JPS6119066A - Manufacture of battery - Google Patents

Manufacture of battery

Info

Publication number
JPS6119066A
JPS6119066A JP59138409A JP13840984A JPS6119066A JP S6119066 A JPS6119066 A JP S6119066A JP 59138409 A JP59138409 A JP 59138409A JP 13840984 A JP13840984 A JP 13840984A JP S6119066 A JPS6119066 A JP S6119066A
Authority
JP
Japan
Prior art keywords
battery
hydrogen
alloy
hydrogen storage
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59138409A
Other languages
Japanese (ja)
Inventor
Ryoji Okazaki
良二 岡崎
Nobuyuki Yanagihara
伸行 柳原
Koji Gamo
孝治 蒲生
Kanji Takada
寛治 高田
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59138409A priority Critical patent/JPS6119066A/en
Publication of JPS6119066A publication Critical patent/JPS6119066A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a primary battery having high reliability, good performance, and low environmental problem by assembling a hydrogen absorption alloy which absorption and desorption of hydrogen were performed at least once before assembling in a battery. CONSTITUTION:A hydrogen absorption alloy is crushed in an atmosphere of argon in powder having a particle size of 10-100mum. About 1wt% fluorine resin having a particle size of 1mum or less is added to the hydrogen absorption alloy and stirred to give water repellent property to the alloy. The alloy powder is degassed under vacuum at about 200 deg.C, and hydrogen is absorbed into the alloy to nearly saturation at a pressure of 30atm. at room temperature, then hydrogen is completely removed by vacuum. The alloy which absorption and desorption of hydrogen were performed at least once is assembled in a battery. Thereby, a primary battery having high reliability, good performance, and low environmental problem is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、亜鉛を負極の主活物質とし、アルカリ水溶液
又は中性塩の水溶液を電解液とする電池の電池内で発生
する水素ガスを吸蔵して電池内圧の上昇を防ぐだめの水
素吸蔵合金を内蔵した電池2へ の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a battery that uses zinc as the main active material of the negative electrode and an aqueous alkaline solution or an aqueous solution of a neutral salt as the electrolyte. The present invention relates to a method for manufacturing a battery 2 containing a built-in hydrogen storage alloy that prevents an increase in battery internal pressure.

従来例の構成とその問題点 この種電池の亜鉛負極の電解液による腐食反応を抑制し
、電池の保存中の亜鉛の自己消耗と水素ガス発生を抑制
するため、亜鉛に重量比率で6〜10チ程度の水銀を添
加してアマルガム化して負極として用いるのが、現在、
一般的な方法として採用され、これによシ、保存による
電池内圧上昇を防ぎ、耐漏液性を確保し、電池の膨張、
破裂がなく、性能劣化の少ない実用電池として普及して
いる。
Structure of the conventional example and its problems In order to suppress the corrosion reaction caused by the electrolyte of the zinc negative electrode of this type of battery, and to suppress the self-depletion of zinc and the generation of hydrogen gas during storage of the battery, zinc is added at a weight ratio of 6 to 10. Currently, mercury is added to form an amalgam and used as a negative electrode.
This method has been adopted as a general method, and this prevents the internal pressure of the battery from increasing due to storage, ensures leakage resistance, and prevents battery expansion.
It is popular as a practical battery that does not explode and has little performance deterioration.

近年、低公害化の社会的ニーズが高まり、使用する水銀
量を低減し、さらに水銀を使用せずして上記の実用性能
を確保するための研究開発が行われているが、水銀量の
低減はある程度可能であっても、本質的な解決を可能と
する手段は見当らないのが現状である。例えば、亜鉛に
鉛、インジウム、ガリウム々どを添加した耐食性亜鉛合
金を用い、水銀を1〜3チ程度に低減できそうな技術が
検討されているが、水銀を殆んど使わないで負極3f3
− 亜鉛の十分な耐食性を確保するのは至難と考えられてい
る。
In recent years, social needs for lower pollution have increased, and research and development is being conducted to reduce the amount of mercury used and to secure the above practical performance without using mercury. Although it is possible to some extent, the current situation is that there is no means that can provide an essential solution. For example, a technology is being considered that could reduce mercury to about 1 to 3 tres by using a corrosion-resistant zinc alloy made by adding lead, indium, gallium, etc. to zinc.
− It is considered extremely difficult to ensure sufficient corrosion resistance for zinc.

一方、従来の提案として、電池内で発生した水素ガスを
電池に内蔵した水素吸蔵合金により吸蔵して固定し、電
池内圧の上昇を防ぐ方法が提案されているが、水素吸蔵
合金を有効に作用させることが困難なため、多量の水素
吸蔵合金が必要となって電池内容積を犠牲にして容量が
低下したり、吸蔵能力不足で漏液、膨張、貯蔵性能の劣
化することを防止することが困難であった。
On the other hand, as a conventional proposal, a method has been proposed in which the hydrogen gas generated within the battery is absorbed and fixed by a hydrogen storage alloy built into the battery to prevent the internal pressure of the battery from rising. Because it is difficult to absorb hydrogen, a large amount of hydrogen storage alloy is required, sacrificing the internal volume of the battery and reducing capacity, and it is difficult to prevent leakage, expansion, and deterioration of storage performance due to insufficient storage capacity. It was difficult.

発明の目的 本発明は、電池内で発生する水素ガスを水素吸蔵合金に
より吸蔵して電池内圧の上昇を防ぐ方法において、水素
吸蔵合金の水素吸蔵効率を高めることにより、信頼性が
高く、性能のすぐれた低公害の一次電池を得ることを目
的とする。
Purpose of the Invention The present invention provides a method for preventing an increase in battery internal pressure by storing hydrogen gas generated within a battery using a hydrogen storage alloy, which achieves high reliability and improved performance by increasing the hydrogen storage efficiency of the hydrogen storage alloy. The aim is to obtain an excellent low-pollution primary battery.

発明の構成 本発明は、負極の主活物質として亜鉛、電解液としてか
性カリ、か性ソーダなどを主成分とするアルカリ水溶液
、あるいは塩化アンモニウム、塩化亜鉛などの中性塩の
水溶液を用いる電池内で発生する水素ガスを吸蔵して電
池内圧の上昇を防ぐため、水素吸蔵合金を内蔵する一次
電池の製造法に係り、水素吸蔵合金を電池内に組み込む
前にあらかじめ水素を吸蔵、放出させる工程を少なくと
も1サイクル設け、水素放出状態の水素吸蔵合金を電池
に組み込むことを特徴とし、好ましくは、前記吸蔵、放
出工程を終了し、電池内に組み込むまでの工程で水素吸
蔵合金を不活性ガスもしくは真空、又は減圧雰囲気中で
扱うものである。
Structure of the Invention The present invention provides a battery that uses zinc as the main active material of the negative electrode and an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main component, or an aqueous solution of a neutral salt such as ammonium chloride or zinc chloride as the electrolyte. A process for storing and releasing hydrogen in advance before incorporating the hydrogen storage alloy into the battery, which is related to the manufacturing method of a primary battery that incorporates a hydrogen storage alloy in order to store hydrogen gas generated inside the battery and prevent an increase in battery internal pressure. The hydrogen storage alloy is incorporated into the battery in a hydrogen-releasing state by providing at least one cycle of It is handled in a vacuum or reduced pressure atmosphere.

先ず、本発明の適用範囲を一次電池に限定した理由は、
二次電池の場合には数10〜数100回の充放電時に発
生して蓄積する水素ガス量が極めて多量となる可能性が
あり、限られた電池内空間に収納できる水素吸蔵合金の
水素吸蔵能力では能力不足々ので、信頼性の高い電池を
得ることは到底不可能と考えられ、その観点では、−次
電池の場合、発生ガス量は比較的少ないので水素吸蔵能
力とその信頼性を高めることにより、発生水素ガスを電
池内で吸蔵して電池内圧の上昇を防ぎ得る5へ一層 ことが可能と考え、特に亜鉛負極中の含有水銀量の低減
、もしくは水銀を使用しない場合に抑制し切れないで発
生する水素ガスを電池内圧を高めずに吸蔵させ実用性能
のすぐれた低公害電池を得ることに主眼を置いて実現し
たためである。
First, the reason why the scope of application of the present invention is limited to primary batteries is as follows.
In the case of secondary batteries, the amount of hydrogen gas generated and accumulated during several tens to hundreds of charging and discharging cycles can be extremely large. Since the capacity is insufficient, it is considered impossible to obtain a highly reliable battery.From this point of view, in the case of negative batteries, the amount of gas generated is relatively small, so the hydrogen storage capacity and its reliability can be improved. By doing so, we believe that it is possible to absorb the generated hydrogen gas within the battery and prevent the increase in battery internal pressure.5 In particular, it is possible to reduce the amount of mercury contained in the zinc negative electrode or to suppress it when mercury is not used. This was achieved with the main focus on obtaining a low-pollution battery with excellent practical performance by occluding hydrogen gas that is generated in the battery without increasing the internal pressure of the battery.

従来、水素吸蔵合金を電池に内蔵するまでの過程で、ま
ず所定の配合で金属を例えばアルゴン雰囲気中の溶解炉
中で溶解させて合金化し、アルゴン雰囲気中で10〜2
ooμm程度に粉砕した粉末状合金をそのまま用いたり
、加圧成形したり、金属多孔体中に充填するなどして用
い、必要に応じて撥水処理を施し、これらを一般的には
通気性部材で包んで電池の空室部に収納している。
Conventionally, in the process of incorporating a hydrogen storage alloy into a battery, metals are first melted and alloyed in a melting furnace in an argon atmosphere in a predetermined composition.
Powdered alloys pulverized to about 0 μm are used as they are, pressure-molded, or filled into porous metal bodies, and if necessary, water-repellent treatment is applied, and these are generally used as breathable materials. It is wrapped in plastic and stored in the empty compartment of the battery.

しかし、上記の従来の方法では、水素吸蔵合金の吸蔵能
力が、この材料の本来の特性から期待できるレベルより
良くても数10%程度低く、しかも吸蔵量や吸蔵速度の
バラツキが大きいために、信頼性を高めるためにはバラ
ツキの下限の特性値を基準に設計する必要があるので、
水素吸蔵合金を多量に内蔵するため電池容量を犠牲にす
る必要6へ−7 が生じ、これを回避して、水素吸蔵合金の収納量を減す
ると電池の耐漏液性や貯蔵性に信頼性が乏しくなり、結
局総合性能のすぐれた電池を得ることが困難であった。
However, in the conventional method described above, the storage capacity of the hydrogen storage alloy is at best several tens of percent lower than the level expected from the original properties of this material, and furthermore, there are large variations in the storage amount and storage rate. In order to improve reliability, it is necessary to design based on the characteristic value at the lower limit of variation.
In order to incorporate a large amount of hydrogen storage alloy, it becomes necessary to sacrifice battery capacity6-7.To avoid this, reducing the amount of hydrogen storage alloy stored will improve the reliability of the battery's leakage resistance and storage performance. As a result, it was difficult to obtain a battery with excellent overall performance.

本発明はこの問題を解決するため、水素吸蔵合金を電池
内に組み込むまでの処理工程として、水素を吸蔵、放出
させる工程を設けて水素吸蔵合金を活性化し、吸蔵量を
大きくするとともにバラツキを少々くし、少量の水素吸
蔵合金の使用で総合性能のすぐれた電池を得ることに成
功したものである。さらに、その活性状態を維持した状
態で、電池内に水素吸蔵合金を収納するため、前記の処
理工程を経た水素吸蔵合金が酸化、窒化することのない
ように、アルゴンなどの不活性ガス雰囲気や真空もしく
はこれに近い減圧の条件下で保存又は取り扱うことがよ
り一層効果的であることを見出した。
In order to solve this problem, the present invention activates the hydrogen storage alloy by activating the hydrogen storage alloy by occluding and releasing hydrogen as a processing step before incorporating the hydrogen storage alloy into the battery, thereby increasing the amount of hydrogen storage and reducing the variation. By using a small amount of hydrogen-absorbing alloy, we succeeded in obtaining a battery with excellent overall performance. Furthermore, in order to store the hydrogen storage alloy in the battery while maintaining its active state, an atmosphere of inert gas such as argon or other It has been found that it is even more effective to store or handle under vacuum or near-vacuum conditions.

本発明で用いる水素吸蔵合金は、電解液に対して化学的
な安定性が必要なことは云うまでもないが、電池内圧上
昇による電池の漏液や膨張あるい7へ−7 は放電性能の劣化を防止するには6気圧以下で水素を吸
蔵する合金を用いることが必要で、電池が60 ”C程
度の高温で使用、又は貯蔵されることを考慮すると好ま
しくは常温では1気圧以下で吸蔵するものが良い。その
例としてZ rMn 、 (0< a (3,5)。
It goes without saying that the hydrogen storage alloy used in the present invention needs to be chemically stable with respect to the electrolyte, but it may also cause leakage or expansion of the battery due to an increase in the internal pressure of the battery. To prevent deterioration, it is necessary to use an alloy that absorbs hydrogen at a pressure of 6 atm or less. Considering that batteries are used or stored at high temperatures of about 60"C, it is preferable to use an alloy that absorbs hydrogen at a pressure of 1 atm or less at room temperature. An example is Z rMn , (0< a (3,5).

ZrVβ(0<β〈3.6)、Ti1−Ti1−1zr
〈γ〈11M=Cr、 Co、 V、 Mn、 Ni、
 Fe、 Cu )、 CaN1a(3,ei<δ〈6
.0)などが挙げられる。水素吸蔵速度と吸蔵量の増大
のためには水素を吸着するだめの活性化サイトを増加さ
せ、反応面積を拡大させる必要があり、前記の水素吸蔵
、放出工程を加えることにより、その目的が達せられ、
材料によって、活性化の難易さが異なるが、1〜5回の
処理で十分なものが多い。又、この活性化処理により吸
蔵量は数10%〜数倍に増加する。一般的な処理方法と
して、減圧排気しながら、200℃程度に加熱して脱ガ
スした後、室温で約60気圧になるまで水素を導入して
、水素を吸蔵させる。次に容器内の水素を排気して、再
び室温で水素を吸蔵させる操作をくり返す方法を採る。
ZrVβ (0<β<3.6), Ti1-Ti1-1zr
〈γ〈11M=Cr, Co, V, Mn, Ni,
Fe, Cu), CaN1a (3, ei<δ<6
.. 0), etc. In order to increase the hydrogen storage rate and storage amount, it is necessary to increase the number of activated sites in the hydrogen adsorption tank and expand the reaction area, and by adding the hydrogen storage and release steps described above, this purpose cannot be achieved. is,
The difficulty of activation varies depending on the material, but for many materials, 1 to 5 treatments are sufficient. Furthermore, this activation process increases the storage amount by several tens of percent to several times. As a general treatment method, after degassing by heating to about 200° C. while evacuation under reduced pressure, hydrogen is introduced until the pressure reaches about 60 atm at room temperature to occlude hydrogen. Next, a method is adopted in which the hydrogen in the container is evacuated and the process of storing hydrogen again at room temperature is repeated.

実施例の説明 次に本発明の効果を具体的に検討した内容と結果につい
て説明する。図は本発明の効果を確認するために試作し
た円筒形アルカリマンガン乾電池を示す。図において、
1は金属製外装缶、2は正極絶縁用リング、3は負極絶
縁用リング、4は絶縁用熱収縮チューブ、6は金属製正
極端子、6は金属製負極端子、7は鉄にニッケルメッキ
を施した正極ケース、8は二酸化マンガンに黒鉛を混合
して加圧成形した正極、9はポリプロピレンの不織布を
二重に巻いて筒状に形成したセパレータである。1oは
後述のように種々の方法で処理した水素吸蔵合金の粉末
で、二層のセパレータ9のうち上部の開口部9′と正極
8の頂部付近に接する部分9“とを各々熱溶着して二層
のセパレータ9の層間に形成された空室に粉末1oを収
納している。
DESCRIPTION OF EXAMPLES Next, the details and results of a concrete study of the effects of the present invention will be described. The figure shows a cylindrical alkaline manganese dry battery that was prototyped to confirm the effects of the present invention. In the figure,
1 is a metal outer can, 2 is a positive electrode insulating ring, 3 is a negative electrode insulating ring, 4 is an insulating heat shrink tube, 6 is a metal positive terminal, 6 is a metal negative terminal, 7 is iron plated with nickel. The positive electrode case 8 is a positive electrode formed by pressure molding a mixture of graphite and manganese dioxide, and the reference numeral 9 is a separator formed into a cylindrical shape by double wrapping polypropylene nonwoven fabric. 1o is a powder of a hydrogen storage alloy treated in various ways as described below, and the upper opening 9' of the two-layer separator 9 and the part 9'' in contact with the vicinity of the top of the positive electrode 8 are each thermally welded. Powder 1o is stored in a cavity formed between two layers of separator 9.

11はセルロース製の底板、12はカルボキシメチルセ
ルロースでゲル化されたか性カリ水溶液に亜鉛合金の粉
末を分散させたゲル状の亜鉛負極で、亜鉛合金には添加
元素として鉛、インジウム、ガ9べ一1゛ リウムを亜鉛の重量に対して、約0.05%添加した比
較的耐食性の良いものを用い、氷化処理を施してない。
11 is a bottom plate made of cellulose, and 12 is a gel-like zinc negative electrode made by dispersing zinc alloy powder in a caustic potassium aqueous solution gelled with carboxymethyl cellulose. A material with relatively good corrosion resistance, in which about 0.05% of the weight of zinc is added, is used, and no icing treatment is applied.

13はポリエチレン製の封目板、14は真鍮型の負極集
電子で表面を若干量の水銀により氷化処理している。
13 is a sealing plate made of polyethylene, and 14 is a brass-type negative electrode current collector whose surface is ice-treated with a small amount of mercury.

上記のように構成されたアルカリマンガン乾電池を貯蔵
すると、貯蔵中に負極亜鉛が電解液によりわずかながら
徐々に腐食され、これに伴い負極12より水素ガスが発
生し、主として、正負極8゜12の上部と封口板13及
び正極ケース7で囲まれる電池上部の空間に蓄積される
が、蓄積された水素ガスは順次、セパレータ9を通過し
て水素吸蔵合金10に吸蔵され、電池内圧上昇を防止す
る機構になっている。
When an alkaline manganese dry battery configured as described above is stored, the negative electrode zinc is slightly but gradually corroded by the electrolyte during storage, and hydrogen gas is generated from the negative electrode 12. The hydrogen gas is accumulated in the space above the battery surrounded by the upper part, the sealing plate 13, and the positive electrode case 7, but the accumulated hydrogen gas sequentially passes through the separator 9 and is stored in the hydrogen storage alloy 10, thereby preventing an increase in the internal pressure of the battery. It has become a mechanism.

次に本発明の効果を確認するため、単3形電池を図のよ
うな構成で、表に示す内訳で試作した。
Next, in order to confirm the effects of the present invention, an AA battery was prototyped with the configuration shown in the figure and the details shown in the table.

なお、水素吸蔵合金はいずれも、10〜1oOμmの粒
径にアルゴン雰囲気中で粉砕し、フッ素樹脂の1μm以
下の粒径の微粉を水素吸蔵合金に対し、1%の重量比で
添加して十分に攪拌し、撥水性を1oへ 付与したものを用いた。本発明の適用品には、その後、
減圧下で200℃で脱ガスし、室温で30気圧の水素ガ
ス中でほぼ飽和量まで水素を吸蔵させ、減圧して水素ガ
スをほぼ完全に放出させるという、吸蔵、放出の活性化
処理を少なくとも1回くりかえしたものを用いた。試作
した各電池はω℃、1カ月の貯蔵後、20℃、10Ωの
連続放電性能、耐漏液性、膨張を各々評価して、その結
果を表の右欄に示した。
In addition, all hydrogen storage alloys are pulverized in an argon atmosphere to a particle size of 10 to 100 μm, and fine powder of fluororesin with a particle size of 1 μm or less is added at a weight ratio of 1% to the hydrogen storage alloy. The mixture was stirred to give water repellency to 1°C. The products to which the present invention is applied include:
At least an activation process for occlusion and desorption is performed, in which hydrogen is degassed at 200°C under reduced pressure, hydrogen is absorbed to an almost saturated amount in hydrogen gas at 30 atm at room temperature, and hydrogen gas is almost completely released by reducing the pressure. The test was repeated once and used. After storing each prototype battery at ω°C for one month, the continuous discharge performance at 20°C and 10Ω, leakage resistance, and expansion were evaluated, and the results are shown in the right column of the table.

以下余白 表に見られるように、水素吸蔵合金を用いないaは、負
極から発生した水素ガスにより電池の内圧が上昇し漏液
と膨張が著しく、さらに水素ガスにより放電反応が阻害
されて維持電圧低下が著しく、接続時間も極めて短くな
っている。又、水素吸蔵合金を用いても活性化処理を行
っていないす。
As can be seen in the margin table below, in case a, which does not use a hydrogen storage alloy, hydrogen gas generated from the negative electrode increases the internal pressure of the battery, resulting in significant leakage and expansion, and the hydrogen gas inhibits the discharge reaction, resulting in the maintenance voltage. There has been a significant drop in performance, and the connection time has become extremely short. Furthermore, even if a hydrogen storage alloy is used, no activation treatment is performed.

C1及びqにおいても、水素吸蔵能力が不足なため、a
と同様の障害が残っている。一方、本発明品の場合、極
く少量(60■)の水素吸蔵合金でも、e、hのように
処理回数を増せば十分な効果を発揮することが示され、
1回の処理をしたのみのd、fの場合でも、従来例にく
らべて顕著な効果が見られる。
C1 and q also lack hydrogen storage capacity, so a
Similar obstacles remain. On the other hand, in the case of the product of the present invention, it has been shown that even with a very small amount (60 cm) of the hydrogen storage alloy, sufficient effects can be achieved by increasing the number of treatments as shown in e and h.
Even in the case of d and f, which were processed only once, a remarkable effect can be seen compared to the conventional example.

なお、表の電池では、活性化処理をして脱水素した水素
吸蔵合金をセパレータの上部に封入する工程など、電池
内に組み込むまでの工程ではすべて合金を常温、常湿下
で取り扱った。これに対して活性化処理を1回行ったの
みで、以後の工程をアルゴン雰囲気中で行い、保管は1
0 mmHyの減13・\−、゛ ついて同様の評価を行ったところ、3回の活性化処理を
行ったeと同様に全く問題のない結果が得られた。この
ことから、活性化処理後の水素吸蔵合金は不活性ガス又
は真空もしくはこれに近い減圧下で行うことがより効果
的なことが判明した。
In addition, in the batteries shown in the table, the alloy was handled at room temperature and humidity in all processes up to its incorporation into the battery, including the process of sealing the activated and dehydrogenated hydrogen storage alloy in the upper part of the separator. On the other hand, activation treatment was performed only once, subsequent steps were performed in an argon atmosphere, and storage was performed only once.
When a similar evaluation was conducted for the reduction of 0 mmHy by 13. From this, it has been found that it is more effective to perform the activation treatment on the hydrogen storage alloy under an inert gas or vacuum or a reduced pressure close to this.

発明の効果 以上のように本発明は極く少量の水素吸蔵合金の使用で
、総合的な実用性能のすぐれた低公害の一次電池を得る
に極めて効果的である。
Effects of the Invention As described above, the present invention is extremely effective in obtaining a low-pollution primary battery with excellent overall practical performance using a very small amount of hydrogen storage alloy.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例に用いた電池の要部を欠截した側面
図である。 8・・・・・・正極、9・・・・・・セパレータ、1o
・・・・・・水素吸蔵合金、12・・・・・・ゲル亜鉛
負極。
The figure is a side view with main parts cut away of a battery used in an example of the present invention. 8...Positive electrode, 9...Separator, 1o
...Hydrogen storage alloy, 12...Gel zinc negative electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛を負極の主活物質とし、アルカリ水溶液又は
中性塩の水溶液を電解液に用い、水素吸蔵合金を収納す
る一次電池の製造法であって、水素吸蔵合金を電池に収
納するに先立ち、水素を吸蔵し、放出する工程を少なく
とも一回設けたことを特徴とする電池の製造法。
(1) A method for manufacturing a primary battery in which zinc is used as the main active material of the negative electrode, an alkaline aqueous solution or a neutral salt aqueous solution is used as the electrolyte, and a hydrogen storage alloy is housed in the battery. A method for manufacturing a battery, characterized in that the step of storing and releasing hydrogen is provided at least once beforehand.
(2)水素の吸蔵、放出工程が終了後、電池に組み込む
までの工程で、水素吸蔵合金を不活性ガス中、真空中又
は減圧下で扱う特許請求の範囲第1項記載の電池の製造
法。
(2) The method for manufacturing a battery according to claim 1, in which the hydrogen storage alloy is treated in an inert gas, in vacuum, or under reduced pressure in the process after the hydrogen storage and release process is completed until it is incorporated into the battery. .
JP59138409A 1984-07-04 1984-07-04 Manufacture of battery Pending JPS6119066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138409A JPS6119066A (en) 1984-07-04 1984-07-04 Manufacture of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138409A JPS6119066A (en) 1984-07-04 1984-07-04 Manufacture of battery

Publications (1)

Publication Number Publication Date
JPS6119066A true JPS6119066A (en) 1986-01-27

Family

ID=15221282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138409A Pending JPS6119066A (en) 1984-07-04 1984-07-04 Manufacture of battery

Country Status (1)

Country Link
JP (1) JPS6119066A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437663A (en) * 1987-08-03 1989-02-08 Daifuku Kk Clinical chart storing device
JPH01161674A (en) * 1987-12-17 1989-06-26 Matsushita Electric Ind Co Ltd Manufacture of alkaline secondary battery using hydrogen storage alloy
JPH0415746A (en) * 1990-05-01 1992-01-21 Kanebo Ltd Outpatient clinic system
JPH0565395U (en) * 1992-02-20 1993-08-31 マスセット株式会社 Flexible rod-shaped play equipment
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form
JP2006302597A (en) * 2005-04-19 2006-11-02 Sii Micro Parts Ltd Button type alkaline battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113934A (en) * 1974-06-19 1976-02-03 Western Electric Co

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113934A (en) * 1974-06-19 1976-02-03 Western Electric Co

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437663A (en) * 1987-08-03 1989-02-08 Daifuku Kk Clinical chart storing device
JPH01161674A (en) * 1987-12-17 1989-06-26 Matsushita Electric Ind Co Ltd Manufacture of alkaline secondary battery using hydrogen storage alloy
JPH0415746A (en) * 1990-05-01 1992-01-21 Kanebo Ltd Outpatient clinic system
JPH0565395U (en) * 1992-02-20 1993-08-31 マスセット株式会社 Flexible rod-shaped play equipment
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form
JP2006302597A (en) * 2005-04-19 2006-11-02 Sii Micro Parts Ltd Button type alkaline battery

Similar Documents

Publication Publication Date Title
US5695530A (en) Method for making high charging efficiency and fast oxygen recombination rechargeable hydride batteries
JPS6119066A (en) Manufacture of battery
JP2004047321A (en) Alkaline battery and its manufacturing method
JP2563241B2 (en) Zinc alkaline battery
JPS59181459A (en) Metal oxide hydrogen battery
JPH0447676A (en) Manufacture of sealed storage battery
JP3102002B2 (en) Hydrogen storage electrode and method for producing the same
JPH04212269A (en) Alkaline storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
US5395403A (en) Hydrogen-absorbing alloy electrode and manufacturing method therefor
JPS6119068A (en) Alkaline zinc battery
JP2689473B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2548271B2 (en) Alkaline secondary battery manufacturing method
JP2883450B2 (en) Hydrogen storage alloy material and method for producing the same
JP2634859B2 (en) Electrode manufacturing method
JPH01161674A (en) Manufacture of alkaline secondary battery using hydrogen storage alloy
JP2001266865A (en) Manufacturing method of hydrogen storage alloy electrode
JPH11149939A (en) Closed type hydride secondary battery
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JP3342506B2 (en) Hydride secondary battery and method for producing the same
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH08279356A (en) Manufacture of hydrogen absorbing alloy for alkali storage battery
JP2679441B2 (en) Nickel-metal hydride battery
JPS62295353A (en) Enclosed type nickel-hydrogen storage battery