を悪化させている主原因が鋼中
に固溶しているCにあるところから、C含有量を0.0
05%以下に低減した極低C鋼の累月を用いて加工性を
改善する方法も種々提案されている。このようにC含有
量を極端に低下することは、延性、絞り性、耐時効性の
面で有利であることは当然で市るが、単にC量を低下さ
せただけでは完全に非時効性の鋼板を1qることは困難
であった。そこでCff1の低減と併せてTi、Nb等
の炭窒化物形成元素を添加して耐時効性、延性を改善せ
ざるを得ないのが実情である。しかしながらこのような
特殊元素を添加することは、原料コストを上昇させるの
みならず、再結晶温度を著しく上昇させる結果となるか
ら、連続焼鈍を高温で行なわなければならず、後述する
特開昭58−141335号の方法について述べると同
様に、好ましい方法とは言えない。それに加えて、上)
ホのように特殊元素を添加することは、製品の表面性状
や化成処理性を悪化させる原因となる問題もおる。
On the other hand, since the main cause of deterioration of the material quality of continuously annealed materials is C dissolved in steel, the C content was reduced to 0.0.
Various methods have also been proposed for improving workability by using ultra-low C steel with a reduced carbon content of 0.05% or less. It is obvious that drastically reducing the C content in this way is advantageous in terms of ductility, drawability, and aging resistance, but simply reducing the C content will not completely prevent aging. It was difficult to reduce the weight of 1q of steel plates. Therefore, in addition to reducing Cff1, it is necessary to add carbonitride-forming elements such as Ti and Nb to improve aging resistance and ductility. However, the addition of such special elements not only increases the raw material cost but also significantly increases the recrystallization temperature, so continuous annealing must be performed at a high temperature. Similarly to the method of No.-141335, it cannot be said to be a preferable method. In addition to that)
Adding special elements as described in (e) also poses the problem of deteriorating the surface properties and chemical conversion treatment properties of the product.

極低炭素鋼を用いて連続焼鈍法でも優れた材質の冷延鋼
板を得ようとする方法としては、例えば特開昭58−’
j41335号で提案されている方法がある。この提案
の方法は、C50,0030%、N≦0.0020%、
MnS2.20%、0.020≦sol。
For example, Japanese Patent Application Laid-Open No. 1983-1999 discloses a method of obtaining a cold-rolled steel sheet with excellent material quality even by continuous annealing using ultra-low carbon steel.
There is a method proposed in J41335. This proposed method has C50,0030%, N≦0.0020%,
MnS2.20%, 0.020≦sol.

A1≦0.070%を含む鋼を素材とし、仕上温度85
0℃以上、巻取温度500〜700℃て熱間圧延し、冷
延率80%以上で冷間圧延し、750℃以上の温度で連
続焼鈍するもので市って、耐時効性、深絞り性に優れた
冷延鋼板が製造できるとざれている。しかしながらこの
提案の方法では、連続焼鈍温度を750℃以上しとなけ
ればF値〈ランクフォード値)が1.8以上とならず、
750℃未満の温度では深絞り性が劣るとされている。
Made of steel containing A1≦0.070%, finishing temperature 85
Hot rolled at a coiling temperature of 500 to 700°C above 0°C, cold rolled at a cold rolling rate of 80% or above, and continuously annealed at a temperature of 750°C or above. It is said that cold-rolled steel sheets with excellent properties can be produced. However, in this proposed method, the F value (Lankford value) cannot reach 1.8 or higher unless the continuous annealing temperature is 750°C or higher.
It is said that deep drawability is poor at temperatures below 750°C.

またこの提案の方法でぼ延性についてもその最高1Δが
53.3%に過ぎない。
Furthermore, with this proposed method, the maximum ductility of 1Δ is only 53.3%.

上記提案に示されるような750℃以上の高温での連続
焼鈍は、高温で軟化した鋼板に対する過大な張力により
鋼板が破断する危険があるほか、炉内や炉内ロールの寿
命を短くし、さらには熱エネルギコストを増大させる等
の問題があり、特に上記提案の如き極低炭素鋼の場合は
極めて軟質であるため、鋼板破断の危険が大きく、した
がってこのような高温での連続焼鈍は避けることが望ま
しい。
Continuous annealing at high temperatures of 750°C or higher as shown in the above proposal not only risks rupture of the steel plate due to excessive tension on the steel plate softened at high temperatures, but also shortens the life of the furnace and the rolls in the furnace. There are problems such as increased thermal energy costs, and especially in the case of ultra-low carbon steel such as the one proposed above, since it is extremely soft, there is a high risk of steel plate breakage, so continuous annealing at such high temperatures should be avoided. is desirable.

一方低温焼鈍可能でかつ加工性の優れた極低炭素冷延鋼
板としては、特開昭59−166650号公報に提案さ
れているものがある。すなわちこの提案は、C50,0
050%、MnS2.5%、P≦0.1%、N≦0.0
050%、Q 0.0016〜0.035%を含む鋼、
およびこれらにさらにB 0.0001〜0、0050
%、N b 0.003〜0.080%、Zr0.00
5〜0.1%の1種または2種以上を含有する鋼からな
る冷延鋼板を提供するものでおる。しかしながらこの提
案の場合、その明細書中には連続焼鈍の焼鈍温度が60
0〜770℃と記載されてはいるものの、実施例では連
続焼鈍温度が750℃とされており、750℃より低い
連続焼鈍温度が実際に適用可能で必る°か否かは不明で
ある。またこの提案の方法で得られる連続焼鈍材の材質
特性は、降伏点強さ≧17kOf/mm” 、引張強ざ
≧29.9k(lf/mm2、伸び49%、F値≦1.
73で市ッて、待に優れた材質が得られるということは
できない。
On the other hand, as an ultra-low carbon cold-rolled steel sheet that can be annealed at a low temperature and has excellent workability, there is one proposed in JP-A-59-166650. In other words, this proposal is C50,0
050%, MnS2.5%, P≦0.1%, N≦0.0
050%, steel containing Q 0.0016-0.035%,
and to these further B 0.0001 to 0,0050
%, Nb 0.003-0.080%, Zr0.00
The object of the present invention is to provide a cold-rolled steel sheet made of steel containing 5 to 0.1% of one or more types. However, in the case of this proposal, the annealing temperature of continuous annealing is 60% in the specification.
Although it is described as 0 to 770°C, in the examples, the continuous annealing temperature is 750°C, and it is unclear whether a continuous annealing temperature lower than 750°C is actually applicable and necessary. Furthermore, the material properties of the continuously annealed material obtained by this proposed method are: yield point strength ≧17kOf/mm'', tensile strength ≧29.9k (lf/mm2, elongation 49%, F value≦1.
73, it is not possible to obtain superior material in the long term.

発明が解決すべき問題点 前述のように従来は、連続焼鈍法を適用ししかも鋼板破
断等のおそれがないように低温での連続焼鈍を可能とし
、かつそのような低温での焼鈍でも加工性、特に延性の
優れた冷延鋼板を製造することは困難であった。
Problems to be Solved by the Invention As mentioned above, in the past, the continuous annealing method was applied, and it was possible to perform continuous annealing at a low temperature without fear of breakage of the steel plate, and to achieve workability even at such low temperatures. In particular, it has been difficult to produce cold-rolled steel sheets with excellent ductility.

この発明は以上の事情を背景としてなされたもので、低
温での連続焼鈍、具体的には750℃未満の温度での連
続焼鈍でも加工性、特に延性を全伸び60%以上となる
ように向上ざゼた冷延鋼板を提供することを目的とする
ものである。
This invention was made against the background of the above circumstances, and improves workability, especially ductility, to a total elongation of 60% or more even during continuous annealing at low temperatures, specifically, continuous annealing at temperatures below 750°C. The purpose of the present invention is to provide rough cold-rolled steel sheets.

問題点を解決するための手段 前述のような目的を達成するべく本発明者等は鋭意実験
検討を重ねた結果、C,A I 、N、 Mn等の成分
量を従来よりも一層低減すると同時に醒索量を高目とし
、さらには熱間−冷間圧延の圧延条件を特定の条件とす
ることによって高延性を有する冷延鋼板を低温の連続焼
鈍で製造し得ることを見出し、この発明をなすに至った
のである。
Means for Solving the Problems In order to achieve the above-mentioned objectives, the inventors of the present invention have carried out extensive experimental studies, and have found that the amount of components such as C, A I , N, Mn, etc. is further reduced than before, and at the same time. It was discovered that a cold-rolled steel sheet with high ductility can be produced by continuous annealing at low temperatures by increasing the amount of rope and by setting specific hot-cold rolling conditions. That's what happened.

具体的には、第1発明の冷延鋼板は、重量%にしてG 
0.001%以下、Mno、1%以下、N o、ooi
%以下、SOl、A 1 0.015%以下、酸素0.
003〜0.020%を含有し、残部がFeおよび不可
避的不純物よりなり、全伸びが60%以上であることを
特徴とするものである。
Specifically, the cold-rolled steel sheet of the first invention has a G
0.001% or less, Mno, 1% or less, No, ooi
% or less, SOI, A 1 0.015% or less, oxygen 0.
003 to 0.020%, the remainder being Fe and unavoidable impurities, and a total elongation of 60% or more.

また第2発明の冷延鋼板は、重量%にしてC0.001
%以下、Mn0.1%以下、N 0.001%以下、s
ol、A1 0.015%以下、@素0.003〜0.
020%を含有し、さらにlio、02%以下およびN
b0.01%以下のうち1種または2種を含有し、残部
がFeおよび不可避的不純物よりなり、全伸びが60%
以上であることを特徴とするもので市る。
Further, the cold rolled steel sheet of the second invention has a C0.001 weight%.
% or less, Mn 0.1% or less, N 0.001% or less, s
ol, A1 0.015% or less, @ elementary 0.003-0.
Contains 020% and further contains lio, 02% or less and N
Contains one or two of b0.01% or less, the remainder consists of Fe and unavoidable impurities, and the total elongation is 60%
The market is characterized by the above characteristics.

さらに第3発明の冷延鋼板製造方法は、重量%にしてG
 0.001%以下、1Vln0.1%以下、N 0.
001%以下、sol、A I  0.015%以下、
酸素0.003〜0.020%を含有し、残部がFeお
よび不可避的不純物よりなる鋼を素材とし、この素材を
Ac3点以上の温度に加熱して熱間圧延を開始し、かつ
その熱間圧延における再結晶温度以下の温度域での圧下
率、もしくは熱間圧延における再結晶温度以下の温度域
での圧下率とその後の冷間圧延における圧下率との合計
圧下率が70%以上となるように圧延し、しかる後、再
結晶温度以上、750″C未満の温度で連続焼鈍するこ
とを特徴とするものである。
Furthermore, the method for producing a cold rolled steel sheet of the third invention has a G
0.001% or less, 1Vln 0.1% or less, N 0.
001% or less, sol, A I 0.015% or less,
A steel containing 0.003 to 0.020% oxygen and the balance consisting of Fe and unavoidable impurities is used as a material, and this material is heated to a temperature of Ac 3 or higher to start hot rolling, and the hot rolling The total reduction ratio of the reduction ratio in the temperature range below the recrystallization temperature in rolling, or the reduction ratio in the temperature range below the recrystallization temperature during hot rolling and the reduction ratio in subsequent cold rolling is 70% or more. It is characterized in that it is rolled as described above and then continuously annealed at a temperature higher than the recrystallization temperature and lower than 750''C.

そして第4発明の冷延鋼板製造方法は、重量%にしてC
0.001%以下、Mrl0.1%以下、N 0.00
1%以下、sol、A I  0.015%以下、酸素
0.003〜0.020%を含有し、さらにT i 0
.02%以下およびNb0.01%以下のうち1種また
は2種を含有し、残部がFeおよび不可避的不純物より
なる鋼を素材とし、この素材をAc3点以上の温度に加
熱して熱間圧延を開始し、かつその熱間圧延における再
結晶温度以下の温度域での圧下率、もしくは熱間圧延に
おける再結晶温度以下の温度域での圧下率とその後の冷
間圧延における圧下率との合計圧下率が70%以上とな
るように圧延し、しかる後、再結晶温度以上、750℃
未満の温度で連続焼鈍することを特徴とするものである
The method for producing a cold-rolled steel sheet according to the fourth invention is characterized in that C
0.001% or less, Mrl 0.1% or less, N 0.00
1% or less, sol, A I 0.015% or less, oxygen 0.003 to 0.020%, and T i 0
.. The material is steel containing one or two of 0.02% or less and 0.01% or less Nb, with the remainder consisting of Fe and unavoidable impurities, and this material is heated to a temperature of Ac 3 or higher and hot rolled. The rolling reduction in the temperature range below the recrystallization temperature during hot rolling, or the total reduction of the rolling reduction in the temperature range below the recrystallization temperature during hot rolling and the subsequent cold rolling. Rolled so that the ratio is 70% or more, and then rolled at 750°C at a temperature higher than the recrystallization temperature.
It is characterized by continuous annealing at a temperature below.

なおここで前述した特開昭59−166650号公報で
提案されている冷延鋼板は、その実施例の記載からはC
0.0020%以上、Mno、10%以上、N 0.0
017%以上、Q 0.0229%以上の鋼しか開示さ
れておらず、したがってこの発明の冷延鋼板は、特開昭
59−166650号の提案の冷延鋼板よりC,Mn、
Nを一層低減し、かつ酸素量を多口とするといえども前
記提案よりは少量としたものと言うことかできる。
Note that the cold-rolled steel sheet proposed in JP-A-59-166650 mentioned above is C.
0.0020% or more, Mno, 10% or more, N 0.0
0.017% or more, Q 0.0229% or more, and therefore, the cold rolled steel sheet of this invention has more C, Mn,
Although the amount of N is further reduced and the amount of oxygen is increased, it can be said that the amount is smaller than the above proposal.

作   用 先ずこの発明をなすに至る基礎となった実験について説
明する。
Function First, the experiments that formed the basis of this invention will be explained.

重量%にしテc o、oooe%、MnQ、Q4%、S
i0.008%、P 0.001%、30.003%、
SOl、A Io、003%、N 0.0007%を基
本組成とし、酸素量を0.001〜0.030%と変化
させた鋼のスラブを1050℃で30分−間加熱して熱
間圧延を施した。
Weight%: co, oooe%, MnQ, Q4%, S
i0.008%, P 0.001%, 30.003%,
A steel slab with a basic composition of SOl, AIO, 003%, N 0.0007% and varying oxygen content from 0.001 to 0.030% was heated at 1050°C for 30 minutes and hot rolled. was applied.

熱間圧延における仕上温度は850℃,巻取温度は50
0℃とし、かつ熱延圧下率は70%とした。
The finishing temperature during hot rolling is 850℃, and the coiling temperature is 50℃.
The temperature was 0° C., and the hot rolling reduction was 70%.

さらに酸洗後冷間圧延して86%の圧下を加え、板厚を
0.9111mとした。次いで650℃に20秒間加熱
保持する連続焼鈍を行ない、空冷で冷却した。
Furthermore, after pickling, cold rolling was applied to apply a reduction of 86%, and the plate thickness was made to be 0.9111 m. Next, continuous annealing was performed by heating and holding at 650° C. for 20 seconds, followed by air cooling.

得られた各酸素量の冷延鋼板について引張試験を行なっ
たところ第1図に示す結果が得られた。また比較のため
、C0.0026%、Mn0.25%、3io、oii
%、P 0.009%、S 0.007%、SOl、A
 Io、 0026%、N 0.0021%を基本成分
とする比較鋼についても同様に酸素量を種々変化させ、
前記同様の熱間圧延−冷間圧延一連続焼鈍を施した。
A tensile test was conducted on the obtained cold-rolled steel sheets with each oxygen content, and the results shown in FIG. 1 were obtained. For comparison, C0.0026%, Mn0.25%, 3io, oii
%, P 0.009%, S 0.007%, SOI, A
For comparative steels whose basic components are Io, 0.0026% and N 0.0021%, the oxygen content was similarly varied,
Hot rolling-cold rolling and continuous annealing were performed in the same manner as described above.

その引張試験結果を第1図に併せて示す。The tensile test results are also shown in FIG.

一方、前記同様にG 0.0006%、Mn0.04%
、3i0.008%、F) o、oo1%、S 0.0
03%、SOl、A I  0.003%、N 0.0
07%を基本成分とし、茫素量を0.009%とした鋼
、および酸素ωを0、0040%としかつ0.012%
Tiを添加した鋼について、それらのスラブを1000
℃で30分間加熱して熱間圧延を施した。熱間圧延にお
ける仕上温度は600℃、巻取温度は490℃とし、か
つ熱延圧下率は70%とした。酸洗後冷間圧延して86
%の圧下を加え、板厚0.9mmとした。次いで540
〜930″Cの種々の温度に20秒間加熱保持して空冷
する連続焼鈍を行なった。jqられた各焼鈍温度の冷延
鋼板について引張試験を行なったところ第2図に示す結
果が得られた。また比較のため、C0.0023%、M
n0.21%、P 0.013%、S 0.008%、
sol、A I  0.036%、N 0.0020%
、Q 0.0051の鋼について、同様に処理した結果
を第2図に併せて示す。
On the other hand, as above, G 0.0006%, Mn 0.04%
, 3i0.008%, F) o, oo1%, S 0.0
03%, SOI, A I 0.003%, N 0.0
Steel with 0.07% as a basic component and 0.009% of solen content, and 0.0040% and 0.012% of oxygen ω.
For Ti-added steel, those slabs were
Hot rolling was performed by heating at ℃ for 30 minutes. The finishing temperature in hot rolling was 600°C, the coiling temperature was 490°C, and the hot rolling reduction was 70%. After pickling and cold rolling, 86
% reduction was applied to make the plate thickness 0.9 mm. then 540
Continuous annealing was performed by heating and holding at various temperatures of ~930''C for 20 seconds and cooling in air.Tensile tests were conducted on cold rolled steel sheets at each annealing temperature, and the results shown in Figure 2 were obtained. .For comparison, C0.0023%, M
n0.21%, P 0.013%, S 0.008%,
sol, AI 0.036%, N 0.0020%
, Q 0.0051, the results of the same treatment are also shown in FIG.

第1図から明らかなようにCを0.0006%、Nを0
.007%と極低C,@低N化した本発明鋼では、鋼中
酸素量によって延性値が変化し、特に鋼中酸素量が0.
003〜0.020%の範囲内で伸びが60%以上と著
しい高延性となることか判明した。この事実は、単純に
Cを低下させれば延性が改善されるという従来の常識と
は異なるものである。−5第2図から4aj低C化、極
低N化しがっ酸素量を適量とした本発明鋼では、連続焼
鈍における焼鈍温度を900℃から低下させるにしたが
って延性か良好となって650〜700℃付近で最大値
を示し、600 ℃程度でも全伸び60%以上の高延性
が得られることが判明した。
As is clear from Figure 1, C is 0.0006% and N is 0.
.. In the steel of the present invention, which has extremely low C and N of 0.007%, the ductility value changes depending on the amount of oxygen in the steel, especially when the amount of oxygen in the steel is 0.007%.
It has been found that within the range of 0.003% to 0.020%, the elongation becomes 60% or more, resulting in remarkable high ductility. This fact is different from the conventional wisdom that simply lowering C improves ductility. -5 From Fig. 2, 4aj In the steel of the present invention with low C, extremely low N, and appropriate oxygen content, as the annealing temperature in continuous annealing is lowered from 900°C, the ductility becomes good, reaching 650-700°C. It was found that the maximum value was reached near 600°C, and high ductility with a total elongation of 60% or more could be obtained even at about 600°C.

上述のように極低C化、極低N化しかつ鋼中酸素量を適
量とした鋼において600 ℃程度の低温での連続焼鈍
でも全伸び60%以上の高延性が得られる理由は未だ明
確ではないが、次のように考えられる。
As mentioned above, the reason why high ductility with a total elongation of 60% or more can be obtained even with continuous annealing at a low temperature of about 600 °C in steel with extremely low C, extremely low N, and appropriate oxygen content is still unclear. No, but it can be thought of as follows.

すなわち、本発明鋼の如く清浄度か増した場合に一般に
回復・再結晶が遅れる傾向があることは良く知られてい
る。しかるに本発明鋼の場合には、主に冷間圧延で高い
加工歪を付加することに加えて、鋼中酸素量が高いため
粗大な析出物が析出してこれが再結晶核となる結果、低
温でも再結晶が起り易くなり、さらに酸素以外の成分、
待にC1Nを極少量としたため粒成長性が良くなって結
晶粒が粗大化し、なおかつA1も少ないため粒内に微細
な析出が少なくなって転位が動き易くなり、これらが相
乗的に作用して、延性が著しく向上したものと考えられ
る。
That is, it is well known that recovery and recrystallization generally tend to be delayed when the cleanliness is increased as in the steel of the present invention. However, in the case of the steel of the present invention, in addition to applying high working strain mainly during cold rolling, coarse precipitates precipitate and become recrystallization nuclei due to the high oxygen content in the steel. However, recrystallization is more likely to occur, and components other than oxygen,
First of all, since the amount of C1N is kept to a minimum, grain growth is improved and the crystal grains become coarse, and since there is also less A1, there are fewer fine precipitates within the grains, making it easier for dislocations to move, and these factors act synergistically. This is thought to be due to a marked improvement in ductility.

以上のように、極低C化および極低N化と、適切な酸素
量と、低AI化とが相乗的に作用し、さらには圧延条件
(低温の高圧下による高加工歪)も相乗的に作用し、低
温での連続焼鈍でも全伸び60%以上の高延性が得られ
ることを見出し、この発明をなすに至ったのである。
As mentioned above, extremely low C and N, appropriate oxygen content, and low AI work synergistically, and rolling conditions (high processing strain due to low temperature and high pressure) also work synergistically. They discovered that high ductility with a total elongation of 60% or more can be obtained even with continuous annealing at low temperatures, leading to the creation of this invention.

次にこの発明における鋼成分の限定理由について説明す
る。
Next, the reasons for limiting the steel components in this invention will be explained.

C: Cか含有されることは、延性、絞り性、耐時効性の良好
な材質を得るには不利となる。この発明では連続焼鈍法
で再結晶温度を低下ゼるとともに粒成長を促進させて延
性を充分に向上させるためにC@ o、ooi%以下に
する必要かある。したがってCの上限を0.001%と
した。
C: Containing C is disadvantageous in obtaining a material with good ductility, drawability, and aging resistance. In the present invention, in order to lower the recrystallization temperature in the continuous annealing method and promote grain growth to sufficiently improve ductility, it is necessary to reduce the C@o,ooi% or less. Therefore, the upper limit of C was set to 0.001%.

Mn: Mnは赤熱脆性の原因となるSを固定するために有効で
はあるが、多量の含有は延性を低下させる。特に伸び率
6°0%以上の高延性を得るためにはMnを0.1%以
下とする必要があり、したかっtMnの上限を0.1%
とした。
Mn: Although Mn is effective for fixing S, which causes red-hot brittleness, a large amount of Mn decreases ductility. In particular, in order to obtain high ductility with an elongation rate of 6°0% or more, it is necessary to reduce Mn to 0.1% or less, and the upper limit of tMn is 0.1%.
And so.

N: NはCと同球に多量に含有されれば結晶粒を微細化し、
延性を損う原因となるから極力低減する必要がある。し
たがってこの発明では0.001%以下とした。
N: If a large amount of N is contained in the same sphere as C, it will make the crystal grains finer.
Since it causes loss of ductility, it is necessary to reduce it as much as possible. Therefore, in this invention, the content is set to 0.001% or less.

SOl、A l : AIは軟質な鋼を得るに有害なNをAINとして固定す
るに有効であるが、多量に存在すれば再結晶温度を上昇
させて高温の焼鈍が必要となり、この発明の目的を損う
。したがってsol.Alの上限を0.015%とした
SOl, Al: AI is effective in fixing N, which is harmful to soft steel, as AIN, but if it exists in a large amount, it increases the recrystallization temperature and requires high-temperature annealing, which is the purpose of this invention. damage. Therefore sol. The upper limit of Al was set to 0.015%.

0(酸素): 鋼中の酸素量が0.003%未満では再結晶の核となる
べき比較的大きな酸化物が生成され難くなり、そのため
再結晶を促進する効果が充分に得られなぐなって低温の
焼鈍で延性を向上させることが困難となるから酸素量の
下限は0.003%とした。但し酸素含有の効果を充分
に得るためには、酸素量は0.005%以上とすること
が望ましい。一方酸素ωが0.020%を越えれば酸化
物が粗大化し過ぎ、かえって延性を劣化させることから
上限は0.020%とした。
0 (oxygen): If the amount of oxygen in the steel is less than 0.003%, it becomes difficult to generate relatively large oxides that should serve as nuclei for recrystallization, and therefore the effect of promoting recrystallization cannot be obtained sufficiently. Since it is difficult to improve ductility with low-temperature annealing, the lower limit of the oxygen content was set at 0.003%. However, in order to fully obtain the effect of oxygen inclusion, it is desirable that the oxygen content be 0.005% or more. On the other hand, if oxygen ω exceeds 0.020%, the oxide becomes too coarse and the ductility deteriorates, so the upper limit was set at 0.020%.

なおここで、鋼中の酸素量が0.003%未満になると
清浄度が向上するが、その一方では介在物個々の大きざ
が非常に小さくなり粒成長性を阻害するようになる。そ
れに対して醒索姐がある程度多(なると介在物の全体積
は増加するものの介在物個々の大きざが大きくなり、そ
れとともに介在物個数が減少する。したがって酸素量が
ある程度多い方が粒成長性が良好になる。また一方で伸
びを支配する因子すなわち破断の開始は常に介在物であ
る。この場合介在物の大きさが重要であるものの、介在
物の数すなわち介在物の間隔がより重要な因子となり、
介在物間隔が大きいほど破断しにくくなる。鋼中酸素量
が0.003〜0.020%のこの発明の範囲では、先
に述べた再結晶し易いという製造時の優位性に加えて鋼
組織自体での特性改善効果が加わり非常に良好な結果が
得られたものと考えられる。
Here, when the amount of oxygen in the steel is less than 0.003%, the cleanliness improves, but on the other hand, the size of each inclusion becomes very small, which inhibits grain growth. On the other hand, if there is a certain amount of oxygen, the total volume of inclusions increases, but the size of each inclusion increases, and the number of inclusions decreases. On the other hand, the factor that controls elongation, that is, the initiation of fracture, is always inclusions.In this case, although the size of inclusions is important, the number of inclusions, that is, the spacing between inclusions, is a more important factor. ,
The larger the interval between inclusions, the more difficult it is to break. In the range of this invention, where the amount of oxygen in the steel is 0.003 to 0.020%, in addition to the above-mentioned advantage of easy recrystallization during manufacturing, the effect of improving the properties of the steel structure itself is very good. It is thought that this result was obtained.

上記各成分のほかは、その他のs、p、s r等の不可
避的不純物およびFeとすれば良いが、その他の不純物
(S、 P、 S l )もこの発明では可及的に低減
することが望ましく、通常はS 0.005%以下、p
 0.005%以下、Si0.005%以下とすること
が好ましい。
In addition to the above components, other unavoidable impurities such as s, p, sr, etc. and Fe may be used, but other impurities (S, P, Sl) should also be reduced as much as possible in this invention. is desirable, usually S 0.005% or less, p
It is preferable that the Si content be 0.005% or less, and the Si content be 0.005% or less.

また場合によってはNb0.01%以下およびTi  
0.02%以下のうちの1種または2種を含有させても
良い。N b ST iは炭窒化物を形成し、非時効化
に効果があるとともに絞り性に有利な果合組織を形成す
る効果があるが、これらが過剰に含有されれば再結晶温
度が上昇してこの発明の低温焼鈍の目的を損うから、可
及的にその添加口は少なくすることが望ましく、()た
がってNb、TIを添加する場合の上限はT1て0.0
2%、\b−C・0.01%とした。
In some cases, Nb0.01% or less and Ti
One or two of these may be contained in an amount of 0.02% or less. NbSTi forms carbonitrides, which has the effect of deaging and forming a grain structure that is advantageous for drawability, but if they are contained in excess, the recrystallization temperature increases. Therefore, it is desirable to reduce the number of addition ports as much as possible, since this would defeat the purpose of low-temperature annealing of the present invention.
2% and \b-C・0.01%.

次にこの発明の製造方法におけるプロセス条件について
説明する。
Next, process conditions in the manufacturing method of the present invention will be explained.

先ず熱間圧延のための加熱温度、すなわちスラブ加熱温
度はAc3点以上とする必要がある。これは、溶鋼を鋳
込んだ後の冷却中に析出した析出物を再溶解し、熱処理
前組織を均一化する必要があるからである。
First, the heating temperature for hot rolling, that is, the slab heating temperature, needs to be at least Ac 3 point. This is because it is necessary to remelt the precipitates that have precipitated during cooling after the molten steel is cast, and to homogenize the structure before heat treatment.

次に熱間圧延および冷間圧延においては、鋼の再結晶温
度以下の温度域で圧下率70%以上の圧延を行なう必要
がある。すなわち、前述のように高純度化した鋼に高加
工歪を与えて焼鈍時の再結晶温度を低下させ、最終的に
750℃より低い温度の連続焼鈍でも伸び率60%以上
の高延性を得るためには、再結晶温度以下の温度域で7
0%以上の圧下率を与える必要がおる。なおここで再結
晶温度以下で70%以上の圧下帯とは、熱間圧延での再
結晶温度以下の圧下率が70%以上であっても、また熱
間圧延での再結晶温度以下の圧下率と冷間圧延での圧下
率との合計の圧下率で7Q%以上であっても良い。後者
の場合、冷間圧延での圧下率が70%以上であればそれ
でも充分でおる。
Next, in hot rolling and cold rolling, it is necessary to perform rolling at a reduction rate of 70% or more in a temperature range below the recrystallization temperature of the steel. That is, as mentioned above, high working strain is applied to highly purified steel to lower the recrystallization temperature during annealing, and finally high ductility with an elongation rate of 60% or more is obtained even when continuously annealing at a temperature lower than 750 ° C. 7 in the temperature range below the recrystallization temperature.
It is necessary to give a rolling reduction rate of 0% or more. Note that here, a rolling zone with a reduction of 70% or more below the recrystallization temperature means a reduction zone below the recrystallization temperature in hot rolling, even if the reduction rate below the recrystallization temperature in hot rolling is 70% or more. The total rolling reduction ratio of the rolling reduction ratio and the rolling reduction ratio in cold rolling may be 7Q% or more. In the latter case, it is sufficient if the rolling reduction in cold rolling is 70% or more.

圧延後の連続焼鈍における焼鈍温度(均熱保持温度)は
最終的に゛軟質で高延性の鋼板を得るために再結晶温度
以上とする必要がおることは勿論であるが、その焼鈍温
度の上限は750℃未満とする。この発明の鋼の場合、
前述のように連続焼鈍でも再結晶温度を充分に低くする
ことができ、したがって750℃未満の低温で充分に高
延性を得ることができるのである。750℃以上の高温
での焼鈍を施した場合、この発明の如く極低C化、極低
N化した鋼では著しく軟質化するため、連続焼鈍のため
の張力により鋼板が破断するおそれがあり、またこのほ
か炉内ロールや炉体寿命を短くしIたすするから、連続
焼鈍温度の上限を750°C未満とした。なおこの発明
の鋼の場合、組成によっても異なるが再結晶温度は55
0〜650°C程度でめるから、実際上は550〜72
0℃稈度の温度域で連続焼鈍すれば良い。
It goes without saying that the annealing temperature (soaking temperature) in continuous annealing after rolling must be higher than the recrystallization temperature in order to ultimately obtain a soft and highly ductile steel sheet, but the upper limit of the annealing temperature shall be less than 750°C. In the case of the steel of this invention,
As mentioned above, even continuous annealing can lower the recrystallization temperature sufficiently, and therefore, sufficiently high ductility can be obtained at a low temperature of less than 750°C. When annealing is performed at a high temperature of 750°C or higher, steel with extremely low C and extremely low N as in the present invention becomes extremely soft, so there is a risk that the steel plate will break due to the tension due to continuous annealing. In addition, in order to shorten the life of the furnace rolls and the furnace body, the upper limit of the continuous annealing temperature was set to less than 750°C. In the case of the steel of this invention, the recrystallization temperature is 55%, although it varies depending on the composition.
It can be heated at about 0 to 650°C, so in reality it is 550 to 72
Continuous annealing may be performed in a temperature range of 0° C. culm.

実施例 第1表に示す成分組成の鋼A−H((auA−Eは本発
明成分範囲内の鋼、F−Hは本発明成分外の鋼)からな
るスラブを、940〜1000℃に加熱した後、3バス
の粗圧延を施して板厚30mmのシートバーとした。引
続いて6スタンドの仕上圧延顕で510〜890℃の温
度域での仕上温度で熱間圧延を終了し、板厚を5.0m
mとした。酸洗後圧工率81%以上の冷間圧延を施し、
次いで連続焼鈍を行なった。連続焼鈍条件は、加熱昇温
速度20℃/sec、均熱保持温度550〜750″G
、均熱保持時間10〜40SeC1冷却速度20℃/s
ecでおる。連続焼鈍後、1.0%の圧下率の調質圧延
を施し、機械的緒特性、すなわち降伏強さくYS)、引
張強ざ(TS)、全伸び(El)、降伏点伸び(YE 
l > 、およびランクフォード値(「値)を調べた。
Example A slab made of steel A-H having the composition shown in Table 1 ((auA-E is steel within the composition range of the present invention, F-H is steel outside the composition range of the present invention) was heated to 940 to 1000°C. After that, the sheet bar was rough-rolled in 3 baths to obtain a sheet bar with a thickness of 30 mm.Subsequently, hot rolling was completed at a finishing temperature in the temperature range of 510 to 890°C in a 6-stand finish rolling machine, and the sheet bar was Thickness: 5.0m
It was set as m. After pickling, cold rolling is performed with a rolling ratio of 81% or more,
Next, continuous annealing was performed. Continuous annealing conditions are heating rate of 20℃/sec, soaking temperature of 550 to 750''G.
, soaking time 10~40SeC1 cooling rate 20℃/s
I'm at ec. After continuous annealing, skin pass rolling with a rolling reduction of 1.0% was performed to determine the mechanical properties, i.e., yield strength (YS), tensile strength (TS), total elongation (El), and yield point elongation (YE).
l>, and the Lankford value (“value”).

名調に対する詳細な処理条件を第2表に、また機械的緒
特性の調査結果を第3表に示す。
Detailed processing conditions for fine tone are shown in Table 2, and investigation results of mechanical characteristics are shown in Table 3.

なお第2表において条件番号7は本発明成分範囲内の鋼
Bについて、冷間圧延圧下率(よ70%未満でめるが、
熱間圧延での再結晶温度以下での圧下率と冷間圧延の圧
下率との合計圧下率が70%を越える75%となってい
るものである。また条件番号11は、鋼の成分組成は本
発明範囲内(鋼B)であるが、再結晶温度以下での圧下
率が62%と、70%に満たないものである。
In Table 2, condition number 7 is the cold rolling reduction rate (less than 70%) for steel B within the composition range of the present invention.
The total reduction ratio of the reduction ratio below the recrystallization temperature in hot rolling and the reduction ratio in cold rolling is 75%, which exceeds 70%. Further, in condition number 11, although the composition of the steel is within the range of the present invention (steel B), the reduction ratio below the recrystallization temperature is 62%, which is less than 70%.

第  2  表 第  3  表 第3表から明らかなようにこの発明の成分範囲内の鋼を
素材としてこの発明の製造条件に従って得られた冷延鋼
板は、成分組成がこの発明の範囲を外れた冷延鋼板や製
造条件特に圧延圧下率条件がこの発明の範囲を外れた冷
延鋼板と比較して烙段に高延性を有し、いずれも750
℃未満の低温での連続焼鈍でおるにもかかわらず全伸び
60%以上の高延性を示している。また延性以外のY(
直等の特性も比較例の鋼板と同等かまたはそれ以上であ
ることが判る。
As is clear from Table 3, the cold-rolled steel sheet obtained according to the production conditions of this invention using steel within the composition range of this invention is different from the cold-rolled steel sheet whose composition is outside the range of this invention. Compared to cold-rolled steel sheets whose rolled steel sheets and manufacturing conditions, especially rolling reduction conditions, are outside the scope of the present invention, they have significantly higher ductility than 750.
Despite being continuously annealed at a low temperature below ℃, it shows high ductility with a total elongation of 60% or more. Also, Y other than ductility (
It can be seen that the directivity properties are also equal to or better than those of the steel sheet of the comparative example.

発明の効果 以上の実施例からも明らかなように、この発明゛の冷延
鋼板は、低温での連続焼鈍でも全伸び率60%以上と著
しく高い延性を示し、また絞り性等も優れており、した
がって特に苛酷な加工か施される各種成形加工用の冷延
鋼板として最適なものでめる。またこの発明の方法では
前述のように低温での連続焼鈍が可能となるため、連続
焼鈍での鋼板の破断のおそれが少なく、そのため低温高
速通板による高能率生産が可能となり、また炉内口−ル
や炉体の寿命延長、さらにはエネルギ原単位の低減等、
各種の効果を得ることができる。
Effects of the Invention As is clear from the examples above, the cold-rolled steel sheet of this invention exhibits extremely high ductility with a total elongation of 60% or more even during continuous annealing at low temperatures, and also has excellent drawability. Therefore, it is ideal as a cold-rolled steel sheet for various forming processes that undergo particularly severe processing. In addition, since the method of this invention enables continuous annealing at low temperatures as described above, there is less risk of steel plate breakage during continuous annealing, which enables high-efficiency production through low-temperature, high-speed threading. - Extending the lifespan of the furnace and furnace body, and reducing energy consumption, etc.
Various effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼中酸素量と全伸びElとの関係を示す相関図
、第2図は連続礒鈍における焼鈍温度と全伸びElとの
関係を示す相関図でおる。
Figure 1 is a correlation diagram showing the relationship between the amount of oxygen in the steel and total elongation El, and Figure 2 is a correlation diagram showing the relationship between the annealing temperature and total elongation El in continuous annealing.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%にしてC0.001%以下、Mn0.1%
以下、N0.001%以下、sol.Al0.015%
以下、酸素0.003〜0.020%を含有し、残部が
Feおよび不可避的不純物よりなり、全伸びが60%以
上であることを特徴とする高延性冷延鋼板。
(1) C0.001% or less, Mn 0.1% by weight
Below, N0.001% or less, sol. Al0.015%
The following describes a highly ductile cold-rolled steel sheet containing 0.003 to 0.020% of oxygen, the remainder consisting of Fe and unavoidable impurities, and having a total elongation of 60% or more.
(2)重量%にしてC0.001%以下、Mn0.1%
以下、N0.001%以下、sol.Al0.015%
以下、酸素0.003〜0.020%を含有し、さらに
Ti0.02%以下およびNb0.01%以下のうち1
種または2種を含有し、残部がFeおよび不可避的不純
物よりなり、全伸びが60%以上であることを特徴とす
る高延性冷延鋼板。
(2) C0.001% or less, Mn 0.1% by weight
Below, N0.001% or less, sol. Al0.015%
The following contains 0.003 to 0.020% of oxygen, and further 1 of 0.02% or less of Ti and 0.01% or less of Nb.
1. A highly ductile cold-rolled steel sheet, characterized in that it contains at least one type of steel, the remainder consisting of Fe and unavoidable impurities, and has a total elongation of 60% or more.
(3)重量%にしてC0.001%以下、Mn0.1%
以下、N0.001%以下、sol.Al0.015%
以下、酸素0.003〜0.020%を含有し、残部が
Feおよび不可避的不純物よりなる鋼を素材とし、この
素材をAc_3点以上の温度に加熱して熱間圧延を開始
し、かつその熱間圧延における再結晶温度以下の温度域
での圧下率、もしくは熱間圧延における再結晶温度以下
の温度域での圧下率とその後の冷間圧延における圧下率
との合計圧下率が70%以上となるように圧延し、しか
る後、再結晶温度以上、750℃未満の温度で連続焼鈍
することを特徴とする全伸びが60%以上の高延性冷延
鋼板の製造方法。
(3) C0.001% or less, Mn 0.1% by weight
Below, N0.001% or less, sol. Al0.015%
Hereinafter, a steel containing 0.003 to 0.020% oxygen and the balance consisting of Fe and unavoidable impurities is used as a raw material, and this material is heated to a temperature of Ac_3 or higher to start hot rolling. The rolling reduction ratio in the temperature range below the recrystallization temperature in hot rolling, or the total reduction ratio of the rolling reduction ratio in the temperature range below the recrystallization temperature in hot rolling and the rolling reduction ratio in subsequent cold rolling, is 70% or more A method for producing a highly ductile cold-rolled steel sheet having a total elongation of 60% or more, comprising rolling the steel sheet so that the steel sheet has a total elongation of 60% or more, and then continuously annealing at a temperature higher than the recrystallization temperature and lower than 750°C.
(4)重量%にしてC0.001%以下、Mn0.1%
以下、N0.001%以下、sol.Al0.015%
以下、酸素0.003〜0.020%を含有し、さらに
Ti0.02%以下およびNb0.01%以下のうち1
種または2種を含有し、残部がFeおよび不可避的不純
物よりなる鋼を素材とし、この素材をAc_3点以上の
温度に加熱して熱間圧延を開始し、かつその熱間圧延に
おける再結晶温度以下の温度域での圧下率、もしくは熱
間圧延における再結晶温度以下の温度域での圧下率とそ
の後の冷間圧延における圧下率との合計圧下率が70%
以上となるように圧延し、しかる後、再結晶温度以上、
750℃未満の温度で連続焼鈍することを特徴とする全
伸びが60%以上の高延性冷延鋼板の製造方法。
(4) C0.001% or less, Mn 0.1% by weight
Below, N0.001% or less, sol. Al0.015%
The following contains 0.003 to 0.020% of oxygen, and further 1 of 0.02% or less of Ti and 0.01% or less of Nb.
A steel containing one or two species and the remainder consisting of Fe and unavoidable impurities is used as a material, and this material is heated to a temperature of Ac_3 or higher to start hot rolling, and the recrystallization temperature in the hot rolling is The total reduction ratio of the reduction ratio in the following temperature range or the reduction ratio in the temperature range below the recrystallization temperature in hot rolling and the reduction ratio in subsequent cold rolling is 70%
After rolling to a temperature higher than the recrystallization temperature,
A method for producing a highly ductile cold-rolled steel sheet having a total elongation of 60% or more, the method comprising continuous annealing at a temperature of less than 750°C.
JP60193411A 1985-09-02 1985-09-02 Cold-rolled steel sheet with high ductility and its manufacture Pending JPS6254058A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60193411A JPS6254058A (en) 1985-09-02 1985-09-02 Cold-rolled steel sheet with high ductility and its manufacture
JP3137274A JPH0711025B2 (en) 1985-09-02 1991-05-13 Method for manufacturing cold rolled steel sheet having high ductility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60193411A JPS6254058A (en) 1985-09-02 1985-09-02 Cold-rolled steel sheet with high ductility and its manufacture
JP3137274A JPH0711025B2 (en) 1985-09-02 1991-05-13 Method for manufacturing cold rolled steel sheet having high ductility

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3137274A Division JPH0711025B2 (en) 1985-09-02 1991-05-13 Method for manufacturing cold rolled steel sheet having high ductility

Publications (1)

Publication Number Publication Date
JPS6254058A true JPS6254058A (en) 1987-03-09

Family

ID=26470643

Family Applications (2)

Application Number Title Priority Date Filing Date
JP60193411A Pending JPS6254058A (en) 1985-09-02 1985-09-02 Cold-rolled steel sheet with high ductility and its manufacture
JP3137274A Expired - Fee Related JPH0711025B2 (en) 1985-09-02 1991-05-13 Method for manufacturing cold rolled steel sheet having high ductility

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP3137274A Expired - Fee Related JPH0711025B2 (en) 1985-09-02 1991-05-13 Method for manufacturing cold rolled steel sheet having high ductility

Country Status (1)

Country Link
JP (2) JPS6254058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280252A (en) * 1985-10-04 1987-04-13 Kawasaki Steel Corp Warm-rolled sheet steel for working, excellent in ridging resistance and its production
JPH0472036A (en) * 1990-07-12 1992-03-06 Nippon Steel Corp Cold rolled steel sheet having high formability and its manufacture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106460118B (en) * 2014-05-30 2018-12-25 杰富意钢铁株式会社 Steel plate for tanks and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635726A (en) * 1979-08-30 1981-04-08 Nippon Steel Corp Production of mild cold steel plate for press by continuous annealing
JPS59173222A (en) * 1983-03-24 1984-10-01 Nippon Steel Corp Manufacture of soft surface treating stock sheet
JPS609830A (en) * 1983-06-28 1985-01-18 Nippon Steel Corp Production of cold rolled steel plate having excellent deep drawability without aging
JPS6169928A (en) * 1984-09-12 1986-04-10 Kawasaki Steel Corp Manufacture of steel plate for ironing by continuous annealing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635726A (en) * 1979-08-30 1981-04-08 Nippon Steel Corp Production of mild cold steel plate for press by continuous annealing
JPS59173222A (en) * 1983-03-24 1984-10-01 Nippon Steel Corp Manufacture of soft surface treating stock sheet
JPS609830A (en) * 1983-06-28 1985-01-18 Nippon Steel Corp Production of cold rolled steel plate having excellent deep drawability without aging
JPS6169928A (en) * 1984-09-12 1986-04-10 Kawasaki Steel Corp Manufacture of steel plate for ironing by continuous annealing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280252A (en) * 1985-10-04 1987-04-13 Kawasaki Steel Corp Warm-rolled sheet steel for working, excellent in ridging resistance and its production
JPH0432128B2 (en) * 1985-10-04 1992-05-28
JPH0472036A (en) * 1990-07-12 1992-03-06 Nippon Steel Corp Cold rolled steel sheet having high formability and its manufacture
JPH0794692B2 (en) * 1990-07-12 1995-10-11 新日本製鐵株式会社 Highly formable cold rolled steel sheet manufacturing method

Also Published As

Publication number Publication date
JPH0711025B2 (en) 1995-02-08
JPH0681038A (en) 1994-03-22

Similar Documents

Publication Publication Date Title
JPS6254058A (en) Cold-rolled steel sheet with high ductility and its manufacture
JPH03170618A (en) Highly efficient production of cold-rolled steel sheet extremely excellent in workability
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
JPH09104923A (en) Production of grain-oriented silicon steel sheet
JPH06346147A (en) Production of grain-oriented silicon steel sheet
JPS59123720A (en) Production of cold rolled steel sheet for deep drawing
JPS5980727A (en) Manufacture of cold rolled steel sheet with high drawability by continuous annealing
JPH01188630A (en) Manufacture of cold rolled steel sheet having superior press formability
JPS6263619A (en) Manufacture of soft nonaging steel sheet
JPS62139823A (en) Production of cold rolled steel sheet for deep drawing
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPH02170921A (en) Manufacture of high tensile steel sheet with high formability
JPS60162731A (en) Production of continuously annealed and cold rolled steel sheet having small ageability
JPS63277724A (en) Manufacture of cold-rolled steel sheet excellent in deep drawability
JPH07197128A (en) Production of grain oriented silicon steel sheet
JPH02285029A (en) Production of cold rolled steel sheet excellent in workability and ageing characteristic
JPS63310923A (en) Production of cold rolled steel plate for deep drawing
JPH02267231A (en) Manufacture of cold rolled steel sheet having excellent deep drawability and surface properties and having less plane anisotropy
JPS63259024A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic property
JPS593527B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing with excellent formability
JPH01104717A (en) Manufacture of ferritic stainless steel sheet excellent in formability
JPH02263932A (en) Manufacture of cold rolled steel sheet for drawing
JPH01208419A (en) Manufacture of cold rolled steel plate having excellent deep drawability
JPH04327A (en) Production of cold rolled steel sheet excellent in deep drawability and ageing characteristic by continuous annealing
JPS6314820A (en) Production of cold rolled steel sheet for deep drawing from thin ingot