JPS6253441B2 - - Google Patents

Info

Publication number
JPS6253441B2
JPS6253441B2 JP54155934A JP15593479A JPS6253441B2 JP S6253441 B2 JPS6253441 B2 JP S6253441B2 JP 54155934 A JP54155934 A JP 54155934A JP 15593479 A JP15593479 A JP 15593479A JP S6253441 B2 JPS6253441 B2 JP S6253441B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
storage tank
main
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54155934A
Other languages
Japanese (ja)
Other versions
JPS5678401A (en
Inventor
Takashi Sakai
Naojiro Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15593479A priority Critical patent/JPS5678401A/en
Publication of JPS5678401A publication Critical patent/JPS5678401A/en
Publication of JPS6253441B2 publication Critical patent/JPS6253441B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】 本発明は金属水素化物の利用法と水素貯蔵槽に
関し、詳しくは金属とその水素化物を利用して水
素を貯蔵、放出する系において、同一温度条件下
において水素放出能力の異なる2種の金属水素化
物を使用し、このうち水素放出能力の大きい金属
水素化物を主水素貯蔵材とし、他方の放出能力の
小さい金属水素化物を副水素貯蔵材とし、主水素
貯蔵材の水素がほぼ放出された際に、水素の放出
を停止すれば、副水素貯蔵材から水素を発生させ
て水素貯蔵材への酸素の混入による爆発等の反応
を防止することを特徴とする金属水素化物の利用
法ならびに金属水素化物を利用した主水素貯蔵槽
に、フイルター部を介して、前記主水素貯蔵槽よ
り小さな容積を有し、かつ前記主水素貯蔵槽に利
用した金属水素化物より同一温度条件下で水素放
出能力の小さい金属水素化物を用いてなる副水素
貯蔵槽を連結してなる水素貯蔵槽に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for using metal hydrides and a hydrogen storage tank, and more specifically, the present invention relates to a method for using metal hydrides and a hydrogen storage tank, and more specifically, in a system that uses metals and their hydrides to store and release hydrogen, the ability to release hydrogen under the same temperature conditions. Two types of metal hydrides with different hydrogen release capacity are used as the main hydrogen storage material, and the other metal hydride with a small release capacity is used as the secondary hydrogen storage material. Metallic hydrogen, characterized in that if the release of hydrogen is stopped when most of the hydrogen is released, hydrogen is generated from the auxiliary hydrogen storage material to prevent reactions such as explosions due to mixing of oxygen into the hydrogen storage material. The main hydrogen storage tank using the metal hydride has a smaller volume than the main hydrogen storage tank, and the temperature is the same as that of the metal hydride used in the main hydrogen storage tank. The present invention relates to a hydrogen storage tank formed by connecting a sub-hydrogen storage tank made of a metal hydride that has a small hydrogen release ability under certain conditions.

近年、水素の固体化技術の一環として金属(合
金を含む)に水素を貯蔵させる方法が提案されて
いる。この様な金属水素化物による貯蔵方法の長
所としては、その水素貯蔵能力の大きいこと、又
水素ガスを固体状とするため、その安全性につい
て優れていることがあげられる。なお、その取扱
い上の容易さから将来的に水素源(例えば水素自
動車、燃料電池、燃焼器用)として、又反応熱の
利用面では長期蓄熱の面(例えば太陽熱、廃熱利
用用)で注目されている。
In recent years, methods for storing hydrogen in metals (including alloys) have been proposed as part of hydrogen solidification technology. The advantages of such a storage method using metal hydrides are that they have a large hydrogen storage capacity, and that they are excellent in safety because the hydrogen gas is in a solid state. Due to its ease of handling, it is attracting attention in the future as a hydrogen source (for example, for hydrogen vehicles, fuel cells, and combustors), and for long-term heat storage in terms of the use of reaction heat (for example, for solar heat and waste heat utilization). ing.

従来実用化されている水素貯蔵方法ではLaNi5
やFeTi等の水素化物を水素貯蔵材として使用す
ることが知られている。これらの水素貯蔵材につ
いて一般的にいえる問題点は、水素の吸収、放出
の繰り返しによつて金属が微粉化することであ
り、又粉末の一般的特性として微粉化により表面
積が著しく大きくなつたものは、空気中の酸素に
触れると著しい発熱を伴なつた急激な酸化反応を
起し、時として爆発の原因となることがある。従
つて、水素貯蔵槽内の水素化物が水素を放出した
後、万一該貯蔵槽内に酸素が侵入すると残存水素
と反応し大爆発を起す危険がある。このような危
険な爆発現象は、水素貯蔵槽内に酸素が侵入しな
いようにし、貯蔵槽内の水素ガスの圧力を常に槽
外の大気圧よりも高く保持することによつて防止
できる。本発明の発明者らは、この原理に基づき
本発明に到達したものであり、前記のごとき危険
な爆発を防止する金属水素化物の利用法と水素貯
蔵槽を提供するものである。
LaNi 5 is the conventional hydrogen storage method that has been put into practical use.
It is known to use hydrides such as FeTi and FeTi as hydrogen storage materials. The general problem with these hydrogen storage materials is that the metal becomes pulverized due to repeated absorption and release of hydrogen, and the general characteristic of powder is that the surface area becomes significantly larger due to pulverization. When exposed to oxygen in the air, it undergoes a rapid oxidation reaction accompanied by significant heat generation, sometimes resulting in an explosion. Therefore, if oxygen enters the storage tank after the hydride in the hydrogen storage tank releases hydrogen, there is a risk that it will react with the remaining hydrogen and cause a large explosion. Such a dangerous explosion phenomenon can be prevented by preventing oxygen from entering the hydrogen storage tank and by always maintaining the pressure of the hydrogen gas inside the storage tank higher than the atmospheric pressure outside the tank. The inventors of the present invention have arrived at the present invention based on this principle, and provide a method for utilizing metal hydrides and a hydrogen storage tank that prevents dangerous explosions as described above.

本発明の主要な特徴は、同一温度条件下で水素
放出能力の大きい金属水素化物と水素放出能力の
小さい金属水素化物とを組合せ、前者の水素ガス
がほぼ放出された際に後者から発生する水素で貯
蔵槽内の水素圧を常に槽外の大気圧よりも高く保
持することである。また本発明の水素貯蔵槽の特
徴の一つは、水素放出能力の大きい金属水素化物
を利用した主水素貯蔵槽と、水素放出能力の小さ
い金属水素化物を利用し、かつ前記主水素貯蔵槽
より小さい容積の副水素貯蔵槽とに分けフイルタ
ー部を介して連結したことであり、これによつて
上記方法を具体的に実施することができる。更に
もう一つの特徴は、水素放出口を主水素貯蔵槽の
上部に取付け、主水素貯蔵槽の水素放出口取付け
部以外の場所に副水素貯蔵槽をフイルター部を介
して連結したことである。
The main feature of the present invention is to combine a metal hydride with a large hydrogen release capacity and a metal hydride with a small hydrogen release capacity under the same temperature conditions, and when most of the hydrogen gas from the former is released, hydrogen is generated from the latter. The hydrogen pressure inside the storage tank is always maintained higher than the atmospheric pressure outside the tank. Further, one of the characteristics of the hydrogen storage tank of the present invention is that the main hydrogen storage tank uses a metal hydride with a large hydrogen release capacity, and the main hydrogen storage tank uses a metal hydride with a small hydrogen release capacity, and the main hydrogen storage tank uses a metal hydride with a small hydrogen release capacity. This is because the hydrogen storage tank is divided into small volume auxiliary hydrogen storage tanks and connected via a filter section, thereby making it possible to concretely implement the above method. Yet another feature is that the hydrogen outlet is attached to the upper part of the main hydrogen storage tank, and the auxiliary hydrogen storage tank is connected to the main hydrogen storage tank at a location other than the hydrogen outlet attachment part via a filter part.

本発明に用いられる2種の金属化合物として
は、同一温度条件下で水素放出能力の大きい方の
金属化合物、例えばLaNi5と水素放出能力の小さ
い金属化合物、例えばCaNi5の組合せがある。こ
の2種の金属化合物の25℃における水素放出曲線
をそれぞれ第1図及び第2図に示した。即ち、
LaNi5は1g当り200c.c.の水素を吸収するが、約
5分間で200c.c.の水素を放出し、一方CaNi5は1
g当り200c.c.の水素を吸収するが、25℃において
5分間に放出する水素ガスは吸収した水素の約2/
3の133c.c.であり、吸収された水素の残りはその後
徐々に放出されることを示している。すなわち、
25℃で水素を放出開始してから5分後には、主水
素貯蔵槽内のLaNi5が吸収していた1g当り200
c.c.の水素はほぼ放出され、一方副水素貯蔵槽内の
CaNi5が吸収していた1g当り200c.c.の水素のう
ち133c.c.が放出され、CaNi5には1g当り67c.c.の
水素が残留している。そしてこの時点で水素の放
出を停止すると、その後CaNi5に残留している水
素が徐々に主貯蔵槽に放出されて、貯蔵槽内の水
素圧が槽外の大気圧より高く保持される。このよ
うな2種の金属を用いて水素放出能力の大きい金
属水素化物の水素がほぼ放出された際に、水素の
放出を停止すれば、その後に水素放出能力の小さ
い金属水素化物から放出される水素によつて貯蔵
槽内の水素圧を槽外の大気圧より高く保持するこ
とができ酸素の侵入が防止される。
The two metal compounds used in the present invention include a combination of a metal compound with a higher hydrogen release capacity, such as LaNi 5 , and a metal compound with a lower hydrogen release capacity, such as CaNi 5 , under the same temperature conditions. The hydrogen release curves of these two metal compounds at 25°C are shown in Figures 1 and 2, respectively. That is,
LaNi 5 absorbs 200 c.c. of hydrogen per gram, but releases 200 c.c. of hydrogen in about 5 minutes, while CaNi 5 absorbs 200 c.c. of hydrogen per gram.
It absorbs 200 c.c. of hydrogen per gram, but the hydrogen gas released in 5 minutes at 25°C is about 2/2 of the absorbed hydrogen.
3, 133 c.c., indicating that the remainder of the absorbed hydrogen is then gradually released. That is,
5 minutes after starting to release hydrogen at 25 ℃, 200
cc of hydrogen is almost released, while the auxiliary hydrogen storage tank
Of the 200 c.c. of hydrogen per gram that CaNi 5 had absorbed, 133 c.c. was released, and 67 c.c. of hydrogen per gram remained in CaNi 5 . If the release of hydrogen is stopped at this point, then the hydrogen remaining in CaNi 5 is gradually released into the main storage tank, and the hydrogen pressure inside the storage tank is maintained higher than the atmospheric pressure outside the tank. If we use these two types of metals and stop releasing hydrogen when most of the hydrogen is released from the metal hydride that has a large hydrogen releasing ability, then the metal hydride that has a small hydrogen releasing ability will release the hydrogen. The hydrogen pressure in the storage tank can be maintained higher than the atmospheric pressure outside the tank, preventing oxygen from entering.

次に、本発明の水素貯蔵槽の一実施態様を第3
図によつて説明する。
Next, a third embodiment of the hydrogen storage tank of the present invention will be described.
This will be explained using figures.

水素貯蔵槽1の主体を構成する主水素貯蔵槽2
は肉厚の化学的に不活性な金属によつて作られ、
その上部に水素ガス放出口6、水素ガス放出口の
開閉弁7及び安全リーク弁8がフイルター9を介
して連結され、一方該貯蔵槽2の下部にフイルタ
ー10を介して該貯蔵槽2よりも容積の小さい副
水素貯蔵槽4が連結される。この副水素貯蔵槽の
連結位置は特に下部に限定されず、槽の側部でも
よい。貯蔵槽2に同一温度条件下で水素放出能力
の大きい金属水素化物3が貯蔵槽4に水素放出能
力の小さい金属水素化物5がそれぞれ充填されて
いる。上記のフイルター9及び10としては多孔
性の焼結金属体が用いられ、その細孔の孔径は金
属水素化物の粒径より小さく、金属水素化物の飛
散、混合を防止する。この水素貯蔵槽によつて、
貯蔵水素の大部分を主水素貯蔵槽2内の金属水素
化物3によつて貯蔵しておき、必要時に水素放出
口開閉弁7を開き放出して利用しそのほぼ大部分
の水素を放出し、水素放出口開閉弁7を閉じて水
素放出を停止した際、主水素貯蔵槽2よりも容積
の小さな副水素貯蔵槽4内の金属水素化物5から
水素を発生させて水素貯蔵槽1内の水素圧を外気
圧よりも高く保持される。これによつて、万一水
素放出口側や副水素貯蔵槽の副水素貯蔵材充填口
などからの酸素の侵入を防止できる。
Main hydrogen storage tank 2 forming the main body of hydrogen storage tank 1
is made of thick-walled, chemically inert metal;
A hydrogen gas discharge port 6, a hydrogen gas discharge port opening/closing valve 7, and a safety leak valve 8 are connected to the upper part of the storage tank 2 via a filter 9, while a hydrogen gas discharge port 6, a hydrogen gas release port opening/closing valve 7, and a safety leak valve 8 are connected to the lower part of the storage tank 2 via a filter 10. An auxiliary hydrogen storage tank 4 having a small volume is connected. The connecting position of this auxiliary hydrogen storage tank is not particularly limited to the lower part, but may be on the side of the tank. A storage tank 2 is filled with a metal hydride 3 having a high hydrogen release ability under the same temperature conditions, and a storage tank 4 is filled with a metal hydride 5 having a small hydrogen release ability. A porous sintered metal body is used as the filters 9 and 10, and the pore diameter thereof is smaller than the particle size of the metal hydride to prevent scattering and mixing of the metal hydride. With this hydrogen storage tank,
Most of the stored hydrogen is stored in the metal hydride 3 in the main hydrogen storage tank 2, and when necessary, the hydrogen discharge port opening/closing valve 7 is opened and released to release almost most of the hydrogen. When the hydrogen release opening/closing valve 7 is closed to stop hydrogen release, hydrogen is generated from the metal hydride 5 in the auxiliary hydrogen storage tank 4, which has a smaller volume than the main hydrogen storage tank 2, and the hydrogen in the hydrogen storage tank 1 is The pressure is maintained higher than the outside pressure. Thereby, it is possible to prevent oxygen from entering from the hydrogen discharge port side or the auxiliary hydrogen storage material filling port of the auxiliary hydrogen storage tank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図はそれぞれ水素化物用合金
LaNi5及びCaNi5の水素ガス放出曲線図であり、
第3図は本発明の水素貯蔵槽の縦断面図である。 1…水素貯蔵槽、2…主水素貯蔵槽、3…同一
温度条件下で水素放出能力の大きい金属水素化
物、4…副水素貯蔵槽、5…同一温度条件下で水
素放出能力の小さい金属水素化物、6…水素ガス
放出口、7…水素放出口開閉弁、8…安全リーク
弁、9及び10…フイルター、11…副水素貯蔵
材充填口の蓋。
Figures 1 and 2 are alloys for hydrides, respectively.
It is a hydrogen gas release curve diagram of LaNi 5 and CaNi 5 ,
FIG. 3 is a longitudinal sectional view of the hydrogen storage tank of the present invention. 1...Hydrogen storage tank, 2...Main hydrogen storage tank, 3...Metal hydride with large hydrogen release ability under the same temperature conditions, 4...Sub-hydrogen storage tank, 5...Metal hydrogen with small hydrogen release ability under the same temperature conditions compound, 6...Hydrogen gas discharge port, 7...Hydrogen discharge port opening/closing valve, 8...Safety leak valve, 9 and 10...Filter, 11...Lid of secondary hydrogen storage material filling port.

Claims (1)

【特許請求の範囲】 1 金属とその水素化物を利用して水素を貯蔵、
放出する系において、同一温度条件下において水
素放出能力の異なる2種の金属水素化物を使用
し、このうち水素放出能力の大きい金属水素化物
を主水素貯蔵材とし、他方の放出能力の小さい金
属水素化物を副水素貯蔵材とし、主水素貯蔵材の
水素がほぼ放出された際に、水素の放出を停止
し、副水素貯蔵材から水素を発生させて水素貯蔵
材への酸素の混入による爆発等の反応を防止する
ことを特徴とする金属水素化物の利用法。 2 水素貯蔵材がLaNi5の水素化物で、副水素貯
蔵材がCaNi5の水素化物である特許請求の範囲第
1項記載の方法。 3 金属水素化物を利用した主水素貯蔵槽に、フ
イルター部を介して、前記主水素貯蔵槽より小さ
な容積を有し、かつ前記主水素貯蔵槽に利用した
金属水素化物より同一温度条件下で水素放出能力
の小さい金属水素化物を用いてなる副水素貯蔵槽
を連結してなる水素貯蔵槽。 4 副水素貯蔵槽が、主水素貯蔵槽の上部に設け
られた水素放出口と反対の下部に連結された特許
請求の範囲第3項記載の水素貯蔵槽。
[Claims] 1. Storage of hydrogen using metals and their hydrides;
In the releasing system, two types of metal hydrides with different hydrogen releasing abilities are used under the same temperature conditions, and the metal hydride with the larger hydrogen releasing ability is used as the main hydrogen storage material, while the other metal hydride with the smaller hydrogen releasing ability is used as the main hydrogen storage material. hydrogen storage material is used as an auxiliary hydrogen storage material, and when most of the hydrogen in the main hydrogen storage material is released, the release of hydrogen is stopped and hydrogen is generated from the auxiliary hydrogen storage material, resulting in an explosion due to the mixing of oxygen into the hydrogen storage material. A method of using a metal hydride characterized by preventing the reaction of 2. The method according to claim 1, wherein the hydrogen storage material is a hydride of LaNi 5 and the auxiliary hydrogen storage material is a hydride of CaNi 5 . 3. A main hydrogen storage tank using a metal hydride, which has a smaller volume than the main hydrogen storage tank, and which has a smaller volume than the main hydrogen storage tank and which contains hydrogen under the same temperature conditions as the metal hydride used in the main hydrogen storage tank. A hydrogen storage tank formed by connecting sub-hydrogen storage tanks made of metal hydrides with low release capacity. 4. The hydrogen storage tank according to claim 3, wherein the auxiliary hydrogen storage tank is connected to the lower part of the main hydrogen storage tank opposite to the hydrogen discharge port provided at the upper part.
JP15593479A 1979-11-30 1979-11-30 Utilization of metallic hydride and storage tank for hydrogen Granted JPS5678401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15593479A JPS5678401A (en) 1979-11-30 1979-11-30 Utilization of metallic hydride and storage tank for hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15593479A JPS5678401A (en) 1979-11-30 1979-11-30 Utilization of metallic hydride and storage tank for hydrogen

Publications (2)

Publication Number Publication Date
JPS5678401A JPS5678401A (en) 1981-06-27
JPS6253441B2 true JPS6253441B2 (en) 1987-11-10

Family

ID=15616700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15593479A Granted JPS5678401A (en) 1979-11-30 1979-11-30 Utilization of metallic hydride and storage tank for hydrogen

Country Status (1)

Country Link
JP (1) JPS5678401A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978901A (en) * 1982-10-21 1984-05-08 Sekisui Chem Co Ltd Hydrogen supply device
JPS5978902A (en) * 1982-10-28 1984-05-08 Sekisui Chem Co Ltd Hydrogen supply device
JP2640518B2 (en) * 1987-11-04 1997-08-13 サエス・ゲッテルス・ソシエタ・ペル・アチオニ Method and apparatus for purifying hydrogen gas
DE3809680A1 (en) * 1988-03-17 1989-09-28 Mannesmann Ag PLANT FOR COMPRESSING HYDROGEN GAS

Also Published As

Publication number Publication date
JPS5678401A (en) 1981-06-27

Similar Documents

Publication Publication Date Title
US4605603A (en) Hermetically sealed metallic oxide-hydrogen battery using hydrogen storage alloy
US4133426A (en) Hydride container
US4396114A (en) Flexible means for storing and recovering hydrogen
NL8000613A (en) NON-VAPORABLE TERRARY GETTER ALLOY.
KR101875633B1 (en) Solid state hydrogen storage device and solid state hydrogen storage system
US6733563B2 (en) Methods for manufacturing hydrogen storage tanks
JPS6253441B2 (en)
US7833473B2 (en) Material for storage and production of hydrogen, and related methods and apparatus
JP2006503688A (en) High storage hydrogen storage material
JPS6052360B2 (en) hydrogen storage device
CA1077457A (en) Alloy for hydrogen storage
Heung Tritium transport vessel using depleted uranium
US6517970B2 (en) Non-pyrophoric hydrogen storage alloy
JPS6119066A (en) Manufacture of battery
JPH0524843B2 (en)
JPH0218281B2 (en)
JPS63180798A (en) Vessel for hydrogen storage metal
CN102384353A (en) Portable hydrogen storage alloy bottle
WO2023152046A1 (en) Device for storing hydrogen in solid form
JPS6164068A (en) Manufacture of hydrogen-absorbing electrode
RU2321796C1 (en) Tank for storing hydrogen
US4350673A (en) Method of storing hydrogen
JP4128479B2 (en) High pressure hydrogen storage tank
JPS5978901A (en) Hydrogen supply device
JPS611993A (en) Heat pipe