JPS625335B2 - - Google Patents

Info

Publication number
JPS625335B2
JPS625335B2 JP1372980A JP1372980A JPS625335B2 JP S625335 B2 JPS625335 B2 JP S625335B2 JP 1372980 A JP1372980 A JP 1372980A JP 1372980 A JP1372980 A JP 1372980A JP S625335 B2 JPS625335 B2 JP S625335B2
Authority
JP
Japan
Prior art keywords
pattern
workpiece
size
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1372980A
Other languages
Japanese (ja)
Other versions
JPS56111227A (en
Inventor
Takeoki Myauchi
Mikio Ppongo
Susumu Aiuchi
Masao Mitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1372980A priority Critical patent/JPS56111227A/en
Publication of JPS56111227A publication Critical patent/JPS56111227A/en
Publication of JPS625335B2 publication Critical patent/JPS625335B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Description

【発明の詳細な説明】 本発明はフオトマスクの欠陥等を加工する絞り
投影方式のレーザ加工方法及びその装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aperture projection type laser processing method and apparatus for processing defects in a photomask.

従来の絞り投影方式のレーザ加工装置でフオト
マスクの欠陥等を加工した場合、フオトマスクの
上に投影された絞りパターンの寸法と実際に加工
される寸法とは、加工サイズやレーザビームパワ
ーによつて一致しないという欠点があつた。特に
加工寸法が使用波長の数倍前後の1〜10μmにな
ると、回折等の影響のため加工寸法と設定寸法と
の差が加工寸法に対して大きくなり、サブミクロ
ンの高精度が要求される加工を行なうことが困難
であつた。即ち従来は、レーザビームパワーや絞
りの大きさなどによつて実際得られる加工寸法が
設定寸法より大きくなつたり、小さくなつたりし
て3〜2μm巾という高密度なパターン(回路パ
ターン等)に存在する被加工パターン(欠陥等)
を除去加工することが困難であつた。
When processing defects on a photomask using a conventional aperture projection type laser processing device, the dimensions of the aperture pattern projected onto the photomask and the dimensions actually processed will match depending on the processing size and laser beam power. The drawback was that it didn't. In particular, when the processing dimensions are 1 to 10 μm, which is around several times the wavelength used, the difference between the processing dimensions and the set dimensions becomes large due to the effects of diffraction, etc., and processing that requires high precision at submicron scales. It was difficult to do so. In other words, in the past, depending on the laser beam power, aperture size, etc., the actual processing dimensions could be larger or smaller than the set dimensions, resulting in high-density patterns (circuit patterns, etc.) with a width of 3 to 2 μm. Processed pattern (defects, etc.)
It was difficult to remove it.

本発明の目的は、上記した従来技術の欠点をな
くし、所望のサイズを正確に高精度に加工修正で
きるようにした絞り投影方式のレーザ加工方法及
びその装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an aperture projection type laser processing method and an apparatus therefor, which eliminate the drawbacks of the prior art described above and allow processing and correction of a desired size with high precision.

上記目的を達成するために、本発明は、加工寸
法Lは L=w/k(mlog P+n)+(elog P+f) (但し、kは倍率、wは絞りの大きさ(寸法)、P
はレーザ光のパワー、m、n、e、fは各々定
数)なる関係を有することに着目し、対物レンズ
を通して結像される被加工物上の被加工パターン
の像を電子ライン等で囲んで被加工パターンの像
の大きさを測定する測定手段を設け、該測定手段
によつて測定された被加工物上の被加工パターン
の大きさの値Lとレーザ発振器から出力されるレ
ーザビームのパワーの値Pとにより上記関係式か
ら値wを演算する演算手段を設け、上記絞りの大
きさを該演算手段で求められた値wになるように
調整する調整手段を設け、被加工パターンを能率
よく、且高精度に加工できるようにしたことを特
徴とするものである。
In order to achieve the above object, the present invention has the processing dimension L = w/k (mlog P+n) + (elog P+f) (where k is the magnification, w is the size (dimension) of the aperture, and P
is the power of the laser beam, and m, n, e, and f are each constant), and by surrounding the image of the pattern on the workpiece formed through the objective lens with an electron line, etc. A measuring means for measuring the size of the image of the pattern to be processed is provided, and the value L of the size of the pattern to be processed on the workpiece measured by the measuring device and the power of the laser beam output from the laser oscillator. A calculation means is provided for calculating the value w from the above relational expression using the value P of It is characterized by being able to be processed easily and with high precision.

以下本発明を図に示す実施例にもとづいて説明
する。まず、絞りの投影寸法を0.5〜10μmまで
可変して100倍の対物レンズを用いて投影加工を
行なつたところ、各レーザビームパワーPにおい
て第1図に示すレーザビームパワーP=4KWの
場合と同じように次の(1)式関係を有することが確
認できた。
The present invention will be explained below based on embodiments shown in the drawings. First, we performed projection processing using a 100x objective lens by varying the projection size of the aperture from 0.5 to 10 μm. Similarly, it was confirmed that the following relationship (1) exists.

L=aW+b ……(1) 但しLは加工された寸法(μm)、Wは投影さ
れた絞り寸法(μm)である。またa、bは各々
係数である。
L=aW+b...(1) where L is the processed size (μm) and W is the projected aperture size (μm). Further, a and b are each coefficients.

ところでレーザ発振器の出力、即ちレーザビー
ムパワーP(KW)を1〜10KWに可変してみる
に、上記係数aの値は第2図に示すように発振器
の出力Pを対数にとると直線となり、次の(2)式の
関係を有することが確認できた。
By the way, when the output of the laser oscillator, that is, the laser beam power P (KW), is varied from 1 to 10 KW, the value of the coefficient a becomes a straight line when the output P of the oscillator is taken as a logarithm, as shown in Fig. 2. It was confirmed that the following relationship (2) exists.

a=0.074 log P+0.95 ……(2) 同様に上記係数bも第2図に示すように次の(3)
式の関係を有することが確認できた。
a=0.074 log P+0.95...(2) Similarly, the above coefficient b is also the following (3) as shown in Figure 2.
It was confirmed that there is a relationship as shown in the formula.

b=0.48 log P+0.071 ……(3) これらのことから加工される寸法Lは投影され
る絞り寸法Wとレーザ発振器の出力(レーザビー
ムパワー)Pとの間に次の(4)式の関係を有するこ
とがわかつた。
b=0.48 log P+0.071...(3) From these facts, the dimension L to be machined is determined by the relationship between the projected aperture dimension W and the laser oscillator output (laser beam power) P as shown in equation (4) below. It was found that there is a relationship.

L=(0.074logP+0.95)W +(0.48logP+0.071) ……(4) 従つて加工する寸法Lが必要な場合には、適当
なレーザビームパワーPを設定することにより次
の(5)式に示すように絞りの投影される大きさ
(巾)Wが求まる。
L = (0.074logP + 0.95) W + (0.48logP + 0.071) ... (4) Therefore, if the dimension L to be processed is required, the following (5) can be obtained by setting an appropriate laser beam power P. The projected size (width) W of the aperture is determined as shown in the formula.

W=L−(0.48logP+0.071)/0.
074logP+0.95……(5) 対物レンズの倍率kが100倍のものを用いた場
合、絞り面で大きさ(巾)wは次の(6)式で示すよ
うになる。
W=L-(0.48logP+0.071)/0.
074logP+0.95 (5) When an objective lens with a magnification k of 100 times is used, the size (width) w at the aperture plane is expressed by the following equation (6).

w=100W =100{L−(0.48logP+0.071)
}/0.074logP+0.95……(6) この(6)式を一般式で示せば次の(7)式のようにな
る。
w=100W =100{L-(0.48logP+0.071)
}/0.074logP+0.95...(6) Expressing this equation (6) as a general equation, it becomes the following equation (7).

w=KW=k{L−(elogP+f)}/mlogP+
n……(7) そこで加工すべき寸法Lを正確に測定すると、
(6)または(7)式を用いて加工条件に適応させて補正
をした絞りの大きさ(巾)wに設定することがで
き、高精度な加工結果を得ることができる。
w=KW=k{L-(elogP+f)}/mlogP+
n...(7) Then, if we accurately measure the dimension L to be processed,
The size (width) of the aperture can be set to a corrected size (width) w that is adapted to the machining conditions using equations (6) or (7), and highly accurate machining results can be obtained.

上記結果は窒素レーザ励起色素レーザの緑色光
を用いた場合である。この場合、パルスの半値巾
は約6nsである。他のレーザを用いた場合、波長
やパルス巾により、a、bの値は変わつてくる
が、高精度な加工を行うにはスリツト投影方式が
不可欠であることにはかわりがない。次に上記原
理にもとづいて例えばフオトマスクの欠陥修正を
行なうレーザ加工装置について第3図に従つて説
明する。レーザ発振器1から出たレーザ光2はス
リツト駆動部3により位置と巾が独立に可変の2
組のスリツトよりなる矩形開口を形成する絞り4
に導かれ、絞り4を通つたレーザ光が倍率100倍
の対物レンズ5に入り、XYテーブル16に載置
された被加工物であるフオトマスク6の被加工パ
ターンである欠陥パターン7に照射される。絞り
4とフオトマスク6とは対物レンズ5に関して、
共役像位置に置かれており、フオトマスク6上に
投影された絞りの像は1/100に縮小されている。
高倍率の対物レンズを用いているため投影像の位
置決め精度は0.5μm以内にできるが、これを確
保するために常に焦点合せ精度±0.3μm以内に
ピント合せをする必要があり、オペレータの個人
差が出るのを防ぐため、エアマイクロメーター方
式の自動焦点合せ機構17を用いている。このエ
アマイクロメーター方式の自動焦点合せ機構17
は、対物レンズ5を支持する鏡筒5aの下端にエ
アマイクロメータ17aを取付け、フオトマスク
6上に形成されたクロム膜の上面の位置を測定
し、合焦点位置からずれている場合には鏡筒5a
を矢印方向に微動させて焦点合せをするように構
成している。
The above results are obtained when green light from a nitrogen laser-excited dye laser is used. In this case, the half-width of the pulse is approximately 6 ns. When using other lasers, the values of a and b will change depending on the wavelength and pulse width, but the slit projection method is still essential for high-precision processing. Next, a laser processing apparatus for repairing defects in a photomask, for example, based on the above principle will be described with reference to FIG. A laser beam 2 emitted from a laser oscillator 1 is passed through a slit drive unit 3 whose position and width are independently variable.
A diaphragm 4 forming a rectangular opening consisting of a set of slits.
The laser beam passes through the aperture 4, enters the objective lens 5 with a magnification of 100 times, and is irradiated onto the defect pattern 7, which is the pattern to be processed on the photomask 6, which is the workpiece placed on the XY table 16. . The aperture 4 and photomask 6 are related to the objective lens 5.
It is placed at a conjugate image position, and the image of the aperture projected onto the photomask 6 is reduced to 1/100.
Since a high magnification objective lens is used, the positioning accuracy of the projected image can be within 0.5 μm, but to ensure this, it is necessary to always focus within ±0.3 μm, and individual operator differences may occur. In order to prevent this from occurring, an air micrometer type automatic focusing mechanism 17 is used. This air micrometer type automatic focusing mechanism 17
An air micrometer 17a is attached to the lower end of the lens barrel 5a that supports the objective lens 5, and the position of the upper surface of the chrome film formed on the photomask 6 is measured. 5a
It is configured to focus by slightly moving the lens in the direction of the arrow.

対物レンズ5は観察光学系の対物レンズも兼ね
ており、リレーレンズ8との組合わせでマスク欠
陥像を撮像手段である撮像器9の撮像面上に拡大
投影する。撮像器9は制御部10を通して表示装
置11に結合されており、約4000倍に拡大された
欠陥像を観察することができる。また、接眼光学
系12から欠陥像を直接観察することもできる。
The objective lens 5 also serves as the objective lens of the observation optical system, and in combination with the relay lens 8 enlarges and projects the mask defect image onto the imaging surface of the imager 9, which is an imaging means. The imager 9 is connected to a display device 11 through a control unit 10, and a defect image magnified approximately 4000 times can be observed. Further, the defect image can also be directly observed from the eyepiece optical system 12.

被加工パターンの像である欠陥像14の位置と
縦横の寸法の測定を行う測定手段は表示装置11
と画像制御部10とによつて構成されている。画
像制御部10には電子ライン測定機能が含まれて
おり、表示装置の画面中に独立に調整可動な2組
の電子ラインペアを出すことができる。ペアの各
ラインは独立に左右または上下に可動で、被加工
パターンの像である欠陥像14をこれら4本の電
子ラインで囲むと電子ラインの位置の信号間隔と
像の倍率とから自動的にその位置と縦横の寸法の
測定が行なわれる。この画像制御部10からの被
加工パターンの位置情報にもとづいて演算制御部
18が作動して制御手段である操作制御部19を
介してX−Yテーブル16を微動させて被加工パ
ターンである欠陥の中心を光軸に一致させて最終
的に位置決めする。更にこの画像制御部10から
の寸法測定結果Lと予め設定されたレーザビーム
パワーPとの情報から演算手段である演算制御部
18が w=k{L−(elogP+f)}/mlogP+
n にもとづいて設定すべき絞り4の大きさ(巾)w
を計算し、この信号は制御手段である操作制御部
19に入り、絞り駆動部3に送られて絞り4を最
適な大きさ(巾)に調整する。
The measuring means for measuring the position and vertical and horizontal dimensions of the defect image 14, which is an image of the pattern to be processed, is the display device 11.
and an image control section 10. The image control unit 10 includes an electronic line measurement function, and can produce two independently adjustable pairs of electronic lines on the screen of the display device. Each line of the pair can be moved left and right or up and down independently, and when the defect image 14, which is an image of the pattern to be processed, is surrounded by these four electron lines, the image is automatically Measurements are taken of its position and horizontal and vertical dimensions. Based on the position information of the pattern to be machined from the image control unit 10, the arithmetic control unit 18 operates to finely move the X-Y table 16 via the operation control unit 19, which is a control means, to detect defects in the pattern to be machined. The final position is made by aligning the center with the optical axis. Further, based on the information on the dimension measurement result L from the image control section 10 and the preset laser beam power P, the calculation control section 18, which is a calculation means, calculates w=k{L-(elogP+f)}/mlogP+
Size (width) of aperture 4 that should be set based on n
This signal enters the operation control section 19, which is a control means, and is sent to the aperture drive section 3, which adjusts the aperture 4 to the optimum size (width).

従つてオペレータに必要なことは表示装置11
上の欠陥像14を縦、横両方向の電子ラインペア
13で囲み、レーザ照射ボタンを押すだけであ
り、照射後欠陥像14が消滅したことを確認して
操作制御部19の次の欠陥位置に移動するボタン
をおすと、同制御部19にセツトされた欠陥番地
を記録したカセツトテープ15から情報が取り出
されXYテーブル16が働いて、次の欠陥を表示
装置11の視野内にもつてくる。そしてまたこれ
を電子ラインで囲みレーザ照射ボタンを押すとい
う操作を繰返す。この間、マスク面のウネリなど
によるピント外れは自動焦点機構17によつて自
動的に調整され、オペレータは調整する必要はな
い。
Therefore, what the operator needs is the display device 11.
All you have to do is surround the upper defect image 14 with electron line pairs 13 in both vertical and horizontal directions and press the laser irradiation button. After irradiation, confirm that the defect image 14 has disappeared and move to the next defect position using the operation control unit 19. When the move button is pressed, information is retrieved from the cassette tape 15 in which the defect address set in the control section 19 is recorded, and the XY table 16 is operated to bring the next defect within the field of view of the display device 11. Then, the operation of surrounding this with an electron line and pressing the laser irradiation button is repeated. During this time, the automatic focus mechanism 17 automatically adjusts for out-of-focus due to waviness of the mask surface, and the operator does not need to make any adjustments.

このように被加工パターンの大きさを測定する
測定手段と、絞りの大きさを自動調整する調整手
段とを設けたことにより例えば3μm、2μm巾
という高密度のパターンを有するフオトマスク等
において存在する欠陥を正確に除去修正すること
ができる。
By providing a measurement means for measuring the size of the pattern to be processed and an adjustment means for automatically adjusting the size of the aperture, defects that exist in photomasks etc. that have high-density patterns of 3 μm or 2 μm width, for example, can be eliminated. can be accurately removed and fixed.

以上説明したように本発明は、被加工パターン
の大きさLを測定する測定手段と、該測定手段に
よつて得られた被加工パターンの大きさLとレー
ザビームパワーPとによつて定まる値wに絞りの
大きさを調整する調整手段とを備え付けたレーザ
加工方法及びその装置であるから、被加工パター
ンの大きさに合せて正確にレーザ加工することが
でき、その被加工パターンの附近に存在する回路
パターン等に影響を与えるのを防止することがで
きる。また本発明は、自動焦点出し手段と自動欠
陥位置出し手段を備え付けたので、被加工パター
ンの加工中まつたくピント出し調整を行なう必要
がなくなり、作業時間を2/3に短縮できただけで
なく、眼の個人差によるピントずれのための修正
誤差が出なくなり、所望の寸法精度を確実に得ら
れる。
As explained above, the present invention provides a measuring means for measuring the size L of a pattern to be processed, and a value determined by the size L of the pattern to be processed and the laser beam power P obtained by the measuring means. Since the laser processing method and its device are equipped with an adjusting means for adjusting the size of the aperture, it is possible to perform laser processing accurately according to the size of the pattern to be processed, and it is possible to perform laser processing in the vicinity of the pattern to be processed. It is possible to prevent the existing circuit patterns from being affected. Furthermore, since the present invention is equipped with an automatic focusing means and an automatic defect locating means, there is no need to adjust the focus while processing the pattern to be processed, which not only reduces the working time to 2/3. , correction errors due to out-of-focus due to individual differences in eyes do not occur, and the desired dimensional accuracy can be reliably obtained.

また、自動欠陥位置出しにより、自動的に欠陥
が視野内に入つてくるため、欠陥修正作業が大巾
に短縮できた。
In addition, automatic defect locating automatically brings defects into the field of view, which greatly shortens defect repair work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザパワー4KWでの投影された絞
りの寸法と実際に得られた加工寸法との関係を示
した図、第2図はレーザビームパワーPを変えた
場合の第1図に示す関係から表わされる関係式の
係数a、bの変化を示す図、第3図は本発明の絞
り投影方式のレーザ加工装置の一実施例を示す概
略構成図である。 符号の説明、1……レーザ発振器、3……絞り
駆動部、4……絞り、5……対物レンズ、6……
フオトマスク、7……欠陥パターン、9……撮像
器、10……画像制御部、11……表示装置、1
3……電子ラインペア、14……欠陥像、16…
…XYテーブル、17……自動焦点機構、18…
…演算制御部。
Figure 1 shows the relationship between the projected aperture dimensions and the actually obtained processing dimensions at a laser power of 4KW, and Figure 2 shows the relationship shown in Figure 1 when the laser beam power P is changed. FIG. 3 is a diagram showing changes in the coefficients a and b of the relational expression expressed by . Explanation of symbols, 1...Laser oscillator, 3...Aperture drive section, 4...Aperture, 5...Objective lens, 6...
Photomask, 7... Defect pattern, 9... Imager, 10... Image control section, 11... Display device, 1
3...Electron line pair, 14...Defect image, 16...
...XY table, 17... Automatic focus mechanism, 18...
...Arithmetic control unit.

Claims (1)

【特許請求の範囲】 1 被加工物上の被加工パターンの大きさを測定
手段により測定し、測定された被加工物上の被加
工パターンの大きさLと設定されたレーザ発振器
から出力されるレーザビームのパワーPとに基い
て w=k{L−(elog P+f)}/mlog
P+n (但し、kは倍率、e、f、m、nは各々定数)
なる関係式よりwを演算し、大きさを可変できる
ように形成された絞りの大きさを該w値になるよ
うに調整し、レーザ発振器から発振されたレーザ
光を大きさが調整された絞りを通して所定のパタ
ーンに形成し、該パターンを対物レンズにより被
加工物上に投影すると共に上記被加工パターンに
位置決めして被加工パターンをレーザ加工するこ
とを特徴とする絞り投影方式のレーザ加工方法。 2 レーザ発振器と、該レーザ発振器から発振さ
れるレーザ光を所定のパターンに形成するように
大きさを可変できるように形成した絞りと、該絞
りの大きさを可変する駆動手段と、上記絞りを通
して得られるパターンを被加工物上に投影する対
物レンズと、該対物レンズを通して結像される被
加工物上の被加工パターンの像を撮像手段により
撮像してその被加工パターンの像の位置とその大
きさを測定する測定手段と、該測定手段によつて
測定された被加工物上の被加工パターンの大きさ
の値Lと設定されたレーザ発振器から出力される
レーザビームのパワーの値Pとが入力され、これ
ら値L、Pとに基いて w=k{L−(elog P+f)}/mlog
P+n (但し、kは倍率、e、f、m、nは各々定数)
なる関係から値wを演算する演算手段と上記駆動
手段を駆動して上記絞りの大きさを、該演算手段
で求められた値wになるように調整すると共に、
上記測定手段によつて測定された被加工物の被加
工パターンの位置に基いて上記対物レンズによつ
て投影されるレーザパターンを被加工物の被加工
パターンに位置決めする制御手段とを備え付けた
ことを特徴とする絞り投影方式のレーザ加工装
置。
[Claims] 1. The size of the pattern to be processed on the workpiece is measured by a measuring means, and the size of the pattern to be processed on the workpiece is output from a laser oscillator set to the measured size L. Based on the laser beam power P, w=k{L-(elog P+f)}/mlog
P+n (k is the magnification, e, f, m, n are each constant)
Calculate w from the relational expression, adjust the size of the diaphragm formed so that the size can be changed so that it has the corresponding w value, and pass the laser beam oscillated from the laser oscillator through the diaphragm whose size has been adjusted. A laser processing method using an aperture projection method, characterized in that the pattern is formed into a predetermined pattern through a lens, the pattern is projected onto a workpiece by an objective lens, and the pattern is positioned on the workpiece pattern to perform laser processing on the workpiece pattern. 2. A laser oscillator, a diaphragm whose size is variable so as to form a laser beam emitted from the laser oscillator into a predetermined pattern, a driving means for varying the size of the diaphragm, and a laser beam emitted from the laser oscillator through the diaphragm. An objective lens projects the pattern to be obtained onto the workpiece, and an imaging means captures an image of the workpiece pattern on the workpiece formed through the objective lens, and determines the position and location of the image of the workpiece pattern. A measuring means for measuring the size, a value L of the size of the workpiece pattern on the workpiece measured by the measuring means, and a value P of the power of the laser beam output from the set laser oscillator. is input, and based on these values L and P, w=k{L-(elog P+f)}/mlog
P+n (k is the magnification, e, f, m, n are each constant)
Driving the arithmetic means for calculating the value w from the relationship, and the driving means, the size of the aperture is adjusted to the value w determined by the arithmetic means, and
and control means for positioning the laser pattern projected by the objective lens on the pattern of the workpiece on the basis of the position of the pattern of the workpiece measured by the measuring means. Aperture projection type laser processing equipment featuring:
JP1372980A 1980-02-08 1980-02-08 Laser working device with projection method using iris diaphragm Granted JPS56111227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1372980A JPS56111227A (en) 1980-02-08 1980-02-08 Laser working device with projection method using iris diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1372980A JPS56111227A (en) 1980-02-08 1980-02-08 Laser working device with projection method using iris diaphragm

Publications (2)

Publication Number Publication Date
JPS56111227A JPS56111227A (en) 1981-09-02
JPS625335B2 true JPS625335B2 (en) 1987-02-04

Family

ID=11841321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1372980A Granted JPS56111227A (en) 1980-02-08 1980-02-08 Laser working device with projection method using iris diaphragm

Country Status (1)

Country Link
JP (1) JPS56111227A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251687A (en) * 1991-01-23 1992-09-08 Fanuc Ltd Laser beam controller
JP3399590B2 (en) * 1993-08-04 2003-04-21 富士通株式会社 Wiring cutting device
JP3479833B2 (en) 2000-08-22 2003-12-15 日本電気株式会社 Laser correction method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456370A (en) * 1977-10-14 1979-05-07 Hitachi Ltd Mask pattern correcting method and mask pattern correcting device used for said method
JPS54105968A (en) * 1978-02-08 1979-08-20 Toshiba Corp Defect corrector for pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456370A (en) * 1977-10-14 1979-05-07 Hitachi Ltd Mask pattern correcting method and mask pattern correcting device used for said method
JPS54105968A (en) * 1978-02-08 1979-08-20 Toshiba Corp Defect corrector for pattern

Also Published As

Publication number Publication date
JPS56111227A (en) 1981-09-02

Similar Documents

Publication Publication Date Title
KR101099301B1 (en) Method for correcting critical dimension variations in photomasks
US20020067477A1 (en) Patten inspection apparatus, and exposure apparatus control system using same
US6730925B1 (en) Method and apparatus for projection exposure and device manufacturing method
DE102005052757B4 (en) Device for measuring the position of an object with a laser interferometer system
JP2530081B2 (en) Mask inspection equipment
DE60120825T2 (en) Lithographic apparatus, method of making a device, and apparatus made by this method
JPH01123238A (en) Method and apparatus for correcting effect of environmental parameter for imaging characteristic of optical system
JPH10294268A (en) Projection aligner and positioning method
JPH0697301B2 (en) Projection exposure device
JPS625335B2 (en)
JPS5918950A (en) Apparatus for projection transfer of mask on work piece and adjusting method thereof
JPH035651B2 (en)
JPH0290119A (en) Condensing optical device for laser drawing machine
TWI417677B (en) Exposure method, exposure apparatus, and device manufacturing method
JPH022559Y2 (en)
JPS6265327A (en) Alignment device
JPH0847791A (en) Laser beam machine
JP3104813B2 (en) Alignment apparatus, projection exposure apparatus, and element manufacturing method
JPH02218110A (en) Apparatus and method of optical image formation
JP3352280B2 (en) Projection exposure apparatus adjusting method and exposure method
JP2755354B2 (en) Laser processing equipment
JP3062390B2 (en) Apparatus and method for producing shadow mask pattern plate
JPS623280A (en) Diffraction grating exposure device
JPH0697036A (en) Focussing device of projection aligner
JPH08227845A (en) Method for inspecting projection optical system and projection exposure apparatus for executing method thereof