JPS6253364B2 - - Google Patents

Info

Publication number
JPS6253364B2
JPS6253364B2 JP56014255A JP1425581A JPS6253364B2 JP S6253364 B2 JPS6253364 B2 JP S6253364B2 JP 56014255 A JP56014255 A JP 56014255A JP 1425581 A JP1425581 A JP 1425581A JP S6253364 B2 JPS6253364 B2 JP S6253364B2
Authority
JP
Japan
Prior art keywords
air
temperature
cold air
mix door
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56014255A
Other languages
Japanese (ja)
Other versions
JPS57130809A (en
Inventor
Toshikatsu Ito
Reijiro Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56014255A priority Critical patent/JPS57130809A/en
Priority to US06/343,591 priority patent/US4513808A/en
Priority to DE19823203424 priority patent/DE3203424C3/en
Publication of JPS57130809A publication Critical patent/JPS57130809A/en
Publication of JPS6253364B2 publication Critical patent/JPS6253364B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00842Damper doors, e.g. position control the system comprising a plurality of damper doors; Air distribution between several outlets
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1925Control of temperature characterised by the use of electric means using a combination of auxiliary electric and non-electric power
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自動車用空気調和装置に関し、殊にリ
ヒートエアミツクス型の空気調和機構を有し、調
和された冷温風を車室内の上方(乗員の上半身)
及び下方(乗員の足もと)に分けて吹き出す2つ
の吹出口を有する自動車用空気調和装置に関す
る。 従来のこの種自動車用空気調和装置における温
度制御装置によれば、上部吹出口から吹出す冷温
風と、下部吹出口から吹出す冷温風との間に温度
差を持たせることができなかつた。 この点を解決する為に例えば実公昭52―9704号
公報に示される如く、温調された空気を上部吹出
口(冷風吹出口)、下部吹出口(温風吹出口)に
適宜分配する様にしたものにおいて、上部吹出口
へ通じる冷気ダクトにエバポレータを通つた冷気
の一部を直接導入し、冷気ダクトを通る調和空気
に冷気を混合して両吹出口から吹出す調和空気に
温度差を持たせるものが知られている。 また、実公昭48―9781号公報に示される如く、
ヒータコアの上流に送風機から送られて来る冷風
の一部を上部吹出口へ導く冷風通路を設け、この
冷風通路内へ温調された温風の一部を導入し、上
部吹出口へ向う冷風に温調された温風を混合して
上部吹出口と下部吹出口から吹出す調和空気に温
度差を持たせるものが知られている。 しかるに、前者では上部吹出口と下部吹出口か
ら吹出す調和空気を種々の温度に制御する為に、
3枚のダンパ、即ち、ミツクスダンパ、吹出口選
択ダンパ及び冷気ダンパが必要で、ユニツトが大
型になると共に、制御機構が複雑になる。 後者は4枚のダンパ即ち、熱交換器通過後の温
風温度を調節する温度調節弁、冷風口から吹出さ
れる冷風温度調節弁(2枚)、及び遮風弁が必要
であるばかりでなく、冷風吹出口から冷風のすべ
てを吹出すモードが得られず、冷房装置を設けた
空調装置の構成としては不向きである。 本願の第1発明の目的は上部吹出口と下部吹出
口から吹出す調和空気が、予め定められた所定の
温度差を保つ様に制御できるこの種自動車用空気
調和装置を得る点にある。 本願の第1発明の特徴はヒータコアをバイパス
する2つの冷風通路と、ヒータコアの下流に設け
た2つの温風通路とを設け、前記一方の冷風通路
と前記一方の温風通路とを合流させて上部吹出口
へ連通すると共に、前記他方の冷風通路と前記他
方の温風通路とを合流させて下部吹出口へ連通
し、更に前記上部吹出口から吹出す調和空気の温
度を制御する第1のエアミツクスドアと、前記下
部吹出口から吹出す調和空気の温度を制御する第
2のエアミツクスドアとを設け、且つ前記第1の
エアミツクスドアの制御状態に応じて前記第2の
エアミツクスドアを制御する制御機構を設けた点
にある。 本願の第2発明の目的は上部吹出ダクトを通る
調和空気と下部吹出ダクトを通る調和空気とを制
御する2つのエアミツクスドアをユニツトケース
内にコンパクトに配置する点にある。 本願の第2発明の特徴は、ヒータコアの空気流
出入面をダクトの内壁にそれぞれ第1,第2の間
隙をもつて対向設置し、前記第1の間隙を第1の
冷風通路、前記第2の間隙を第2の冷風通路とす
ると共に、前記ヒータコアの流出面側に該ヒータ
コアから流出する温風を分流する第1,第2の温
風通路を設け、前記第1の冷風通路と前記第2の
温風通路とを合流させて上部吹出口へ連通すると
共に、前記第2の冷風通路と前記第1の温風通路
とを合流させて下部吹出口へ連通し、且つ前記第
1の間隙内に前記第1の冷風通路へ流入する冷風
と前記ヒータコアへ流入する冷風の分流割合を制
御する第1のエアミツクスドアを設置すると共
に、前記第2の間隙内に前記第2の冷風通路から
流出する冷風と前記第1の温風通路から流出する
温風との混合割合を制御する第2のエアミツクス
ドアを設けた点にある。 以下図面に基づき本願の第1発明の一実施例を
説明する。 エバポレータ2は図示しない送風機によつて送
られて来る車室内気または外気、あるいは両者の
混合気を冷却する。 ヒータコア3はエバポレータ2で冷却・除湿さ
れた冷気を加熱するヒータコアである。 エバポレータ2、ヒータコア3はその順序で、
ダクトA内に設置される。 ヒータコア3は、ダクトA内に設けられた上部
仕切壁3―1、下部仕切壁3―2によつて支持さ
れている。 壁3―1とダクト内壁との間には主冷風通路9
aが形成され、下部仕切壁3―2とダクト内壁と
の間には副冷風通路9bが形成されており、エバ
ポレータ2を通過した冷風がヒータコア3を通ら
ずに流れる時、冷風は主・副冷風通路9a,9b
に8対2の割合で分流して流れる。 第1のエアミツクスドア5aはヒータコア3へ
流入する冷風量と主冷風通路9aへ流入する冷風
量とを制御する。 第1エアミツクスドア5aはヒータコア3の冷
風流入面で主冷風通路側の端部に回動自在に設け
たシヤフト51に固定されている。 第1エアミツクスドア5aは主冷風通路9aを
全閉にする図面実線位置と、ヒータコア3の流入
面を全閉にする図面破線位置との間を回動する。 制御ドア5bはヒータコア3から流出する温風
を主温風通路8a、副温風通路8bに適当な割合
で分流する。制御ドア5bはダクトAに回転自在
に支承されたシヤフト52と、シヤフト52に固
定されたドアによつて構成される。 制御ドア5bは図面実線位置と図面破線位置と
の間を回動し、主温風通路8aと副温風通路8b
との通路面積をその範囲で制御する。 第2エアミツクスドア5cは主温風通路8aか
ら流出する温風と副冷風通路9bから流出する冷
風との混合割合を制御する。 第2エアミツクスドア5cはヒータコア3の温
風流出面側で副冷風通路9bに面する側の端部に
回転自在に支承されたシヤフト53と、シヤフト
53に固定されたドア板とから構成される。 第2エアミツクスドア5cは図面実線位置と図
面破線位置との間を回動し、主温風通路8aから
の温風と副冷風通路9bからの冷風との混合割合
を制御する。 冷風ダクト7aは主冷風通路9aを通つた冷風
と副温風通路を通つた温風とを混合して上部吹出
口20へ導く。 温風ダクト7bは主温風通路8aからの温風と
副冷風通路9bからの冷風とを混合して下部吹出
口21へ導く。 以下本発明の作動原理を説明する。 第1、第2エアミツクスドア5a,5c及び制
御ドア5bが第1図実線位置にある状態は車内が
最大暖房状態の時である。 即ち、図示しない内外気導入ドアが外気導入に
切換り、送風機は高速で回転し、冷房装置は停止
している。 エバポレータ2(冷却効果はない)を通つた外
気はその全てがヒータコア3に流入して加熱さ
れ、主温風通路8a,副温風通路8bを通りそれ
ぞれ温風ダクト7b、冷風ダクト7aを介して下
部吹出口21、上部吹出口20へ吹出される。 制御ドア5b、第2エアミツクスドアをその位
置に固定したままで第1エアミツクスドア5aを
破線側へ少しずつ移動させて行くと主冷風通路9
aを通つて冷風ダクト7a内に流入する冷風量が
徐々に増す。その結果上部吹出口から吹出す調和
空気の温度が下部吹出口から吹出す温風の温度よ
り徐々に低くなる。 従つて上部吹出口から適当に温調された冷風を
供給しながら車内全体を暖房することができる。 特に実施例の様に隔壁5bを制御ドアで構成し
た場合は、このドアを破線側に移動すれば主冷風
通路9aを流れる冷風量を一定にしておいても上
部吹出口から吹出す冷風の温度を下げることがで
きる。 制御ドア5bが副温風通路を全閉にした状態で
は、上部吹出口20と下部吹出口21とから吹出
す冷温風の温度差は最大となる。 足元の温度を少し下げたい時は第2エアミツク
スドア5cを破線位置の方へ移動して行けば、主
温風通路8aからの温風量が減少すると共に副冷
風通路からの冷風が増加して吹出口21から吹出
す調和温風の温度が下がる。 暖房中に車室内全体の温度を下げたい場合は第
1エアミツクスドア5aを更に破線位置側へ移動
させ、それに応じて送風機の回転数を下げる。こ
うすると、ヒータコア3へ流入する冷風量が減つ
て主・副温風通路へ流出する温風量自体が減少す
ると共に主冷風通路9aを通つて上部吹出口20
から吹出す冷風量が増加するので、その結果室内
の暖房効果を減少できる。 除湿暖房時には車室内の空気と、車室外の空気
とが半分ずつ吸入される。 この状態においても上部吹出口20、下部吹出
口21から吹出す調和空気の温度は第1,第2エ
アミツクスドア5a,5cの開度を制御すること
によつて制御できる。 また、第1,第2エアミツクスドア5a,5c
を中間位置に固定しておいて制御ドア5bの開度
を制御することによつて上部吹出口20、下部吹
出口21から吹出す両方の調和空気温度を同時に
制御することもできる。 冷房時にはヒータコア3への温水の流通が止ま
り、第1エアミツクスドア5aは図面破線位置に
移動する。 従つてエバポレータ2で冷却された冷風はすべ
て主冷風通路9aを通つて上部吹出口20から吹
出す。 但し、第2エアミツクスドア5cが図面破線位
置の方へ移動すると冷風の一部は副冷風通路9b
を通つて下部吹出口21からも吹出す。 第1,第2エアミツクスドア5a,5cはそれ
ぞれ独立して操作してもよいし、第1エアミツク
スドア5aの開度に応じて第2エアミツクスドア
5cの開度を制御することもできるし、また上下
両吹出口から吹出す調和空気の温度差が予め定め
られた特性になる様、両エアミツクスドアを温度
差に応じて電気的に制御することもできる。 この点については以下に述べる具体的的実施例
で詳説する。 更に制御ドア5bも同様、単独で制御しても、
あるいは第1,第2エアミツクスドア5a,5c
の少なくともどちらか一方の開度に応じて制御し
てもよい。 次に本発明の一実施例を第2図に基づき詳説す
る。 第1図と同一符号のものは同一物であるから説
明は省略する。 1は送風機用モータで、101はそのフアン、
4は内外気切換用ドア、41,42はダクトAに
形成されたそれぞれ車室内へ通ずる内気導入口、
車室外へ通ずる外気導入口である。 ヒータ3は空気の流入、流出面がダクトAの内
面に対向する様に設置し、流入面とダクト内面と
の間に形成される空間で主冷風通路9aを形成
し、流出面とダクト内面との間に形成される空間
で副冷風通路9bを形成する。 第1エアミツクスドア5aはシヤフト51を主
冷風通路9aの出口側になるヒータコア3の角に
設け、ヒータコア3の流入面とダクトA内面壁と
の間で回動する様に設置する。 第2エアミツクスドア5cはシヤフト53を副
冷風通路9bの入口側になるヒータコア3の角に
設け、ヒータコア3の流出面とダクト内壁との間
で回動自在に設置する。この様に2枚のエアミツ
クスダンパを設置するとエアミツクスドアの全閉
から全開までの角度をさほど大きくすることな
く、各通路の風量を制御できるので、空調機をコ
ンパクトにできる。 50はヒータコア3の流出面側に設けられた仕
切壁で、流出した温風の流路を主温風通路8a、
副温風通路8bに分流する。 制御ドア5bは仕切壁50の先端と、副温風通
路8bに面するヒータコア3の角との間でその先
端が回動できる様に、シヤフト52が副温風通路
8bの出口でダクトに支承されている。 Dはデフロスタへの分岐口で温風ダクト7bに
開口し、その分岐口には吹出口切換ドアが設けら
れていてデフロスタ口22へ温風を吹出すか下部
吹出口21へ温風を吹出すかを選択する。 31は第1エアミツクスドア5aを操作するア
クチユエータで、負圧で作動するダイヤフラム
(図示せず)と、ダイヤフラムに一端が連結され
たロツド311と、ダイヤフラムに作用する負圧
を制御する負圧制御弁312とで構成される。 32は第2エアミツクスドア5cを操作するア
クチユエータで、ダイヤフラムで仕切られたダイ
ヤフラム室(図示せず)と、ダイヤフラムに固定
されたロツド321と、ダイヤフラムに作用する
負圧を制御する負圧制御弁322から構成され
る。 負圧制御弁312,322は、ダイヤフラム室
へ大気圧を作用させるか負圧を作用させるかを切
換える電磁弁S1,S3を有し、電磁弁S1,S
3が通電されるとダイヤフラム室に負圧が印加さ
れ、ドア5a,5cはロツド311,321によ
つてアクチユエータ側へ引かれる。 電磁弁S1,S3への通電が断たれると、それ
までにダイヤフラム室へ印加されていた負圧が大
気に洩れ、それまで負圧の作用するダイヤフラム
によつて圧縮されていたばねが伸び、ロツド31
1,321を介してドア5a,5cはヒータコア
3側へ押し戻される。 かくしてドア5a,5cが所定の位置に来た時
電磁弁S2,S4を作動させてダイヤフラム室へ
通じる大気、負圧通路の両方を閉じると、ダイヤ
フラム室内の圧力は変化しなくなり、ドア5a,
5cはその位置に固定される。 33は制御ドア5bを操作するアクチユエータ
で、ダイヤフラム(図示せず)と、ダイヤフラム
に固定されたロツド331及びダイヤフラムへ印
加される負圧を制御する負圧制御弁332とから
構成される。 負圧制御弁332は、電磁切換弁S5を有す
る。 電磁切換弁S5が電源により付勢されていない
時はダイヤフラムは図示しないばねによつて第2
図図面上方に押され、その結果ドア5bはロツド
331を介して図中破線位置に移動される。 電磁切換弁S5が電源によつて付勢されるとダ
イヤフラムに印加される負圧によつて第2図下方
に引かれ、その結果ロツド331を介してドア5
bは図中実線位置に移動される。 34は内外気切換ドア4を操作するアクチユエ
ータで、ダイヤフラム(図示せず)と、ダイヤフ
ラムに固定されたロツド341及び、ダイヤフラ
ムへ印加される負圧を制御する負圧制御弁342
とから構成される。 負圧切換弁342は電磁弁S6,S7を有す
る。 またダイヤフラムは2枚あつてロツド341の
軸線方向に対して2枚のダイヤフラムが間隔を置
いて設置されている。 電磁弁S6,S7の両方が電源により付勢され
ていない時は、両方のダイヤフラムはそれぞれば
ねによつて図面左方に押され、ドア4はロツド3
41を介して図面破線位置に移動される。 電磁弁S6が付勢されると一方のダイヤフラム
に負圧が印加されそのダイヤフラムが図面右方に
ばねを圧縮しながら吸引されて、ドア4はロツド
341により図中一点鎖線位置まで引かれる。 更に電磁弁S7が付勢されると両方のダイヤフ
ラムが別のばねを圧縮しながら更に図面右方に吸
引され、その結果ドア4は図面実線位置へ移動さ
れる。 これら電磁弁S1〜S7はマイクロコンピユー
タを含む制御回路Cからの制御出力によつて制御
される。 SPは乗員が設定温度Tsを調整する為のレオス
タツト抵抗である。 目標車室内温度Tsoが設定温度Ts、外気温セ
ンサSAで検出される外気温TAと日射センサSF
で検出される日射量Qに基づきマイクロコンピユ
ータのROM内にプログラムされた次の計算式で
演算される。 Tso=Ts−α(TA−25)−2/660Q ……(1) (但し、目標温度Tso及び外気温TAの単位は
〔℃〕、αの値は外気温TAが25℃以上の時1/5、外
気温が25℃以下の時1/15とし、日射量Q〔kcal/
h〕は日射センサSFの検出温度TQと車室内気温
度センサSRの検出温度TRとの差1℃当り20
〔kcal/h〕の熱量として換算した値を用いる。) 目標温度Tso、外気温TA、車室下部内気温セ
ンサScで検出される足元温度TL及び温風ダクト
7b内のセンサSEで検出された温度TdLとから
温風ダクト7b内の目標温風温度TdLOが次式で
演算される。 TSOL=Tso+70−Ta/18 ……(2) (但し、TSOLは車室内足元温度目標値) ΔTL=TSOL−TL ……(3) TdLO=6(ΔTL+1/680∫ΔTL・dt)+30…… (4) (但し、TdLO≦0〔℃〕のときはTdLO=0
〔℃〕、TdLO≧60〔℃〕のときはTdLO=60〔℃〕
とする。) そして、目標温風温度TdLOを得る為の第2の
エアミツクスドア5cの目標開度θLが次式で演
算される。 ΔTdLO=TdLO−TdL ……(5) θL=3×ΔTdLO+15 ……(6) (但し、θL≦0度のときはθL=0度、θL
30度のときはθL=30度とする。デフロスタモー
ドのときはθL=30度とする。) 尚、ドア5cの開度は図中実線位置を0度とす
る。 ドア5cの現在の開度位置がポテンシヨメータ
PM2で検出され、目標開度θLと比較することに
よつてドア5cを現在の位置からどちらの方向へ
移動させるかが判断される。 それによつて電磁弁S3を付勢するか否かが決
定される。 例えば現在位置(図中破線位置にあるとす
る。)から開度を狭める必要があると判断された
場合、まず電磁弁S3を消勢し、次に電磁弁S4
を消勢する。 するとダイヤフラムに印加されていた負圧が大
気に洩れ、ドア5cはヒータコア側へ移動する。 変化するドア5cの開度は時々刻々ポテンシヨ
メータPM2によつて検出され、マイクロコンピ
ユータ内の書き込み消去可能なメモリ(RAM)
に記憶される。 RAMに記憶された現在開度と目標開度とを周
期的に比較し、一致した時電磁弁S4が付勢され
ドア5cはその位置に固定される。 一方、中間位置から開度を開く必要があると判
断された場合、まず電磁弁S3を付勢し、次に電
磁弁S4を消勢する。 するとダイヤフラムに負圧が印加されドア5c
はアクチユエータ側へ引かれる。 ドア5cの開度が目標開度に達すると電磁弁S
4が付勢され、(一方電磁弁S3は消勢され)ド
ア5cはその位置に固定される。 一方、目標温度Tso、外気温TA、車室上部内
気温センサSBで検出される上体温度TU及び冷風
ダクト7a内のセンサSDで検出される冷風ダク
ト内温度TdUとから、冷風ダクト7a内の目標冷
風温度TdLOが次式で演算される。 TSOU=Tso+Ta−70/18 ……(7) (但し、TSOUは上体温度目標値) ΔTU=TSOU−TU ……(8) TdUO=3(ΔTU+1/680∫ΔTU・dt)+15…… (9) (但し、TdUO≦0〔℃〕となるときはTdUO
0〔℃〕、TdUO≧30〔℃〕となるときはTdUO
30〔℃〕とする。) そして目標冷風温度TdUOを得る為の第1のエ
アミツクスドア5aの目標開度θUが次式で演算
される。 ΔTdUO=TdUO−TdU ……(10) θU=3×ΔTdUO+15 ……(11) (但し、θU≦0度のときはθU=0度、θU
30度のときはθU=30度とする。また、デフロス
タモードのときはθU=30度とする。) 尚、ドア5aの開度は図中実線位置を0度とす
る。ドア5aの現在の開度位置がポテンシヨメー
タPM1で検出され、目標開度θUと比較すること
によつてドア5aを現在の位置からどちらの方向
へ移動させるかが判断される。 それによつて電磁弁S1を付勢するか否かが決
定される。 例えば現在位置(図中破線位置にあるものとす
る。)から開度を狭める必要があると判断された
場合、まず電磁弁S1を消勢し、次に電磁弁S2
を消勢する。 するとダイヤフラムに印加されていた負圧が大
気に洩れ、ドア5aはヒータコア側へ移動する。 変化するドア5aの開度は時々刻々ポテンシヨ
メータPM1で検出され、マイクロコンピユータ
内の書き直し可能なメモリ(RAM)に記憶され
る。 RAMに記憶された現在開度と目標開度とを周
期的に比較し、両開度が一致した時マイクロコン
ピユータの指令に基づいて制御回路Cから電磁弁
S2を付勢すべく制御出力が出力され、電磁弁S
2が付勢されるとドア5aはその位置で停止す
る。 かくして、上体側に位置する冷風吹出口20と
足元側に位置する温風吹出口から吹出す冷温風は
設定温度(目標車室内温度)に応じて所望の温度
に制御される。 マイクロコンピユータ内のRAMに読み込まれ
た第2のエアミツクスドア5cの目標開度θL
θL≧25度になるか運転モードがデフロスタモー
ドになつた時にはマイクロコンピユータからの指
令に基づいて制御回路Cから電磁弁S5を消勢す
る制御出力が出力され、電磁弁S5が消勢される
と制御ドア5bが破線位置に移動し、ヒータコア
の温風流出面がすべて温風ダクト7bに開口す
る。 マイクロコンピユータ内のRAM内に書き込ま
れた室内温度センサSRの検出温度TR、目標車室
内温度Tso及び第1のエアミツクスドア5aの目
標開度θUの各値が次の条件を満足する時、マイ
クロコンピユータからの指令によつて制御回路C
から電磁弁S6,S7を付勢する制御出力が出力
され、ドア4は内気導入側に切換る。 TR≧Tsoで且つθU=0゜ ……(12) また、上記各値が次の条件を満す時、マイクロ
コンピユータからの指令によつて制御回路Cから
電磁弁S6を付勢、S7を消勢する制御出力が出
力され、ドア4は内外気を半分ずつ導入する中間
位置に切換る。 (a) TR<Tsoで且つθU=0度 ……(13) (b) θU≠0度で且つTso<TR ……(14) 更に上記各値が次の条件を満す時、マイクロコ
ンピユータからの指令によつて制御回路Cから電
磁弁S6,S7を消勢する制御出力が出力され、
ドア4は外気導入側に切換る。 (a) θU≠0度で且つTso>TR ……(15) (b) コンプレツサ停止時 (c) デフロスタモード時 更にマイクロコンピユータの指令に基づく制御
回路Cの出力により、ブロワモータ1への印加電
圧を表1の様に制御してその送風量及び駆動停止
を制御する。
The present invention relates to an air conditioning system for automobiles, and in particular, it has a reheat air mix type air conditioning mechanism and directs conditioned cold and hot air to the upper part of the vehicle interior (the upper body of the passenger).
The present invention also relates to an air conditioner for an automobile having two air outlets that emit air separately downward (at the feet of an occupant). According to the conventional temperature control device in this type of automotive air conditioner, it has not been possible to create a temperature difference between the cold and hot air blown out from the upper outlet and the cold and hot air blown out from the lower outlet. In order to solve this problem, for example, as shown in Japanese Utility Model Publication No. 52-9704, the temperature-controlled air was appropriately distributed to the upper outlet (cold air outlet) and the lower outlet (warm air outlet). In a product, a portion of the cold air that has passed through the evaporator is directly introduced into the cold air duct leading to the upper air outlet, and the cold air is mixed with the conditioned air passing through the cold air duct to create a temperature difference in the conditioned air blown out from both outlets. something is known. In addition, as shown in Publication No. 48-9781,
A cold air passage is provided upstream of the heater core to guide part of the cold air sent from the blower to the upper air outlet, and a part of the temperature-controlled warm air is introduced into this cold air passage to direct the cold air towards the upper air outlet. A device is known that mixes temperature-controlled warm air to create a temperature difference between the conditioned air blown out from an upper outlet and a lower outlet. However, in the former case, in order to control the conditioned air blown out from the upper and lower outlets to various temperatures,
Three dampers, ie, a mix damper, an outlet selection damper, and a cold air damper, are required, making the unit large and the control mechanism complicated. The latter not only requires four dampers, namely a temperature control valve that adjusts the temperature of the hot air after passing through the heat exchanger, a temperature control valve (two pieces) for the cold air blown out from the cold air outlet, and a wind shutoff valve. However, it is not possible to obtain a mode in which all of the cold air is blown out from the cold air outlet, and the configuration is unsuitable for an air conditioner equipped with a cooling device. The first object of the present invention is to obtain an air conditioner for an automobile of this type that can control the conditioned air blown out from the upper outlet and the lower outlet to maintain a predetermined temperature difference. A feature of the first invention of the present application is that two cold air passages bypassing the heater core and two hot air passages are provided downstream of the heater core, and the one cold air passage and the one hot air passage are merged. A first air outlet that communicates with the upper air outlet, merges the other cold air passage and the other hot air passage, communicates with the lower air outlet, and further controls the temperature of the conditioned air blown out from the upper air outlet. An air mix door and a second air mix door that controls the temperature of the conditioned air blown out from the lower outlet are provided, and a control mechanism that controls the second air mix door according to a control state of the first air mix door. At the point. A second object of the present invention is to compactly arrange two air mix doors in a unit case to control conditioned air passing through the upper blow-off duct and conditioned air passing through the lower blow-off duct. The second aspect of the present invention is characterized in that the air inflow and outflow surfaces of the heater core are installed opposite to each other with first and second gaps on the inner wall of the duct, and the first gap is connected to the first cold air passage and the second The gap is used as a second cold air passage, and first and second hot air passages are provided on the outflow surface side of the heater core to separate hot air flowing out from the heater core, and the first cold air passage and the first cold air passage are provided. The second hot air passage and the first hot air passage are merged and communicated with the upper air outlet, and the second cold air passage and the first hot air passage are merged and communicated with the lower air outlet, and the first gap is formed. A first air mix door is installed within the gap to control a split ratio of cold air flowing into the first cold air passage and cold air flowing into the heater core, and a first air mixing door is installed within the second gap to control a split ratio of cold air flowing into the first cold air passage and cold air flowing out from the second cold air passage. The second air mix door is provided to control the mixing ratio of the cold air and the hot air flowing out from the first hot air passage. An embodiment of the first invention of the present application will be described below based on the drawings. The evaporator 2 cools vehicle interior air, outside air, or a mixture of the two, which is sent by a blower (not shown). The heater core 3 is a heater core that heats the cold air that has been cooled and dehumidified by the evaporator 2. Evaporator 2 and heater core 3 are in that order.
Installed in duct A. The heater core 3 is supported by an upper partition wall 3-1 and a lower partition wall 3-2 provided in the duct A. There is a main cold air passage 9 between the wall 3-1 and the duct inner wall.
A is formed, and a sub-cool air passage 9b is formed between the lower partition wall 3-2 and the inner wall of the duct. Cold air passages 9a, 9b
The flow is divided into two parts at a ratio of 8:2. The first air mix door 5a controls the amount of cold air flowing into the heater core 3 and the amount of cold air flowing into the main cold air passage 9a. The first air mix door 5a is fixed to a shaft 51 rotatably provided at the end of the heater core 3 on the side of the main cold air passage on the cold air inflow surface. The first air mix door 5a rotates between a solid line position in the drawing, where the main cold air passage 9a is fully closed, and a broken line position, where the inflow surface of the heater core 3 is fully closed. The control door 5b divides the hot air flowing out from the heater core 3 into the main hot air passage 8a and the auxiliary hot air passage 8b at an appropriate ratio. The control door 5b includes a shaft 52 rotatably supported on the duct A and a door fixed to the shaft 52. The control door 5b rotates between the solid line position in the drawing and the broken line position in the drawing, and connects the main hot air passage 8a and the sub hot air passage 8b.
and the passage area is controlled within that range. The second air mix door 5c controls the mixing ratio of the hot air flowing out from the main hot air passage 8a and the cold air flowing out from the sub cold air passage 9b. The second air mix door 5c is composed of a shaft 53 rotatably supported at the end of the heater core 3 on the hot air outflow side facing the auxiliary cold air passage 9b, and a door plate fixed to the shaft 53. The second air mix door 5c rotates between the solid line position in the drawing and the broken line position in the drawing to control the mixing ratio of the hot air from the main hot air passage 8a and the cold air from the sub cold air passage 9b. The cold air duct 7a mixes the cold air that has passed through the main cold air passage 9a and the warm air that has passed through the auxiliary hot air passage, and guides the mixed air to the upper air outlet 20. The hot air duct 7b mixes hot air from the main hot air passage 8a and cold air from the auxiliary cold air passage 9b and guides the mixture to the lower outlet 21. The operating principle of the present invention will be explained below. When the first and second air mix doors 5a, 5c and the control door 5b are in the solid line positions in FIG. 1, the interior of the vehicle is in the maximum heating state. That is, the inside/outside air introduction door (not shown) switches to outside air introduction, the blower rotates at high speed, and the cooling device is stopped. All of the outside air that has passed through the evaporator 2 (which has no cooling effect) flows into the heater core 3 and is heated, passes through the main hot air passage 8a and the auxiliary hot air passage 8b, and then passes through the hot air duct 7b and the cold air duct 7a, respectively. It is blown out to the lower outlet 21 and the upper outlet 20. When the first air mix door 5a is moved little by little toward the broken line side while the control door 5b and the second air mix door are fixed in their positions, the main cold air passage 9 is moved.
The amount of cold air flowing into the cold air duct 7a through a gradually increases. As a result, the temperature of the conditioned air blown out from the upper outlet gradually becomes lower than the temperature of the warm air blown out from the lower outlet. Therefore, the entire interior of the vehicle can be heated while supplying appropriately temperature-controlled cold air from the upper air outlet. In particular, when the partition wall 5b is configured with a control door as in the embodiment, if this door is moved to the side of the broken line, the temperature of the cold air blown out from the upper outlet even if the amount of cold air flowing through the main cold air passage 9a is kept constant. can be lowered. When the control door 5b completely closes the auxiliary hot air passage, the temperature difference between the cold and hot air blown out from the upper air outlet 20 and the lower air outlet 21 becomes maximum. If you want to lower the temperature at your feet a little, move the second air mix door 5c toward the dotted line position, the amount of hot air from the main hot air passage 8a will decrease, and the amount of cold air from the auxiliary cold air passage will increase, causing the blowout to reach the outlet. The temperature of the harmonized warm air blown out from 21 decreases. If it is desired to lower the temperature of the entire vehicle interior during heating, the first air mix door 5a is further moved to the dotted line position, and the rotational speed of the blower is accordingly lowered. In this way, the amount of cold air flowing into the heater core 3 is reduced, and the amount of hot air itself flowing out to the main and sub hot air passages is also reduced, and the air flows through the main cold air passage 9a to the upper air outlet 20.
Since the amount of cold air blown from the room increases, the indoor heating effect can be reduced as a result. During dehumidification and heating, half of the air inside the vehicle and half of the air from outside the vehicle are sucked in. Even in this state, the temperature of the conditioned air blown out from the upper air outlet 20 and the lower air outlet 21 can be controlled by controlling the opening degrees of the first and second air mix doors 5a and 5c. In addition, the first and second air mix doors 5a, 5c
By fixing the control door 5b at an intermediate position and controlling the opening degree of the control door 5b, the temperature of both the conditioned air blown out from the upper outlet 20 and the lower outlet 21 can be controlled simultaneously. During cooling, the flow of hot water to the heater core 3 is stopped, and the first air mix door 5a moves to the position shown by the broken line in the figure. Therefore, all the cold air cooled by the evaporator 2 passes through the main cold air passage 9a and is blown out from the upper outlet 20. However, when the second air mix door 5c moves toward the position indicated by the broken line in the drawing, a portion of the cold air flows into the sub-chill air passage 9b.
The air is also blown out from the lower air outlet 21 through the air outlet 21 . The first and second air mix doors 5a and 5c may be operated independently, or the opening degree of the second air mix door 5c may be controlled according to the opening degree of the first air mix door 5a, or both upper and lower air mix doors may be operated independently. Both air mix doors can also be electrically controlled according to the temperature difference so that the temperature difference of the conditioned air blown out from the outlet has a predetermined characteristic. This point will be explained in detail in specific examples described below. Furthermore, even if the control door 5b is controlled independently,
Or the first and second air mix doors 5a, 5c
The control may be performed depending on the opening degree of at least one of the following. Next, one embodiment of the present invention will be explained in detail based on FIG. Components with the same reference numerals as in FIG. 1 are the same, so their explanation will be omitted. 1 is a blower motor, 101 is its fan,
4 is a door for switching between inside and outside air; 41 and 42 are inside air intake ports formed in duct A that lead to the interior of the vehicle;
This is an outside air inlet that leads to the outside of the vehicle. The heater 3 is installed so that the air inflow and outflow surfaces face the inner surface of the duct A, and the space formed between the inflow surface and the duct inner surface forms a main cold air passage 9a, and the air outflow surface and the duct inner surface form a main cold air passage 9a. The space formed between them forms a sub-cool air passage 9b. The first air mix door 5a has a shaft 51 provided at a corner of the heater core 3 on the outlet side of the main cold air passage 9a, and is installed so as to rotate between the inflow surface of the heater core 3 and the inner wall of the duct A. The second air mix door 5c has a shaft 53 provided at a corner of the heater core 3 on the inlet side of the sub-cool air passage 9b, and is rotatably installed between the outflow surface of the heater core 3 and the inner wall of the duct. By installing two air mix dampers in this way, the air volume in each passage can be controlled without making the angle from fully closed to fully open the air mix door very large, so the air conditioner can be made more compact. 50 is a partition wall provided on the outflow surface side of the heater core 3, which separates the flow path of the outflowing hot air into the main hot air path 8a,
The air is divided into the sub-hot air passage 8b. The shaft 52 of the control door 5b is supported on the duct at the exit of the auxiliary hot air passage 8b so that the tip of the control door 5b can rotate between the tip of the partition wall 50 and the corner of the heater core 3 facing the auxiliary hot air passage 8b. has been done. D is a branch port to the defroster that opens into the hot air duct 7b, and the branch port is provided with an outlet switching door to select whether to blow hot air to the defroster port 22 or to the lower outlet 21. select. An actuator 31 operates the first air mix door 5a, and includes a diaphragm (not shown) that operates under negative pressure, a rod 311 connected at one end to the diaphragm, and a negative pressure control valve 312 that controls the negative pressure acting on the diaphragm. It consists of 32 is an actuator that operates the second air mix door 5c, and is connected to a diaphragm chamber (not shown) partitioned by a diaphragm, a rod 321 fixed to the diaphragm, and a negative pressure control valve 322 that controls the negative pressure acting on the diaphragm. configured. The negative pressure control valves 312 and 322 have electromagnetic valves S1 and S3 that switch between applying atmospheric pressure or negative pressure to the diaphragm chamber.
3 is energized, negative pressure is applied to the diaphragm chamber, and the doors 5a, 5c are pulled toward the actuator by the rods 311, 321. When the power to the solenoid valves S1 and S3 is cut off, the negative pressure that had been applied to the diaphragm chamber leaks to the atmosphere, and the spring, which had been compressed by the diaphragm on which the negative pressure was applied, expands and the rod 31
1, 321, the doors 5a, 5c are pushed back toward the heater core 3 side. Thus, when the doors 5a, 5c come to the predetermined positions, the solenoid valves S2, S4 are operated to close both the atmospheric and negative pressure passages leading to the diaphragm chamber, and the pressure inside the diaphragm chamber does not change, and the doors 5a,
5c is fixed in that position. An actuator 33 operates the control door 5b, and is composed of a diaphragm (not shown), a rod 331 fixed to the diaphragm, and a negative pressure control valve 332 that controls the negative pressure applied to the diaphragm. The negative pressure control valve 332 includes an electromagnetic switching valve S5. When the solenoid switching valve S5 is not energized by the power source, the diaphragm is moved to the second position by a spring (not shown).
The door 5b is pushed upward in the drawing, and as a result, the door 5b is moved via the rod 331 to the position indicated by the broken line in the drawing. When the electromagnetic switching valve S5 is energized by the power source, it is pulled downward in FIG. 2 by the negative pressure applied to the diaphragm, and as a result, the door 5 is
b is moved to the solid line position in the figure. 34 is an actuator that operates the inside/outside air switching door 4, and includes a diaphragm (not shown), a rod 341 fixed to the diaphragm, and a negative pressure control valve 342 that controls the negative pressure applied to the diaphragm.
It consists of The negative pressure switching valve 342 includes electromagnetic valves S6 and S7. Further, there are two diaphragms, and the two diaphragms are installed at an interval in the axial direction of the rod 341. When both solenoid valves S6 and S7 are not energized by the power supply, both diaphragms are pushed to the left in the drawing by their respective springs, and the door 4 is pushed to the left by the rod 3.
41 to the position indicated by the broken line in the drawing. When the electromagnetic valve S6 is energized, a negative pressure is applied to one diaphragm, and the diaphragm is attracted to the right in the drawing while compressing the spring, and the door 4 is pulled by the rod 341 to the position shown in the dashed line in the drawing. When the solenoid valve S7 is further energized, both diaphragms are further attracted to the right in the drawing while compressing another spring, and as a result, the door 4 is moved to the position shown by the solid line in the drawing. These electromagnetic valves S1 to S7 are controlled by control outputs from a control circuit C including a microcomputer. SP is a rheostat resistance used by the crew to adjust the set temperature Ts. The target vehicle interior temperature Tso is the set temperature Ts, the outside temperature T A detected by the outside temperature sensor SA, and the solar radiation sensor SF.
It is calculated using the following calculation formula programmed into the ROM of the microcomputer based on the amount of solar radiation Q detected at . Tso = Ts - α (T A -25) - 2/660Q ... (1) (However, the unit of target temperature Tso and outside temperature T A is [℃], and the value of α is when the outside temperature T A is 25℃ or more. 1/5 when the outside temperature is 25℃ or less, and 1/15 when the outside temperature is below 25℃, and the amount of solar radiation Q [kcal/
h] is 20 per 1°C difference between the temperature T Q detected by the solar radiation sensor SF and the temperature T R detected by the vehicle interior air temperature sensor S R.
Use the value converted as the amount of heat in [kcal/h]. ) The target temperature inside the warm air duct 7b is determined from the target temperature Tso, the outside temperature T A , the footwell temperature T L detected by the inside temperature sensor Sc in the lower part of the vehicle compartment, and the temperature Td L detected by the sensor SE inside the warm air duct 7b. The hot air temperature Td LO is calculated using the following formula. T SOL = Tso + 70 - Ta / 18 ... (2) (However, T SOL is the target temperature at the foot of the vehicle interior) ΔT L = T SOL - T L ... (3) Td LO = 6 (ΔT L + 1/680∫ ΔT L・dt)+30... (4) (However, when Td LO ≦0 [℃], Td LO = 0
[°C], when Td LO ≧60 [°C], Td LO = 60 [°C]
shall be. ) Then, the target opening degree θ L of the second air mix door 5c to obtain the target hot air temperature Td LO is calculated by the following equation. ΔTd LO = Td LO −Td L ……(5) θ L = 3×ΔTd LO +15 ……(6) (However, when θ L ≦0 degrees, θ L = 0 degrees, θ L
When the angle is 30 degrees, θ L =30 degrees. When in defroster mode, θ L =30 degrees. ) The opening degree of the door 5c is set to 0 degrees at the solid line position in the figure. The current opening position of the door 5c is determined by the potentiometer.
It is detected by PM2, and by comparing it with the target opening degree θ L , it is determined in which direction the door 5c should be moved from its current position. Accordingly, it is determined whether or not to energize the solenoid valve S3. For example, if it is determined that the opening degree needs to be narrowed from the current position (assumed to be at the position indicated by the broken line in the figure), first the solenoid valve S3 is deenergized, and then the solenoid valve S4 is deenergized.
deactivate. Then, the negative pressure applied to the diaphragm leaks to the atmosphere, and the door 5c moves toward the heater core. The changing opening degree of the door 5c is detected moment by moment by the potentiometer PM2, and is detected by the potentiometer PM2, which is stored in the write-erasable memory (RAM) in the microcomputer.
is memorized. The current opening degree stored in the RAM and the target opening degree are periodically compared, and when they match, the solenoid valve S4 is energized and the door 5c is fixed at that position. On the other hand, if it is determined that the opening degree needs to be increased from the intermediate position, first the solenoid valve S3 is energized, and then the solenoid valve S4 is deenergized. Then, negative pressure is applied to the diaphragm and the door 5c
is pulled toward the actuator. When the opening degree of the door 5c reaches the target opening degree, the solenoid valve S
4 is energized (while the solenoid valve S3 is deenergized), and the door 5c is fixed in that position. On the other hand, based on the target temperature Tso, the outside temperature T A , the upper body temperature T U detected by the upper interior temperature sensor S B and the cold air duct internal temperature Td U detected by the sensor SD in the cold air duct 7a, the cold air The target cold air temperature Td LO in the duct 7a is calculated by the following equation. T SOU = Tso + Ta - 70/18 ... (7) (However, T SOU is the upper body temperature target value) ΔT U = T SOU - T U ... (8) Td UO = 3 (ΔT U + 1/680∫ΔT U・dt)+15... (9) (However, when Td UO ≦0 [℃], Td UO =
0 [℃], Td UO ≧30 [℃], Td UO =
The temperature shall be 30 [℃]. ) Then, the target opening degree θ U of the first air mix door 5a to obtain the target cold air temperature Td UO is calculated by the following equation. ΔTd UO = Td UO −Td U ……(10) θ U = 3×ΔTd UO +15 ……(11) (However, when θ U ≦0 degrees, θ U = 0 degrees, θ U
When the angle is 30 degrees, θ U =30 degrees. Furthermore, in the defroster mode, θ U =30 degrees. ) Note that the opening degree of the door 5a is set to 0 degrees at the solid line position in the figure. The current opening position of the door 5a is detected by the potentiometer PM1, and by comparing it with the target opening θ U , it is determined in which direction the door 5a should be moved from the current position. Accordingly, it is determined whether or not to energize the solenoid valve S1. For example, if it is determined that the opening degree needs to be narrowed from the current position (assumed to be at the position indicated by the broken line in the figure), first the solenoid valve S1 is deenergized, and then the solenoid valve S2 is deenergized.
deactivate. Then, the negative pressure applied to the diaphragm leaks to the atmosphere, and the door 5a moves toward the heater core. The changing opening degree of the door 5a is momentarily detected by the potentiometer PM1 and stored in a rewritable memory (RAM) in the microcomputer. The current opening degree stored in RAM is periodically compared with the target opening degree, and when both opening degrees match, a control output is output from the control circuit C to energize the solenoid valve S2 based on a command from the microcomputer. and solenoid valve S
2 is energized, the door 5a stops at that position. In this way, the cold and hot air blown out from the cold air outlet 20 located on the upper body side and the warm air outlet located on the foot side are controlled to a desired temperature according to the set temperature (target vehicle interior temperature). When the target opening degree θ L of the second air mix door 5c read into the RAM in the microcomputer reaches θ L ≧25 degrees, or when the operation mode becomes defroster mode, the command is sent from the control circuit C based on the command from the microcomputer. A control output that deenergizes the solenoid valve S5 is output, and when the solenoid valve S5 is deenergized, the control door 5b moves to the position shown by the broken line, and the hot air outflow surface of the heater core all opens into the hot air duct 7b. When the detected temperature TR of the indoor temperature sensor SR, the target vehicle interior temperature Tso, and the target opening degree θ U of the first air mix door 5a written in the RAM in the microcomputer satisfy the following conditions, the microcomputer Control circuit C
A control output for energizing the electromagnetic valves S6 and S7 is outputted from the controller, and the door 4 is switched to the inside air introduction side. When T R ≧Tso and θ U =0゜...(12) Also, when each of the above values satisfies the following conditions, the control circuit C energizes the solenoid valve S6 in response to a command from the microcomputer, and S7 A control output is output to deenergize the door 4, and the door 4 is switched to an intermediate position where half of the inside and outside air are introduced. (a) T R < Tso and θ U = 0 degree... (13) (b) θ U ≠ 0 degree and Tso < T R ... (14) Furthermore, when each of the above values satisfies the following conditions: , a control output for deenergizing the solenoid valves S6 and S7 is output from the control circuit C according to a command from the microcomputer,
The door 4 is switched to the outside air introduction side. (a) When θ U ≠ 0 degrees and Tso > T R ... (15) (b) When the compressor is stopped (c) When in defroster mode In addition, the voltage is applied to the blower motor 1 by the output of the control circuit C based on the command from the microcomputer. The voltage is controlled as shown in Table 1 to control the amount of air blown and the drive stop.

【表】 また、マイクロコンピユータの指令に基づく制
御回路Cの出力により、冷房装置(コンプレツ
サ)の駆動停止を表2の様に制御する。
[Table] Furthermore, the drive stoppage of the cooling device (compressor) is controlled as shown in Table 2 by the output of the control circuit C based on the command from the microcomputer.

【表】 また、図示されない温水弁の開閉は表3の如く
マイクロコンピユータの指令に基づく制御回路C
の出力によつて制御される。
[Table] In addition, the opening and closing of the hot water valve (not shown) is controlled by the control circuit C based on commands from the microcomputer as shown in Table 3.
controlled by the output of

【表】 第1の実施例では、第1,第2のエアミツクス
ドアの開度を、設定温度(目標車室内温度Tso)
や種々の温度情報に基づき、マイクロコンピユー
タにプログラムした各々独立した計算式から目標
開度を演算し、制御した。 しかし、本発明になる空気調和装置は、第1,
第2のエアミツクスドアを機械的に連動させ、一
本の操作レバーによつて冷風吹出口、温風吹出口
から吹出す冷温風を予め定められた温度差になる
様に制御することもできる。 以下この第2の実施例を第3図に基づき詳説す
る。 第2図と同一符号のものは同一物を示すので説
明は省略する。 11は棒伝ワイヤーで一端は第1エアミツクス
ドア5aに連結されており、他端は操作パネル部
に設けた操作レバー13に連結されている。 操作レバー13がWARM側へ操作されると第
1エアミツクスドア5aはθUが大きくなつて主
冷風通路9aの通路面積が減少する方向に移動す
る。 cool側へレバー13が操作された時はその逆に
なる。 12a,12bは棒伝ワイヤー11を支持する
クランプである。 10はリンク機構であつて、その一端は第1エ
アミツクスドア5aに回転自在に係合されてい
る。 一方、第2エアミツクスドア5cのシヤフト5
3には反ドア側に延びるレバー5dが強固に固定
されている。 そして、リンク機構10の他端がレバー5dの
先端に回転可能に連結されている。 従つて第1エアミツクスドア5aをθが大き
くなる方向へ操作レバー13を操作すると第2エ
アミツクスドア5cはθLが大きくなる方向へ移
動する。 即ち、リンク10と第1エアミツクスドア5a
との連結点Pが、シヤフト51の回転中心を中心
として上方へ向つて円弧を描き、その結果リンク
10の他端がレバー5dの先端を上方へ引つぱ
る。 レバー5dはシヤフト53に固定されているか
ら、レバー5dの先端が上方へ引かれるとシヤフ
ト53が時計方向へ回転し、その結果シヤフト5
3に固定されている第2のエアミツクスドア5c
がシヤフト53を中心に図面下方へ回転移動す
る。 かくして第2エアミツクスドアは第1エアミツ
クスドアの開度に応じた開度に制御される。 第4図に、このθU,θLを種々変化させた場合
の上部冷風吹出口、下部温風吹出口の温度変化の
実験データを示す。 縦軸は温度〔℃〕、横軸は各エアミツクスドア
の開き角度(但し、破線位置を0度とする)θ
U,θL〔度〕を示す。 グラフHINはヒータ入口温度の変化を示し、
HOUTはヒータ出口の温度変化を示す。 またグラフDOWNは下部温風吹出口から吹出
す調和温風の温度変化を、グラフUPは上部冷風
吹出口から吹出す調和冷風の温度変化をそれぞれ
示す。 またS/Vは上部冷風吹出口のうち車室インス
トルメントパネルの両サイドに設けたサイドベル
ト吹出口から吹出す調和冷風の温度変化を、C/
Vは同センタに設けたセンタベント吹出口から吹
出す調和冷風の温度変化を示したものである。 更にグラフEVはエバポレータの冷風吹出側温
度の両エアミツクスドア5a,5cの開度が0度
から5度までの範囲ではヒータコア3へ温水は流
れず、冷房装置のみが作動している。 この範囲ではドア4は内気導入側へ切換つてい
る。 両エアミツクスドア5a,5cの開度が5度以
上になるとヒータコア3へ温水が流れ始め、同時
にドア4が内気と外気とを半分ずつ導入する中間
位置に切換えられる。 この範囲では冷房装置で冷却された冷風の一部
はヒータコア3で加熱され、その温風の大半は主
温風通路8aを通つて温風ダクト7bへ、その一
部は副温風通路8bを通つて冷風ダクト7aへ流
入する。 そして、温風吹出口21からは副冷風通路9b
を通つて温風ダクト7bへ流入する一部の冷風と
混合した温風が足元に吹き出し、冷風吹出口20
からは主冷風通路9aを通つて冷風ダクト7aへ
流入する主冷風に一部の温風が混合した冷風が上
体に吹き出す。 エアミツクスドア5a,5cの開度が小さい範
囲ではそれぞれのダクト7a,7bに流入する冷
風の量が多いので吹出口20,21からの吹出冷
温風の温度は、それぞれ、10〜12度及び22〜23度
である。 両エアミツクスドア5a,5cの開度が大きく
なるにつれて、ヒータコア3で加熱される冷風量
の割合が多くなり、ダクト7a,7bに流入する
冷風量が減るので、吹出口20,21からの吹出
冷温風の温度は図示の通り上昇する。 両エアミツクスドア5a,5cの開度が25度を
越えると冷房装置が停止され、ドア4は外気導入
側へ切換えられる。 従つて両エアミツクスドア5a,5cが25度以
上の範囲で制御される時は、主・副冷風通路9
a,9bには外気が導入され各ダクト7a,7b
では温風と外気とが混合して吹出口20,21か
ら吹出す。 その時の外気の量は温風量に比べて極めて少な
いので、吹出温風の温度は図示の如く急激な上昇
を示す。 尚、冷温風吹出口20,21からの吹出風量
は、送風機の回転速度が一定であれば、両エアミ
ツクスドア5a,5cの開度が0度に近い程冷風
吹出口20の風量が多くなり、逆に開度が30度に
近い程温風吹出口21の風量が多くなる。 この実施例では送風機の回転速度は、両エアミ
ツクスドア5a,5cの開度が5度以下の時及び
25度以上の時最大となり、12.5度乃至17.5度の範
囲で最小となり、5度乃至12.5度及17.5度乃至25
度の範囲では12.5度及び17.5度に近づくに従つて
徐々に回転速度が減少する様に構成してある。 この為、ドア5a,5cの開度が5度に近づく
に従つて吹出口20から吹出す冷風量が増大し、
25度に近づくに従つて吹出口21から吹出す温風
量が増大し、頭寒足熱の効果を達成しながら、よ
り強力な冷房、暖房感が得られる。 また、ドア5a,5bが12.5度乃至17.5度の範
囲に近づくに従つて風量全体が減少し、12.5度乃
至17.5度の範囲では、両吹出口20,21から
は、温度差(15℃程度)を持つた少量の冷温風が
吹出し、少風量ながら十分な頭寒足熱効果が得ら
れる。 本願第1の発明によれば、上記第1のエアミツ
クスドアの制御状態に応じて第2のエアミツクス
ドアを制御する様にしたので、ドアを2枚にする
も制御機構を複雑にすることなく、また、上下吹
出口の温度差を常に適当な温度差になる様制御す
ることができる。 本願第2の発明によれば、ヒータコアの冷風流
入面とダクト壁面及びヒータコアの温風流出面と
ダクト壁面とが略並行になる様にしてダクト内へ
ヒータコアを設置し、ヒータコアの冷風流入面と
ダクト壁面との間に第1のエアミツクスドアを、
ヒータコアの温風流出面とダクト壁面との間に第
2のエアミツクスドアを設けたので、両エアミツ
クスドアの開度をわずかに変化させるだけで上下
吹出口から吹出す冷温風の温度を低温から高温ま
で広い範囲にわたつて制御できた。 またエアミツクスドアを2枚にしたにもかかわ
らず空気調和装置の容積はさほど大きくしないで
すんだ。
[Table] In the first embodiment, the opening degrees of the first and second air mix doors are set at the set temperature (target vehicle interior temperature Tso).
The target opening degree was calculated and controlled using independent calculation formulas programmed into a microcomputer based on various temperature information. However, the air conditioner according to the present invention has the following features:
It is also possible to mechanically interlock the second air mix door and control the cold and hot air blown out from the cold air outlet and the hot air outlet to a predetermined temperature difference using a single operating lever. This second embodiment will be explained in detail below with reference to FIG. Components with the same reference numerals as those in FIG. 2 indicate the same components, so a description thereof will be omitted. Reference numeral 11 denotes a rod conductor wire, one end of which is connected to the first air mix door 5a, and the other end connected to an operating lever 13 provided on the operating panel section. When the operating lever 13 is operated toward the WARM side, the first air mix door 5a moves in a direction in which θ U increases and the passage area of the main cold air passage 9a decreases. When the lever 13 is operated to the cool side, the opposite occurs. Clamps 12a and 12b support the rod transmission wire 11. 10 is a link mechanism, one end of which is rotatably engaged with the first air mix door 5a. On the other hand, the shaft 5 of the second air mix door 5c
3, a lever 5d extending toward the side opposite to the door is firmly fixed. The other end of the link mechanism 10 is rotatably connected to the tip of the lever 5d. Therefore, when the operating lever 13 is operated on the first air mix door 5a in the direction in which θ 2 becomes larger, the second air mix door 5c moves in the direction in which θ L becomes larger. That is, the link 10 and the first air mix door 5a
The connection point P with the shaft 51 draws an arc upwardly about the center of rotation of the shaft 51, and as a result, the other end of the link 10 pulls the tip of the lever 5d upward. Since the lever 5d is fixed to the shaft 53, when the tip of the lever 5d is pulled upward, the shaft 53 rotates clockwise, and as a result, the shaft 5
The second air mix door 5c fixed to 3
rotates downward in the drawing around the shaft 53. In this way, the second air mix door is controlled to an opening degree that corresponds to the opening degree of the first air mix door. FIG. 4 shows experimental data of temperature changes at the upper cold air outlet and the lower warm air outlet when θ U and θ L are varied. The vertical axis is temperature [℃], and the horizontal axis is the opening angle of each air mix door (however, the position of the broken line is 0 degrees) θ
U and θ L [degrees] are shown. Graph HIN shows the change in heater inlet temperature,
HOUT indicates the temperature change at the heater outlet. In addition, the graph DOWN shows the temperature change of the harmonized warm air blown out from the lower hot air outlet, and the graph UP shows the temperature change of the harmonized cold air blown out from the upper cold air outlet. In addition, S/V measures the temperature change of the harmonized cold air blown out from the side belt outlets installed on both sides of the vehicle interior instrument panel among the upper cold air outlets.
V indicates the temperature change of the harmonized cold air blown out from the center vent provided in the center. Further, the graph EV shows that when the opening degree of both air mix doors 5a, 5c is in the range of 0 degrees to 5 degrees at the temperature on the cold air blowing side of the evaporator, hot water does not flow to the heater core 3 and only the cooling device is operating. In this range, the door 4 is switched to the inside air introduction side. When the opening degree of both air mix doors 5a, 5c reaches 5 degrees or more, hot water begins to flow into the heater core 3, and at the same time, the door 4 is switched to an intermediate position where half of the inside air and half of the outside air are introduced. In this range, a part of the cold air cooled by the air conditioner is heated by the heater core 3, most of the hot air passes through the main hot air passage 8a to the hot air duct 7b, and a part of it passes through the auxiliary hot air passage 8b. and flows into the cold air duct 7a. Then, from the hot air outlet 21, the sub cold air passage 9b
The warm air mixed with a part of the cold air flowing into the hot air duct 7b through the hot air duct 7b is blown out to the feet, and the cold air outlet 20
From there, cold air, which is a mixture of the main cold air flowing into the cold air duct 7a through the main cold air passage 9a and some warm air, is blown out towards the upper body. When the opening degrees of the air mix doors 5a and 5c are small, the amount of cold air flowing into the respective ducts 7a and 7b is large, so the temperature of the cold and hot air blown out from the air outlets 20 and 21 is 10 to 12 degrees and 22 to 23 degrees, respectively. degree. As the opening degree of both air mix doors 5a, 5c increases, the proportion of the amount of cold air heated by the heater core 3 increases, and the amount of cold air flowing into the ducts 7a, 7b decreases, so that the amount of cold and hot air blown out from the outlets 20, 21 increases. The temperature of increases as shown. When the opening degree of both air mix doors 5a, 5c exceeds 25 degrees, the cooling system is stopped and the door 4 is switched to the outside air introduction side. Therefore, when both air mix doors 5a and 5c are controlled in a range of 25 degrees or more, the main and sub-chill air passages 9
Outside air is introduced into a and 9b, and each duct 7a and 7b
Then, warm air and outside air are mixed and blown out from the blow-off ports 20 and 21. Since the amount of outside air at that time is extremely small compared to the amount of hot air, the temperature of the hot air blown out shows a rapid rise as shown in the figure. Note that, if the rotational speed of the blower is constant, the amount of air blown from the cold and hot air outlets 20 and 21 increases as the opening degree of both air mix doors 5a and 5c approaches 0 degrees, and vice versa. The closer the opening degree is to 30 degrees, the larger the air volume of the hot air outlet 21 becomes. In this embodiment, the rotation speed of the blower is set when the opening degree of both air mix doors 5a, 5c is 5 degrees or less and
Maximum when the temperature is 25 degrees or more, minimum between 12.5 degrees and 17.5 degrees, and between 5 degrees and 12.5 degrees and between 17.5 degrees and 25 degrees.
In the range of 12.5 degrees and 17.5 degrees, the rotation speed is configured to gradually decrease as it approaches 17.5 degrees. Therefore, as the opening degree of the doors 5a, 5c approaches 5 degrees, the amount of cold air blown out from the air outlet 20 increases.
As the temperature approaches 25 degrees, the amount of warm air blown out from the air outlet 21 increases, and while achieving the effect of cooling the head and heating the feet, a stronger feeling of cooling and heating can be obtained. Furthermore, as the temperature of the doors 5a and 5b approaches the range of 12.5 degrees to 17.5 degrees, the overall air volume decreases, and in the range of 12.5 degrees to 17.5 degrees, there is a temperature difference (about 15 degrees Celsius) from both the air outlets 20 and 21. A small amount of cold and hot air is blown out, and although the amount of air is small, it is sufficient to cool the head and warm the feet. According to the first invention of the present application, since the second air mix door is controlled according to the control state of the first air mix door, the number of doors is reduced to two without complicating the control mechanism. The temperature difference between the upper and lower air outlets can be controlled to always maintain an appropriate temperature difference. According to the second invention of the present application, the heater core is installed in the duct so that the cold air inflow surface of the heater core and the duct wall surface and the warm air outflow surface of the heater core and the duct wall surface are substantially parallel to each other, and the cold air inflow surface of the heater core and the duct wall surface are arranged in parallel. The first air mix door is installed between the wall and the
Since a second air mix door is installed between the warm air outflow surface of the heater core and the duct wall surface, the temperature of the cold and hot air blown out from the upper and lower outlets can be adjusted over a wide range from low to high temperatures by simply changing the opening degree of both air mix doors. could be controlled over a period of time. Also, even though there are two air mix doors, the volume of the air conditioner does not need to be very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる自動車用空気調和装置の
原理を説明するための図面、第2図は本発明にな
る自動車用空気調和装置の一実施例を示す図面、
第3図は本発明になる自動車用空気調和装置の他
の実施例を示す図面、第4図は第3図に示す実施
例の冷温風制御特性を説明する為の図面である。 1…ブロワモータ、2…エバポレータ、3…ヒ
ータコア、4…内外気切換ドア、5a…第1エア
ミツクスドア、5b…制御ドア、5c…第2エア
ミツクスドア、7a…冷風ダクト、7b…温風ダ
クト、8a…主温風通路、8b…副温風通路、9
a…主冷風通路、9b…副冷風通路、20…上部
吹出口、21…下部吹出口。
FIG. 1 is a drawing for explaining the principle of the automobile air conditioner according to the present invention, FIG. 2 is a drawing showing an embodiment of the automobile air conditioner according to the present invention,
FIG. 3 is a drawing showing another embodiment of the automotive air conditioner according to the present invention, and FIG. 4 is a drawing for explaining the cold/hot air control characteristics of the embodiment shown in FIG. DESCRIPTION OF SYMBOLS 1... Blower motor, 2... Evaporator, 3... Heater core, 4... Inside/outside air switching door, 5a... First air mix door, 5b... Control door, 5c... Second air mix door, 7a... Cold air duct, 7b... Warm air duct, 8a... Main Warm air passage, 8b...Sub-hot air passage, 9
a... Main cold air passage, 9b... Sub cold air passage, 20... Upper air outlet, 21... Lower air outlet.

Claims (1)

【特許請求の範囲】 1 ヒータコアをバイパスする主・副2つの冷風
通路と、前記ヒータコアの下流において該ヒータ
コアを通過した温風を適当な割合で分流する主・
副2つの温風通路と、前記主冷風通路を流れる冷
風と前記副温風通路を流れる温風とを合流させて
上部吹出口へ導く第1のダクト手段と、前記副冷
風通路を流れる冷風と前記主温風通路を流れる温
風とを下部吹出口へ導く第2のダクト手段と、前
記主冷風通路へ流入する冷風量と前記ヒータコア
へ流入する冷風量との分流割合を制御する第1の
エアミツクスドアと、前記副冷風通路を通つて前
記第2のタクト手段へ流入する冷風量と前記主温
風通路を通つて前記第2のダクト手段へ流入する
温風量との混合割合を制御する第2のエアミツク
スドアとを備え、前記ヒータコアで加熱された温
風と該ヒータコアをバイパスする冷風との混合割
合を制御して調和冷温風を得ると共に、調和冷風
を前記上部吹出口から車室上方へ、調和温風を前
記下部吹出口から車室内下部へ吹き出す機能を有
するものにおいて、車室内上方の室内温度を設定
する上方温度設定手段と、車室内上方の室内温度
を検出する上方温度検出手段と、前記上方温度設
定手段の設定温度信号と前記上方温度検出手段の
検出温度信号との差が所定の範囲内になる様前記
第1のエアミツクスドアを制御する第1の制御手
段と、車室内下方の室内温度を設定する下方温度
設定手段と、車室内下方の室内温度を検出する下
方温度検出手段と、前記下方温度設定手段の設定
温度信号と前記下方温度検出手段の検出温度信号
との差が所定の範囲内になる様前記第2のエアミ
ツクスドアを制御する第2の制御手段とを設けた
ことを特徴とする自動車用空気調和装置。 2 ヒータコアをバイパスする主・副2つの冷風
通路と、前記ヒータコアの下流において該ヒータ
コアを通過した温風を適当な割合で分流する主・
副2つの温風通路と、前記主冷風通路を流れる冷
風と前記副温風通路を流れる温風とを合流させて
上部吹出口へ導く第1のダクト手段と、前記副冷
風通路を流れる冷風と前記主温風通路を流れる温
風とを下部吹出口へ導く第2ののダクト手段と、
前記主冷風通路へ流入する冷風量と前記ヒータコ
アへ流入する冷風量との分流割合を制御する第1
のエアミツクスドアと、前記副冷風通路を通つて
前記第2のダクト手段へ流入する冷風量と前記主
温風通路を通つて前記第2のダクト手段へ流入す
る温風量との混合割合を制御する第2のエアミツ
クスドアとを備え、前記ヒータコアで加熱された
温風と該ヒータコアをバイパスする冷風との混合
割合を制御して調和冷風を得ると共に、調和冷風
を前記上部吹出口から車室上方へ、調和温風を前
記下部吹出口から車室内下方へ吹き出す機能を有
するものにおいて、前記第1のエアミツクスドア
を制御して吹出口から吹き出す風の温度を制御す
る第1の制御機構を設け、且つ前記第1のエアミ
ツクスドアの制御状態に応じて前記第2のエアミ
ツクスドアを制御して下部吹出口から吹き出す風
の温度を制御する第2の制御機構を設けたことを
特徴とする自動車用空気調和装置。 3 特許請求の範囲第2項に記載されたものにお
いて、車室内温度を設定する温度設定手段と、該
車室内の代表温度を検出する温度検出手段と、前
記温度設定手段の設定温度信号と前記温度検出手
段の検出温度信号との差が所定範囲内になる様に
前記第1のエアミツクスドアを制御して上部吹出
口から吹き出す風の温度を制御する第1の制御機
構と、前記下部吹き出口から吹き出す風の温度を
前記上部吹出口から吹き出される風の温度との温
度差が所定の関係になる様に前記第1のエアミツ
クスドアの制御状態に応じて前記第2のエアミツ
クスドアを制御する第2の制御機構を設けたこと
を特徴とする自動車用空気調和装置。 4 特許請求の範囲第3項に記載したものにおい
て、設定温度に対応する電気信号を発生する手段
と、室内温度に対応する電気信号を発生する手段
とを設け、少なくとも両電気信号に基づいて前記
第1のエアミツクスドアの開度を演算する演算フ
ローがプログラムされた第1のプログラム手段
と、該第1のプログラム手段のプログラムに従つ
て前記各電気信号から前記第1のエアミツクスド
ア開度を演算する演算実行手段と、前記第1のエ
アミツクスドア開度に対応する前記第2のエアミ
ツクスドア開度をプログラムした第2のプログラ
ム手段と、前記第1のエアミツクスドア開度に応
じて前記第2のプログラム手段から第2のエアミ
ツクスドア開度を求めるフローをプログラムした
第3のプログラム手段と、該第3のプログラム手
段のプログラムに従つて前記第2のエアミツクス
ドアの開度を求めるプログラム実行手段と、前記
演算実行手段の演算結果に基づいて前記第1のエ
アミツクスドアを操作する第1の操作手段と、前
記プログラム実行手段によつて求められた結果に
基づいて前記第2のエアミツクスドアを操作する
第2の操作手段とから成ることを特徴とする自動
車用空気調和装置。
[Scope of Claims] 1. Two main and sub cold air passages that bypass the heater core, and a main and sub cold air passage that divides the hot air that has passed through the heater core at an appropriate ratio downstream of the heater core.
two auxiliary hot air passages; a first duct means for merging the cold air flowing through the main cold air passage and the warm air flowing through the auxiliary hot air passage to an upper air outlet; and cold air flowing through the auxiliary cold air passage; a second duct means for guiding hot air flowing through the main hot air passage to a lower outlet; and a first duct means for controlling a division ratio between the amount of cold air flowing into the main cold air passage and the amount of cold air flowing into the heater core. an air mix door, and a second door for controlling a mixing ratio between the amount of cold air flowing into the second duct means through the sub-cool air passage and the amount of warm air flowing into the second duct means through the main hot air passage. The air mixing door controls the mixing ratio of the warm air heated by the heater core and the cold air bypassing the heater core to obtain harmonized cold and hot air, and also directs the harmonized cold air from the upper outlet to the upper part of the vehicle interior. In the device having a function of blowing warm air from the lower air outlet to the lower part of the vehicle interior, an upper temperature setting means for setting the interior temperature in the upper part of the vehicle interior, an upper temperature detection means for detecting the interior temperature in the upper part of the vehicle interior; a first control means for controlling the first air mix door so that the difference between the set temperature signal of the upper temperature setting means and the detected temperature signal of the upper temperature detection means is within a predetermined range; a lower temperature setting means for setting an indoor temperature at a lower part of the vehicle interior, a lower temperature detection means for detecting an indoor temperature at a lower part of the vehicle interior, and a difference between a set temperature signal of the lower temperature setting means and a detected temperature signal of the lower temperature detection means is within a predetermined range. and second control means for controlling the second air mix door so that the second air mix door is located inside the air conditioning system. 2. Two main and sub cold air passages that bypass the heater core, and a main and sub cold air passage that divides the hot air that has passed through the heater core at an appropriate ratio downstream of the heater core.
two auxiliary hot air passages; a first duct means for merging the cold air flowing through the main cold air passage and the warm air flowing through the auxiliary hot air passage to an upper air outlet; and cold air flowing through the auxiliary cold air passage; a second duct means for guiding the hot air flowing through the main hot air passage to a lower outlet;
A first control unit that controls a division ratio between the amount of cold air flowing into the main cold air passage and the amount of cold air flowing into the heater core.
an air mix door for controlling a mixing ratio of the amount of cold air flowing into the second duct means through the auxiliary cold air passage and the amount of warm air flowing into the second duct means through the main hot air passage; 2 air mix doors, the mixing ratio of the warm air heated by the heater core and the cold air bypassing the heater core is controlled to obtain harmonized cold air, and the harmonized cold air is directed from the upper air outlet to the upper part of the vehicle interior. The device has a function of blowing warm air downward into the vehicle interior from the lower air outlet, further comprising: a first control mechanism that controls the first air mix door to control the temperature of the air blown out from the air outlet; An air conditioner for an automobile, comprising a second control mechanism that controls the second air mix door according to a control state of the air mix door to control the temperature of the air blown out from the lower air outlet. 3. In the device described in claim 2, there is provided a temperature setting means for setting the temperature inside the vehicle, a temperature detection means for detecting a representative temperature inside the vehicle, a set temperature signal of the temperature setting means, and a temperature setting means for setting the temperature inside the vehicle. a first control mechanism that controls the temperature of the air blown out from the upper air outlet by controlling the first air mix door so that the difference between the temperature signal and the temperature signal detected by the temperature detection means is within a predetermined range; a second air mix door that controls the second air mix door according to a control state of the first air mix door so that a temperature difference between the temperature of the air blown out and the temperature of the air blown out from the upper air outlet has a predetermined relationship; An air conditioner for an automobile characterized by being provided with a control mechanism. 4. In the device described in claim 3, means for generating an electric signal corresponding to the set temperature and means for generating an electric signal corresponding to the indoor temperature are provided, and the electric signal is generated based on at least both electric signals. a first programming means programmed with a calculation flow for calculating the opening degree of the first air mix door; and a calculation unit for calculating the opening degree of the first air mix door from each of the electrical signals according to the program of the first programming means. execution means; a second programming means for programming the second air mix door opening degree corresponding to the first air mix door opening degree; a third program means programmed with a flow for determining the opening degree of the air mix door; a program execution means for determining the opening degree of the second air mix door according to the program of the third program means; and a calculation result of the calculation execution means. and a second operating means that operates the second air mix door based on the result obtained by the program execution means. Features of automotive air conditioning equipment.
JP56014255A 1981-02-04 1981-02-04 Air conditioner for automobiles Granted JPS57130809A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56014255A JPS57130809A (en) 1981-02-04 1981-02-04 Air conditioner for automobiles
US06/343,591 US4513808A (en) 1981-02-04 1982-01-28 Automobile air conditioner
DE19823203424 DE3203424C3 (en) 1981-02-04 1982-02-02 Air conditioning for automobiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56014255A JPS57130809A (en) 1981-02-04 1981-02-04 Air conditioner for automobiles

Publications (2)

Publication Number Publication Date
JPS57130809A JPS57130809A (en) 1982-08-13
JPS6253364B2 true JPS6253364B2 (en) 1987-11-10

Family

ID=11855974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56014255A Granted JPS57130809A (en) 1981-02-04 1981-02-04 Air conditioner for automobiles

Country Status (3)

Country Link
US (1) US4513808A (en)
JP (1) JPS57130809A (en)
DE (1) DE3203424C3 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131309U (en) * 1981-02-12 1982-08-16
JPS5940924A (en) * 1982-08-31 1984-03-06 Nissan Shatai Co Ltd Air conditioning control device of automobile
JPS59186117U (en) * 1983-05-31 1984-12-11 日産車体株式会社 Automotive air conditioner
JPS6061324A (en) * 1983-09-14 1985-04-09 Nissan Shatai Co Ltd Automatic controlling air conditioner
JPH06457B2 (en) * 1984-04-13 1994-01-05 株式会社日立製作所 Air conditioner temperature control method
JPS6150821A (en) * 1984-08-20 1986-03-13 Nissan Motor Co Ltd Air conditioner for vehicle
JPS6165974A (en) * 1984-09-07 1986-04-04 Hitachi Ltd Control device for negative pressure actuator
JPH0698885B2 (en) * 1985-03-08 1994-12-07 株式会社日立製作所 Automotive air conditioner
JPS61161957U (en) * 1985-03-29 1986-10-07
JPS6262511U (en) * 1985-10-11 1987-04-18
JPS62160910A (en) * 1986-01-08 1987-07-16 Hitachi Ltd Air conditioner for automobile
JPH0674007B2 (en) * 1986-01-10 1994-09-21 株式会社日立製作所 Automotive air conditioner
JPS63154303U (en) * 1987-03-31 1988-10-11
JPS63164017U (en) * 1987-04-15 1988-10-26
JPH0773971B2 (en) * 1987-04-22 1995-08-09 株式会社日立製作所 Blower temperature control device for automobile air conditioners
US4828018A (en) * 1987-06-01 1989-05-09 General Motors Corporation Motor vehicle air conditioning and heating system with bi-level mode
JPH0131527Y2 (en) * 1987-07-20 1989-09-27
JPH01111006U (en) * 1988-01-21 1989-07-26
US4842047A (en) * 1988-06-03 1989-06-27 Diesel Kiki Co., Ltd. Air conditioner for automobiles
DE4422120C2 (en) * 1994-06-24 1996-08-29 Daimler Benz Ag Heating or air conditioning for a motor vehicle
US5619862A (en) * 1995-08-11 1997-04-15 Bergstrom Manufacturing Co. Multi-channel motor vehicle ventilation apparatus
JPH09123738A (en) * 1995-10-31 1997-05-13 Denso Corp Air flow passage adjusting device
JPH09226350A (en) * 1996-02-28 1997-09-02 Calsonic Corp Heater unit of air conditioner for vehicle
JP3694974B2 (en) * 1996-05-23 2005-09-14 株式会社デンソー Automotive air conditioner
US5653904A (en) * 1996-06-18 1997-08-05 Adlparvar; Sam Defogging system for the front and rear windshields of a vehicle
JPH1016530A (en) * 1996-07-03 1998-01-20 Sanden Corp Air conditioner
KR100294482B1 (en) * 1996-07-27 2001-10-24 신영주 case of air conditioning system and air conditioning system utilzing the same
JP3429630B2 (en) * 1996-08-09 2003-07-22 サンデン株式会社 Air conditioner
US6009934A (en) * 1996-10-31 2000-01-04 Calsonic Corporation Electronic climate control system for automotive vehicles
JP4022975B2 (en) * 1997-04-07 2007-12-19 株式会社デンソー Air conditioner for vehicles
DE19917502C1 (en) * 1999-04-17 2000-10-12 Bayerische Motoren Werke Ag Method for regulating the interior temperature in motor vehicles
DE19919132A1 (en) * 1999-04-27 2000-11-02 Valeo Klimasysteme Gmbh Vehicle ventilation system has heat exchanger in fresh air duct and associated on output side with device forming two or more separate or insulated ducts each leading to a mixing chamber
DE19922324C1 (en) 1999-05-14 2000-10-19 Daimler Chrysler Ag Vehicle heating or air conditioning system has a throttle coupled to the cold air flap to cover or expose the warm air outlet with the swing movements of the flap
FR2815294B1 (en) * 2000-10-17 2003-07-18 Valeo Climatisation HEATING AND AIR CONDITIONING DEVICE COMPRISING MEANS FOR ODORIZING THE INTERIOR OF A VEHICLE
JP4221942B2 (en) * 2002-03-27 2009-02-12 日産自動車株式会社 Fuel cell system
US20060219389A1 (en) * 2005-04-01 2006-10-05 Ingersoll-Rand Company Air compressor aftercooler
DE102008051268A1 (en) * 2008-10-10 2010-04-15 Mahle International Gmbh cooling device
JP2013159228A (en) * 2012-02-06 2013-08-19 Denso Corp Vehicle air conditioner
US20150114325A1 (en) * 2013-10-31 2015-04-30 Ford Global Technologies, Llc Hvac flow control for micro-zone system
US10375901B2 (en) 2014-12-09 2019-08-13 Mtd Products Inc Blower/vacuum
DE102015220465A1 (en) * 2015-10-21 2017-04-27 Bayerische Motoren Werke Aktiengesellschaft Air conditioner and method of operating such
US10837568B2 (en) * 2016-11-23 2020-11-17 Acorn Engineering Company Valve control system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154357U (en) * 1974-10-23 1976-04-26
JPS51143940U (en) * 1975-05-14 1976-11-19
JPS5726010A (en) * 1980-07-24 1982-02-12 Mitsubishi Heavy Ind Ltd Air conditioning device for automobile

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1512536A (en) * 1966-12-28 1968-02-09 Ferodo Sa Mixed air conditioner
GB1278202A (en) * 1970-01-29 1972-06-21 Rolls Royce Vehicle air conditioning system
JPS489781U (en) * 1971-04-30 1973-02-02
GB1423043A (en) * 1973-04-13 1976-01-28 Rolls Royce Motors Ltd Vehicle air conditioning system
GB1490336A (en) * 1973-10-12 1977-11-02 Delanair Ltd Ventilation and/or air temperature control apparatus
US3948312A (en) * 1973-10-12 1976-04-06 Delanair Limited Ventilation and/or air temperature control apparatus
DE2437232C3 (en) * 1974-08-02 1978-03-09 Ford-Werke Ag, 5000 Koeln Heating and air conditioning systems for motor vehicles
DE2526537C3 (en) * 1975-06-13 1978-08-31 Bayerische Motoren Werke Ag, 8000 Muenchen Air mixing and air distribution device in a ventilation and heating or air conditioning system, in particular for motor vehicles
DE2530133C3 (en) * 1975-07-05 1979-04-05 Bayerische Motoren Werke Ag, 8000 Muenchen Ventilation, heating and / or air conditioning apparatus for motor vehicles
JPS529704A (en) * 1975-07-11 1977-01-25 Nissan Motor Co Ltd Internal combustion engine with torch ignition device
GB1603721A (en) * 1977-04-15 1981-11-25 Ferodo Sa Vehicle air conditioning device
FR2398268A1 (en) * 1977-07-19 1979-02-16 Ferodo Sa AIR CONDITIONING DEVICE, ESPECIALLY FOR MOTOR VEHICLES
US4337821A (en) * 1978-11-28 1982-07-06 Nippondenso Co., Ltd. Air conditioner system for automobiles
JPS6047849B2 (en) * 1979-02-09 1985-10-24 旭光学工業株式会社 Laser beam scanning device
JPS55123520A (en) * 1979-03-13 1980-09-24 Nippon Radiator Co Ltd Air conditioner for automobile
JPS5631812A (en) * 1979-08-20 1981-03-31 Diesel Kiki Co Ltd Automobile air conditioner
DE3016679A1 (en) * 1980-04-30 1981-11-05 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart VENTILATION, HEATING AND / OR AIR CONDITIONING FOR MOTOR VEHICLES

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154357U (en) * 1974-10-23 1976-04-26
JPS51143940U (en) * 1975-05-14 1976-11-19
JPS5726010A (en) * 1980-07-24 1982-02-12 Mitsubishi Heavy Ind Ltd Air conditioning device for automobile

Also Published As

Publication number Publication date
DE3203424A1 (en) 1982-10-21
DE3203424C3 (en) 1992-10-08
DE3203424C2 (en) 1987-01-29
JPS57130809A (en) 1982-08-13
US4513808A (en) 1985-04-30

Similar Documents

Publication Publication Date Title
JPS6253364B2 (en)
JP3161055B2 (en) Vehicle air conditioner
JPS6316284B2 (en)
JPS626820A (en) Air-mix door controller in air conditioner for automobile
JP3644101B2 (en) Air conditioner
JPS62275816A (en) Air conditioner for vehicle
JPS6017364Y2 (en) Automatic temperature control device for automotive air conditioners
JPS6238163B2 (en)
JP2618761B2 (en) Vehicle air conditioner
JPH0453726B2 (en)
JP3399240B2 (en) Vehicle air conditioner
JP3399284B2 (en) Vehicle air conditioner
JP3287098B2 (en) Air conditioner
JP2000016053A (en) Air conditioner for vehicle
JPS63484Y2 (en)
JPS5936484Y2 (en) Blower fan speed control device in vehicle air conditioner
JPS60979Y2 (en) Vehicle air conditioner
JPH05244B2 (en)
JPH05162532A (en) Air conditioner for vehicle
JP3994762B2 (en) Air conditioner for vehicles
JPS5933689Y2 (en) Vehicle air conditioning system
JPS60971Y2 (en) Vehicle air conditioning system
JPH06156055A (en) Heat pump type air conditioning apparatus for vehicle
JPS638483Y2 (en)
JP2021059235A (en) Temperature regulation device control unit of vehicle