JPS6253310A - Production of beadlike self-crosslinking water-absorbing polymer - Google Patents

Production of beadlike self-crosslinking water-absorbing polymer

Info

Publication number
JPS6253310A
JPS6253310A JP19340485A JP19340485A JPS6253310A JP S6253310 A JPS6253310 A JP S6253310A JP 19340485 A JP19340485 A JP 19340485A JP 19340485 A JP19340485 A JP 19340485A JP S6253310 A JPS6253310 A JP S6253310A
Authority
JP
Japan
Prior art keywords
water
acrylic acid
polymer
monomer
water absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19340485A
Other languages
Japanese (ja)
Other versions
JPH0713109B2 (en
Inventor
Kiichi Ito
喜一 伊藤
Takeshi Shibano
芝野 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP60193404A priority Critical patent/JPH0713109B2/en
Publication of JPS6253310A publication Critical patent/JPS6253310A/en
Publication of JPH0713109B2 publication Critical patent/JPH0713109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled polymer, having improved water absorbing property and strength and useful for sanitary good, etc., by polymerizing an acrylic acid and a salt thereof under specific conditions using a copolymer of an alpha-olefin with an unsaturated polyfunctional carboxylic acid anhydride as a surfactant without using a crosslinking agent. CONSTITUTION:Acrylic acid or a mixture of acrylic acid with methacrylic acid and alkali metal salts thereof are polymerized in the presence of a water- soluble radical polymerization initiator, dispersing agent and a copolymer of an alpha-olefin with an alpha,beta-unsaturated polyfunctional carboxylic acid anhydride or a derivative thereof as a surfactant and water to give >=30wt%- saturated concentration range, based on the amount of the monomer after neutralization, monomer concentration based on the water present in the reaction system in the absence of a crosslinking agent by the water-in-oil type reversed phase suspension polymerization method. Thereby, the aimed polymer is obtained.

Description

【発明の詳細な説明】 本発明は吸水性に優れ、且つ、吸水rル強度が大きく、
重合体の粒径が大きな容易に粉砕できる高吸水性ポリー
ーの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has excellent water absorbency and high water absorption resistance.
The present invention relates to a method for producing a highly water-absorbent polymer having a large particle size and being easily pulverized.

〔産業上の利用分野〕[Industrial application field]

本発明の製造方法によりて得られるポリマーは吸水性に
優れており、多量の水を吸水して膨潤するが、水に不溶
性があり、且つ吸水rル強度が大きく、重合体の粒径が
大きくポリマー自体が容易に粉砕できるものであるから
、各種の吸収材料又は吸水して膨潤した状態で使用する
各種の材料の製造に有利に使用することがモきる。
The polymer obtained by the production method of the present invention has excellent water absorption and swells when it absorbs a large amount of water, but it is insoluble in water, has a high water absorption strength, and has a large particle size. Since the polymer itself can be easily crushed, it can be advantageously used in the production of various absorbent materials or materials that are used in a swollen state after absorbing water.

〔従来技術〕[Prior art]

従来、紙、パイプ、不織布、スポンジ状ウレタン樹脂等
は保水剤として、生理用ナプキン、紙オシメ、各種の衛
生材料及び各種の農業用材料等に使用されてきた。しか
し、これらの材料は、その吸水量が自重の10〜50倍
程度にすぎないので、多量の水を吸収又は保持せしめる
ためには、多量の材料が必要であり、著しく嵩高になる
ばかりでなく、吸水した材料を加圧すると簡単に水分を
分離する等の欠点があった。
Conventionally, paper, pipes, nonwoven fabrics, sponge-like urethane resins, and the like have been used as water-retaining agents in sanitary napkins, paper diapers, various sanitary materials, and various agricultural materials. However, these materials absorb only 10 to 50 times their own weight, so in order to absorb or retain a large amount of water, a large amount of material is required, which not only makes them extremely bulky, but also makes them extremely bulky. However, there were drawbacks such as the fact that when pressurizing a material that has absorbed water, the water easily separates.

この種の吸水材料の上記欠点を改良するものとして、近
年、高吸水性の種々の高分子材料が提案されている。例
えば、澱粉グラフト重合体(特公昭53−46199号
公報等)、セルロース変性材、(特開昭50−8037
6号公報等)、水溶性高分子の架橋物(%公昭43−2
3462号公報等)、自己架橋型アクリル酸アルカリ金
属塩ポリマー(特公昭54−30710号公報等)、等
が提案され友。
In order to improve the above-mentioned drawbacks of this type of water-absorbing material, various highly water-absorbing polymeric materials have been proposed in recent years. For example, starch graft polymers (Japanese Patent Publication No. 53-46199, etc.), cellulose modified materials, (Japanese Patent Publication No. 50-8037, etc.)
Publication No. 6, etc.), cross-linked products of water-soluble polymers (% Publication No. 43-2, etc.)
3462, etc.), self-crosslinking type acrylic acid alkali metal salt polymer (Japanese Patent Publication No. 30710/1983, etc.), etc., have been proposed.

しかしながら、これらの高吸水性高分子材料も吸水量に
おいて未だ不光分であり、吸水時のグル強度も小さく、
父上記公報のあるものは乾燥によシ得られ次ポリマーが
極めて堅く、容易に粉砕することが困難で大きな機械的
粉砕力を必要とする等、実用上又は工業的規模での製造
上多くの問題点を有している。
However, these superabsorbent polymer materials are still opaque in terms of water absorption, and have low glue strength when absorbing water.
The above publication discloses that the polymer obtained by drying is extremely hard, difficult to crush easily, and requires a large mechanical crushing force, which makes it difficult to manufacture on a practical or industrial scale. There are problems.

本発明者らは、既に従来の吸水性材料の上記欠点を改良
した吸水材料の製造方法を提案した(特願昭59−27
5308号公報。以下先願と称す。) 然るに上記先願に開示された方法で製造され友吸水材料
も種々の欠点を有している。即ち、油中水滴型逆相懸濁
重合方法における界面活性剤としてHLBが3〜6の非
イオン系界面活性剤を用いる為に、得られたポリマーの
粒径が100μm以下と極めて微粉末なものとなってし
゛まう。
The present inventors have already proposed a method for producing a water-absorbing material that improves the above-mentioned drawbacks of conventional water-absorbing materials (Japanese Patent Application No. 59-27
Publication No. 5308. Hereinafter referred to as the prior application. ) However, the water-absorbing material manufactured by the method disclosed in the above-mentioned prior application also has various drawbacks. That is, since a nonionic surfactant with an HLB of 3 to 6 is used as a surfactant in the water-in-oil reverse phase suspension polymerization method, the resulting polymer has an extremely fine particle size of 100 μm or less. It becomes like that.

この為に粉末を取り扱う場合、粉塵対策が必要である。For this reason, when handling powder, dust countermeasures are necessary.

iた、吸水時のグル強度も末だ不充分であり、より優れ
た形態保持性を有するポリマーの出現が望まれてきた。
Furthermore, the glue strength upon water absorption is still insufficient, and there has been a desire for a polymer with better shape retention.

〔発明が解決せんとする問題点〕[Problem that the invention seeks to solve]

本発明は、前記の欠点を改良して、高吸水性を保持しつ
つ、吸水時のグル強度を更に改良し、重合体の粒径が極
めて大きく、容易に粉砕できる高吸水性ポリマーを再現
性良く製造する方法を提供せんとするものである。
The present invention improves the above-mentioned drawbacks, maintains high water absorbency, further improves the glue strength during water absorption, and produces a super water absorbent polymer with extremely large particle size that can be easily pulverized with high reproducibility. The purpose is to provide a method for manufacturing it efficiently.

〔問題点を解決するための手段〕[Means for solving problems]

(発明の構成) 本発明者等は、前記の問題点を解決するため種々研究を
重ねた結果、アルカリ酸系モノマーを水溶性ラジカル重
合開始剤、分散媒、界面活性剤及び水の存在下で油中水
滴型の逆相懸濁重合法によって重合させる方法において
、界面活性剤としてα−オレフィンとα、β−不飽和多
価カルボン酸無水物との共重合体又はその誘導体を用い
、重合反応系に存在する水に対するアクリル酸系モノマ
ー濃度を30重量係以上とし、且つ架橋剤の不存在下で
重合させることにより、極めて吸水能の大きい、具体的
には自重の700倍以上の吸水量を有し、且つグル強度
が大きく、重合体の粒径が極めて大きく、具体的には平
均粒径が100μm以上で容易に粉砕できるビーズ状自
己架橋型吸水/ IJママ−容易に得られることを見い
出し、本発明を完成するに至ったものである。
(Structure of the Invention) As a result of various studies to solve the above-mentioned problems, the present inventors have discovered that alkaline acid monomers can be used in the presence of a water-soluble radical polymerization initiator, a dispersion medium, a surfactant, and water. In a polymerization method using a water-in-oil type reverse-phase suspension polymerization method, a copolymer of an α-olefin and an α,β-unsaturated polycarboxylic acid anhydride or a derivative thereof is used as a surfactant, and the polymerization reaction By setting the acrylic acid monomer concentration to the water present in the system at 30% by weight or more and polymerizing in the absence of a crosslinking agent, it has an extremely high water absorption capacity, specifically, a water absorption amount of 700 times or more than its own weight. A bead-shaped self-crosslinking type water absorbent/IJ Mama that has a high glue strength and an extremely large polymer particle size, specifically an average particle size of 100 μm or more and can be easily crushed. , which led to the completion of the present invention.

(発明の背景と特徴) 本発明の油中水滴型の逆相懸濁重合法において界面活性
剤として使用されるα−オレフィンと多価カルボン酸無
水物との共重合体又はその誘導体は、先に特開昭57−
74309号公報に、ビーズ状水溶性ポリマーの製造法
として開示されており、この技術を本発明に応用するこ
とができる。
(Background and Features of the Invention) The copolymer of α-olefin and polyhydric carboxylic acid anhydride or its derivative used as a surfactant in the water-in-oil type reverse-phase suspension polymerization method of the present invention is Published in Japanese Unexamined Patent Publication No. 57-
No. 74309 discloses a method for producing bead-like water-soluble polymers, and this technique can be applied to the present invention.

しかしながら、本発明と上記特開昭57−74309号
公報に開示されている発明との最も異る点は生成した。
However, the biggest difference between the present invention and the invention disclosed in JP-A-57-74309 is the generation.

7 リマーが水に対して可溶性であるか不溶性であるか
の点である。ここで不溶性とは、水にポリマーを入れて
室温において攪拌すると吸水・膨潤してグル状となるが
、攪拌を停止して放置すると流動性を失ったシ、相分離
を起こすことを指し、水溶性とは攪拌により均一な水溶
液状となり、攪拌を止めて同一温度に放置してもこの状
態が継続することを指す。
7. Whether the limer is soluble or insoluble in water. Insolubility here refers to the fact that when a polymer is placed in water and stirred at room temperature, it absorbs water and swells to form a glue-like structure, but when the stirring is stopped and the polymer is left to stand, it loses fluidity and phase separation occurs. Stirring refers to the fact that it becomes a uniform aqueous solution by stirring, and this state continues even if the stirring is stopped and the solution is left at the same temperature.

本発明により製造されるポリマーは本質的に水に不溶の
ものであり、水を吸収し、これを保持するという特異な
性質を持つものである。この性質を具備せしめるために
その製造において、架橋反応を生起せしめてポリマーを
不溶化することが必須である。水浴性ポリマーが本発明
に係る水不溶性ポリマーに混入すると、吸水性能が低下
することは勿論のこと、吸水グル強度が極端に低下し、
吸水後のポリマーについてはヌルヌルした感じのものと
なり、サランとし友感触を与えず、その取扱いを困難に
するという理由により、本発明の目的から水溶性ポリマ
ーは排除されるものである。
The polymers produced according to the present invention are essentially insoluble in water and have the unique property of absorbing and retaining water. In order to provide this property, it is essential to cause a crosslinking reaction to insolubilize the polymer during its production. When a water-bathable polymer is mixed with the water-insoluble polymer according to the present invention, not only the water absorption performance will be reduced, but also the water absorption glue strength will be extremely reduced.
Water-soluble polymers are excluded from the purpose of the present invention because the polymer after water absorption becomes slimy, does not give a saran-like feel, and is difficult to handle.

本発明において、アクリル酸またはアクリル酸/メタク
リル酸混合物を使用し、その全カルゲキシル基の50モ
ル係以上をアルカリ金属塩に中和せしめること、且つ水
に対して中和後のモノマー濃度として30重量係以上〜
飽和濃度の範囲とすること、アクリル酸/メタクリル酸
混合物を使用する場合、該混合物中のメタクリル酸濃度
は20モル俤以下とすること、更に水浴性重合開始剤と
しては過酸化水素或いは過硫酸塩を用いることにより、
架橋剤を用いずに架橋反応を生起せしめ、ポリマーを不
溶化しうろことが判明した。
In the present invention, acrylic acid or an acrylic acid/methacrylic acid mixture is used, and at least 50 moles of the total calgexyl groups are neutralized with an alkali metal salt, and the monomer concentration after neutralization with respect to water is 30% by weight. Person in charge or above
When using an acrylic acid/methacrylic acid mixture, the methacrylic acid concentration in the mixture must be 20 molar or less, and hydrogen peroxide or persulfate should be used as a water bath polymerization initiator. By using
It was found that the crosslinking reaction could be caused without using a crosslinking agent and the polymer could be insolubilized.

本発明により製造されるポリマーは粒子径が著しく大き
く、高吸水性で吸水rル強度の極めて大きいという特性
を具備しているものである。
The polymer produced according to the present invention has characteristics of extremely large particle size, high water absorption, and extremely high water absorption strength.

この様な特性をもつ水不溶性ポリマーは、上述の如く逆
相懸濁重合において、架橋反応を生ぜしめる条件を採用
すると共に、界面活性剤としてのα−オレフィンとα、
β−不飽和多価カルイン酸無水物との共重合体又はその
誘導体を使用することによって初めて製造が可能となる
のである。
Water-insoluble polymers with such characteristics are produced by using conditions that cause a crosslinking reaction in reverse-phase suspension polymerization as described above, and by using α-olefin and α-olefin as surfactants.
Production becomes possible for the first time by using a copolymer with β-unsaturated polycarinic acid anhydride or a derivative thereof.

一般的に吸水量と吸水グル強度とは相反する傾向を示す
。即ち、吸水量を多くしようとする為には、ポリマーの
不溶化の為の架橋割合を出来る限り少なくする必要があ
るが、一方吸水rル強度はこれとは逆に小さくなる。従
って、吸水rル強度を上げる為には、架橋割合を増加さ
せる必要があるが、十分満足な吸水グル強度を得るには
、通常吸水量は実用に供しが几い程度に、即ち、自重の
300倍以下程度のものとなってしまうのが現実である
。即ち、本発明方法以外の方法にて、例えば2官能性の
ジビニル化合物やカル?キシル基と反応しうる2官能性
化合′吻存在下水浴液重合や溶液重合を行って得らnた
月?リマーは、これら架橋剤の情を極力少なくしても吸
水量は高々自重の1000倍程度であり、このもの自身
は吸水グル強度は極めて小さく、ペースト状のものとな
シ、十分満足な吸水グル強度を得るべく架橋剤量を増加
せしめた場合、吸水量は自重の300倍以下となってし
まう。
In general, water absorption amount and water absorption gluing strength show contradictory tendencies. That is, in order to increase the amount of water absorption, it is necessary to reduce the crosslinking ratio for insolubilization of the polymer as much as possible, but on the other hand, the water absorption strength decreases. Therefore, in order to increase the water absorption glue strength, it is necessary to increase the crosslinking ratio, but in order to obtain a sufficiently satisfactory water absorption glue strength, the water absorption amount is usually set to a level that is not suitable for practical use. In reality, it is about 300 times or less. That is, by a method other than the method of the present invention, for example, a difunctional divinyl compound or a divinyl compound or a divinyl compound, etc. Obtained by water bath liquid polymerization or solution polymerization in the presence of a bifunctional compound capable of reacting with xyl groups. Even if the amount of cross-linking agent used in remer is minimized, the water absorption amount is at most about 1000 times its own weight, and the water absorption strength of the remer itself is extremely low, and if it is in the form of a paste, it will not be able to absorb enough water. If the amount of crosslinking agent is increased in order to obtain strength, the amount of water absorbed will be 300 times or less than its own weight.

また、特開昭56−76419号公報には、架橋剤ヲ用
いず、水相中にヒドロキシエチルセルロースを含有した
35重量係〜飽和濃度のアクリル酸アルカリ金属塩水溶
液を油中水滴型逆相懸濁重合法が提案されている。
In addition, JP-A-56-76419 discloses a water-in-oil type reverse phase suspension of an aqueous solution of an alkali metal acrylate with a concentration of 35% by weight to saturation containing hydroxyethylcellulose in the aqueous phase without using a crosslinking agent. A polymerization method has been proposed.

不法で得られるポリマーの吸水量は自重の500〜70
0倍と比較的高い値を示すが、吸水rル強度が極めて弱
く、耐久性に極めて乏しい欠点を有する。ま几、該方法
で得られfc1f!1,1マーは、粒子径が数百μmの
かなり大きなものが得られることが特徴の1つであるが
、均一性良く得られることは困難であり、通常0μm程
度の小さいものから500μm程度のかなり大きなもの
と、かなシ幅広い分布を示す。
The water absorption capacity of illegally obtained polymers is 500 to 70% of its own weight.
Although it exhibits a relatively high value of 0 times, it has the disadvantage of extremely low water absorption strength and extremely poor durability. Well, fc1f obtained by this method! One of the characteristics of 1,1 mer is that it can be obtained in fairly large particles with a particle size of several hundred μm, but it is difficult to obtain it with good uniformity, and it is usually small, about 0 μm to about 500 μm. Some are quite large and have a wide distribution.

本発明は上記の様な従来の問題点を解決し友吸水rル強
度の大きな、しかも吸水量を低下せしめることなく、具
体的には自重の700倍以上の吸水能を有し、その平均
粒子径が100μm以上で且つその分布が狭い高吸水性
ポリマーの製造法を提供するものであり、ここに本発明
の最大の特徴を有するものである。
The present invention solves the above-mentioned conventional problems and has a high water absorbing strength without reducing the amount of water absorbed.Specifically, it has a water absorbing capacity of more than 700 times its own weight, and its average particle The present invention provides a method for producing a superabsorbent polymer having a diameter of 100 μm or more and a narrow distribution, and this is the most distinctive feature of the present invention.

(発明の詳細な説明) (1)モノマ一 本発明の重合反応において用いるモノマーは、アクリル
酸又は20モルチ以下のメタクリル酸を含有するアクリ
ル酸とメタクリル酸の混合物であって、且つその全カル
ゲキシル基の50モルチ以上、好ましくは60モルチ以
上がアルカリ金属塩に部分的に中和されてなるアクリル
酸系モノマーである。そしてアクリル酸とメタクリル酸
との混合物の場合は、このように20モル′チまでの量
のメタクリル酸を含有しうるが、しかしメタクリル酸の
量が多くなると吸水量が著しく小ぢくなり、又、可溶部
が多くなるので、メタクリル酸の含有量は10モルチ以
下が好ましい。
(Detailed Description of the Invention) (1) Monomer 1 The monomer used in the polymerization reaction of the present invention is acrylic acid or a mixture of acrylic acid and methacrylic acid containing 20 mol methacrylic acid or less, and all of its cargexyl groups. The acrylic acid monomer is partially neutralized with an alkali metal salt at least 50 moles, preferably at least 60 moles. In the case of a mixture of acrylic acid and methacrylic acid, the amount of methacrylic acid can be up to 20 mol. Since the soluble portion increases, the content of methacrylic acid is preferably 10 molar or less.

かかるアクリル酸またはアクリル酸とメタクリル酸混合
物(以下、これらを「酸モノマー」と総称することがあ
る。)の部分的中和の度合は、前述のようにその全カル
?キシル基の50モルチ以上、好ましくは60モルチ以
上がアルカリ金属塩になっている範囲である。その部分
的中和度があまシ低くなシすぎると吸水量が著しく低下
し、得られた吸水rル強度も極めて弱いものとなる。
As mentioned above, the degree of partial neutralization of acrylic acid or a mixture of acrylic acid and methacrylic acid (hereinafter sometimes referred to collectively as "acid monomers") is determined by its total cal? The range is such that 50 moles or more, preferably 60 moles or more of the xyl groups are alkali metal salts. If the degree of partial neutralization is too low, the water absorption amount will drop significantly and the obtained water absorption strength will also be extremely weak.

酷モノマーの中和には、アルカリ金属の水酸化物や重炭
酸塩等が使用可能であるが、好ましくはアルカリ金属水
酸化物であり、その具体例としては水酸化ナトリウム、
水酸化カリウム及び水酸化リチウムが挙げられる。工業
的入手の容易さ、価格、及び安全性の点から水酸化ナト
リウムが最も好ましい。
Alkali metal hydroxides, bicarbonates, etc. can be used to neutralize the harsh monomer, but alkali metal hydroxides are preferable, and specific examples include sodium hydroxide,
Potassium hydroxide and lithium hydroxide are mentioned. Sodium hydroxide is most preferred in terms of industrial availability, price, and safety.

(2)水溶性ラジカル重合開始剤 本発明の製1法において用いられるラジカル重合開始剤
としては、過流酸カリウムや過硫酸アンモニウム轡の過
硫酸塩、或いは過酸化水素である。これらの水溶性ラジ
カル重合開始剤は混合して使用しても良いし、また亜硫
酸塩のような還元性物質や、アミy類等を組合わせてレ
ドックス型の重合開始剤にして使用しても良い。
(2) Water-soluble radical polymerization initiator The radical polymerization initiator used in the first production method of the present invention is persulfate such as potassium persulfate or ammonium persulfate, or hydrogen peroxide. These water-soluble radical polymerization initiators may be used in combination, or they may be used as a redox type polymerization initiator by combining reducing substances such as sulfites, amino acids, etc. good.

これ、ら過硫酸塩や過酸化水素の使用量は中和後のアク
リル酸系モノマーに対して0.01〜5重量%、好まし
くは0.1〜1重t%である。
The amount of these persulfates and hydrogen peroxide used is 0.01 to 5% by weight, preferably 0.1 to 1% by weight, based on the neutralized acrylic acid monomer.

なお、ラジカル重合開始剤として他の水溶性のもの、例
えばし−プチルハイドロノセーオキシド、クメンハイド
ロノ譬−オキシド等のハイドロパーオキシド、2,2′
−アゾビス(2−アミジリグロ7母ン)二塩酸塩等のア
ゾ化合物を使用すると得られるポリマーは水溶性となυ
、本発明の目的を達成することはできない。
In addition, as a radical polymerization initiator, other water-soluble initiators, such as hydroperoxides such as butylhydronose oxide and cumene hydronooxide, 2,2'
-When using an azo compound such as azobis(2-amidiligulo-7) dihydrochloride, the resulting polymer becomes water-soluble.
, the purpose of the present invention cannot be achieved.

(3)界面活性剤 本発明の製造方法において用いられる界面活性剤は、α
−オレフィンとα、β−不飽和多価カルボン酸無水物と
の共重合体又はその誘導体である。α−オレフィンとし
ては炭素数10〜100、好ましくは炭素数16〜60
である。
(3) Surfactant The surfactant used in the production method of the present invention is α
- A copolymer of an olefin and an α,β-unsaturated polycarboxylic acid anhydride or a derivative thereof. The α-olefin has 10 to 100 carbon atoms, preferably 16 to 60 carbon atoms.
It is.

又α、β−不飽和多価カルボン酸無水物としては、無水
マレイン酸、無水シトラコン酸、無水イタコン酸等が例
示されるが、この中でも無水マレイン酸が好ましい。こ
れら共重合体の誘導体としては、共重合体の部分エステ
ル化物又は部分アミド化物である。部分エステル化物と
しては共重合体のモノメチルエステル、モノエチルエス
テル、モノブチルエステル等を挙げることができる。ま
た、共重合体の部分アミド化物としては、共重合体のモ
ノエチルアミド、モノエチルアミド、モノブチルアミド
等を挙げることができる。
Further, examples of the α,β-unsaturated polycarboxylic acid anhydride include maleic anhydride, citraconic anhydride, itaconic anhydride, etc. Among these, maleic anhydride is preferred. Derivatives of these copolymers include partially esterified or partially amidated copolymers. Examples of the partially esterified product include copolymer monomethyl ester, monoethyl ester, monobutyl ester, and the like. Further, examples of partially amidated copolymers include monoethylamide, monoethylamide, monobutylamide, and the like of copolymers.

上記共重合体又はその誘導体の分子#Fi5,000〜
100,000.好ましくは、10,000〜50.0
00である。
Molecule of the above copolymer or its derivative #Fi5,000~
100,000. Preferably 10,000 to 50.0
It is 00.

更に、本発明ではα−オレフィン/α、β−不飽和多価
カルがン酸無水物共重合体は使用の際に酸無水物の状態
であっても或いは一部又は全部開環した状態であっても
よい。
Furthermore, in the present invention, the α-olefin/α,β-unsaturated polycarboxylic acid anhydride copolymer may be used in an acid anhydride state or in a partially or completely ring-opened state. There may be.

これら界面活性剤の使用量は、分散媒に対して、0.0
1〜10重量%、好ましくは0.05〜5重量%である
The amount of these surfactants used is 0.0
It is 1 to 10% by weight, preferably 0.05 to 5% by weight.

(4)分散媒 本発明に用いられる分散媒は、原則として重合に関与せ
ずかつ水と混合しない限りすべての液体が使用可能であ
る。例えば、ベンゼン、エチルベンゼン、トルエン、キ
シレン等の芳香族炭化水素、シクロヘキサン、メチルシ
クロヘキサン、シクロオクタン、デカリン等の脂環族炭
化水素、ヘキサン、ペン、タン、ヘゲタン、オクタン等
の脂肪族炭化水素、クロルベンゼン、ブロムベンゼン、
ジクロルベンゼン等のハロダン化炭化水素が挙げられる
。これらの中でも特にシクロヘキサン、メチルシクロヘ
キサン等の脂環族炭化水素、ヘキサン、ヘゲタン等の脂
肪族炭化水素が好ましい具体例として挙げられる。
(4) Dispersion medium In principle, any liquid can be used as the dispersion medium used in the present invention as long as it does not participate in polymerization and does not mix with water. For example, aromatic hydrocarbons such as benzene, ethylbenzene, toluene, and xylene; alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, cyclooctane, and decalin; aliphatic hydrocarbons such as hexane, pen, tan, hegetane, and octane; benzene, brobenzene,
Examples include halodanized hydrocarbons such as dichlorobenzene. Among these, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, and aliphatic hydrocarbons such as hexane and hegetane are particularly preferred.

又、これらの分散媒は1種あるいは2種以上を適宜に併
用することも可能である。
Further, these dispersion media can be used alone or in combination of two or more.

これら分散媒の使用量は、重合反応系を油中水滴型にす
るため、及び重合反応熱の除去の点からして、モノマー
水溶液量に対して容量で0.5〜10倍号、好ましくは
1〜5倍量にするのが望ましい。
The amount of these dispersion media used is preferably 0.5 to 10 times the volume of the monomer aqueous solution, in order to make the polymerization reaction system a water-in-oil type, and from the standpoint of removing the heat of the polymerization reaction. It is desirable to increase the amount by 1 to 5 times.

(5)水 本発明の重合反応液には、水とアクリル酸モノマー量と
は、前記したとおシの割合で存在せしめる(この点につ
いてはさらに後で詳述する。)。
(5) Water In the polymerization reaction solution of the present invention, water and acrylic acid monomer are present in the proportions described above (this point will be explained in more detail later).

また、水と分散媒とは、前記の様に分散媒が水相即ち、
モノマー水溶液に対して容量で0.5〜10倍量、好ま
しくけ1〜5倍量になる割合において用いられるのが望
ましい。分散媒に対して水の割合が多くなシすぎると、
重合熱の除去が極めて困難となシ、安定表油中水滴型の
懸濁系が得られなくなる。また、分散媒に対して水の割
合があまシ少なくなると、単位バッチ当りのモノマー濃
度が小さくなり、生産性が悪くなり経済的に不利である
In addition, water and a dispersion medium mean that, as mentioned above, the dispersion medium is an aqueous phase, that is,
It is desirable to use the monomer in an amount of 0.5 to 10 times, preferably 1 to 5 times, the volume of the monomer aqueous solution. If the ratio of water to dispersion medium is too high,
Since it is extremely difficult to remove the heat of polymerization, a stable water-in-surface-oil type suspension system cannot be obtained. Furthermore, if the ratio of water to the dispersion medium is too small, the monomer concentration per unit batch will be low, which will reduce productivity and be economically disadvantageous.

なお、反応系への水の添加は、前記したように酸モノマ
ーを中和する中和剤を溶解せしめる水の型で添加するの
が一般的で好ましいが、水の一部は別途適宜の方法で添
加することも可能である。また、水は酸モノマーと中和
剤との中和反応によっても一部生成される。
Note that water is generally added to the reaction system preferably in the form of water that dissolves the neutralizing agent that neutralizes the acid monomer, as described above, but a portion of the water may be added separately by an appropriate method. It is also possible to add In addition, some water is also generated by a neutralization reaction between an acid monomer and a neutralizing agent.

本発明においては、以上詳述したアクリル酸系モノマー
を、水溶性ラジカル重合開始剤、分散媒、界面活性剤、
及び水の存在下で油中水滴型の逆相懸濁重合法によって
重合させるが、既述の様にその際の重合反応系に存在す
る水に対するアクリル酸系モノマー濃度を中和後のモノ
マー濃度として、30MMn2上〜飽和濃度の範囲とし
、重点が本発明の1つの重要な構成要件をなすものであ
る。即ち、中和後のモノマー濃度が30重−i%以下で
は、得られるポリマーは水溶性部分が多くなり、また得
られる吸水rル強度も小さく、本発明の目的を達成する
ことはできない。
In the present invention, the acrylic acid monomer detailed above is used as a water-soluble radical polymerization initiator, a dispersion medium, a surfactant,
Polymerization is carried out by a water-in-oil reverse phase suspension polymerization method in the presence of water and water, but as mentioned above, the concentration of acrylic acid monomers relative to the water present in the polymerization reaction system at that time is the monomer concentration after neutralization. As such, the range from above 30 MMn2 to the saturation concentration is an important component of the present invention. That is, if the monomer concentration after neutralization is less than 30% by weight, the resulting polymer will have a large water-soluble portion and the resulting water absorption strength will be low, making it impossible to achieve the object of the present invention.

(6)重合条件 本発明の重合反応の代表的々実施態様は次の通りである
。即ち、予め中和されたモノマー水溶液に重合開始剤を
添加溶解し、窒素等不活性ガスを導入し脱気を行う。一
方、界面活性剤を分散媒に入れ、必要ならば若干加温し
、溶解せしめ、窒素等不活性ガスを導入し、脱気を行う
(6) Polymerization conditions Representative embodiments of the polymerization reaction of the present invention are as follows. That is, a polymerization initiator is added and dissolved in a monomer aqueous solution that has been neutralized in advance, and an inert gas such as nitrogen is introduced to perform deaeration. On the other hand, a surfactant is placed in a dispersion medium, heated slightly if necessary to dissolve it, and degassed by introducing an inert gas such as nitrogen.

この中に上記モノマー水溶液を注入し、所定温度に加熱
する。この間に反応系の水溶液部分は微少な液滴となっ
て分散媒中に分散、懸濁する。
The above monomer aqueous solution is poured into this and heated to a predetermined temperature. During this time, the aqueous solution portion of the reaction system becomes minute droplets and is dispersed and suspended in the dispersion medium.

重合開始後、発熱の状態によっては適宜冷却若しくは加
熱を行なう。
After initiation of polymerization, cooling or heating is performed as appropriate depending on the state of heat generation.

本発明の重合反応温度は、60〜100℃。The polymerization reaction temperature of the present invention is 60 to 100°C.

好ましくは60〜80℃である。反応温度が低くすぎる
と生成ポリマーの可溶部が多くなり、吸水性能が低下す
るし、高すぎると吸水性能のバラツキが大きくなり、均
質なポリマーにはなら々いばかシでなく、高沸点溶媒を
使用する必要が生じ、溶媒回収等に高温を必要とする不
利がある。
Preferably it is 60-80°C. If the reaction temperature is too low, the resulting polymer will have a large soluble portion and its water absorption performance will decrease; if the reaction temperature is too high, the water absorption performance will vary widely, and it will not be possible to produce a homogeneous polymer, but it will require high boiling point solvents. This has the disadvantage of requiring high temperatures for solvent recovery, etc.

本発明の重合反応は、油中水滴型の懸濁重合系において
おこなわせるが、そのためには前記したようにα−オレ
フィンとα、β−不飽和多価カル?ン酸無水物との共重
合体又はその誘導体を使用し、且つ分散媒と水の割合を
適宜に調整し、さらに適当な攪拌を行わせる等の手段を
組み合わせることによりその目的を達成できる。
The polymerization reaction of the present invention is carried out in a water-in-oil type suspension polymerization system, and as described above, it is necessary to combine an α-olefin and an α,β-unsaturated polyhydric cal. This objective can be achieved by combining means such as using a copolymer with phosphoric acid anhydride or a derivative thereof, appropriately adjusting the ratio of dispersion medium and water, and further performing appropriate stirring.

本発明における重合反応系の攪拌は、この様に重合反応
系を所望の安定な油中水滴型の懸濁系を保持せしめる上
で重要であるばかシでなく、生成ポリマーの性状を良好
にせしめるうえでも重要である。
Stirring of the polymerization reaction system in the present invention is not only important for maintaining the desired stable water-in-oil type suspension system in the polymerization reaction system, but also improves the properties of the produced polymer. It is also important.

即ち、その攪拌があまシ強すぎると、生成ポリマーの微
細なヒトミダルの一次粒子が凝集して塊状化したシ、或
いは架橋構造が壊れて一部水溶性のポリマーを生成する
などのために、ポリマー性能のバラツキが大きくなる。
In other words, if the stirring is too strong, the fine human primary particles of the produced polymer may aggregate and become lumps, or the crosslinked structure may be broken and a partially water-soluble polymer may be produced. The variation in performance increases.

また、攪拌か弱すぎると、安定が分散系にならないため
に異常重合を起しビーズ状と彦らず、′−!世得られた
′ポリマーの吸水性能も著しく低下してしまう。従って
、適当な攪拌を行“う必要があるが、この種の懸濁重合
を行わせる通常の攪拌機付の重合反応装置を用いる場合
について言えば、100〜600rpm、好ましくは2
00〜400 rpmの攪拌によって、吸水性、吸水ダ
ル強度、に優れ、且つ粉砕し易いビーズ状ポリマーが再
現性良く得られる。
In addition, if the stirring is too weak, it will not become a stable dispersed system and abnormal polymerization will occur and the beads will not form.'-! The water absorption performance of the obtained 'polymer is also significantly reduced. Therefore, it is necessary to carry out appropriate stirring, but when using a polymerization reactor equipped with an ordinary stirrer for carrying out this type of suspension polymerization, the stirring speed is preferably 100 to 600 rpm, preferably 2.
By stirring at 00 to 400 rpm, bead-shaped polymers that have excellent water absorption and water absorption dullness strength and are easy to crush can be obtained with good reproducibility.

(7) 、Nリマーの分離 本発明の製造法によって得られるポリマーは、湿潤した
、ビーズ状の粒子からなっていて、デカンテーション又
は蒸発操作等によって分散媒と容易に分離することが出
来る。そして、その分離した湿潤ポリマーを、例えば1
20℃以下の温度で乾燥すれば、粉末状のポリマー、又
は容易に粉砕できる塊を含む粉末状のポリマーが得られ
る。かくして得られたポリマーは、通常その直径が10
0〜500μm程度で、表面が界面活性剤で覆われた真
球状の一次粒子又はそれらが一部二次凝集した二次粒子
を僅かに含む粒体である。この二次粒子も僅かな機械力
によって容易に微粉砕することができる。これはポリマ
ーの製造面及び使用面において大きな利点がある。
(7) Separation of N remer The polymer obtained by the production method of the present invention consists of wet, bead-like particles, and can be easily separated from the dispersion medium by decantation or evaporation. Then, the separated wet polymer is, for example, 1
Drying at temperatures below 20° C. results in powdered polymers or powdered polymers containing easily pulverized lumps. The polymer thus obtained usually has a diameter of 10
These particles are approximately 0 to 500 μm in diameter and contain a small amount of perfectly spherical primary particles whose surfaces are covered with a surfactant or secondary particles in which some of these primary particles are agglomerated. These secondary particles can also be easily pulverized by a small amount of mechanical force. This has great advantages in terms of polymer production and use.

〔発明の効果等〕[Effects of invention, etc.]

本発明の製造法によって得られるポリマーは、既述のよ
うに吸水性能が自重の700倍以上と高く、かつ吸水グ
ル強度が大きく、ポリマー自体が最初から粉末であるか
、または極めて簡単な粉砕操作で容易に粉末状にできる
ものである。
As mentioned above, the polymer obtained by the production method of the present invention has a high water absorption performance of 700 times or more than its own weight, has a high water absorption glue strength, and the polymer itself is a powder from the beginning or can be crushed easily. It can be easily made into powder.

従って、本発明の製法で得られるポリマーは、その優れ
た吸水性能を利用して生理用ナプキン、紙オシメ等、及
びその他衛生材料の製造に有利に使用できる。
Therefore, the polymer obtained by the production method of the present invention can be advantageously used in the production of sanitary napkins, paper diapers, etc., and other sanitary materials by utilizing its excellent water absorption performance.

また、その優れた吸水性能、rル強度を利用して、最近
注目されるようになってきた土壌改良剤、保水剤等をは
じめとする園芸用又は農業用の各種の材料の製造にも使
用することができる。
It is also used in the production of various horticultural and agricultural materials, including soil conditioners and water retention agents, which have recently been attracting attention due to their excellent water absorption performance and relativity. can do.

以下、実施例及び比較例を挙けて本発明を更に詳述する
Hereinafter, the present invention will be further explained in detail by giving Examples and Comparative Examples.

なお、これらの例に記載の純水吸水能、吸水rル強度は
、下記の試験方法によって測定した結果を示す。
Note that the pure water absorption capacity and water absorption strength described in these examples are the results measured by the following test method.

A、純水吸水能 12のビーカーにポリマー約0.5.9及び純水的1.
、eをそれぞれ秤量して入れて混合してから、約60分
ルj放置して水で、j? IJママ−十分に膨潤させた
。次いで100メツシユフルイで水切シをしたのち、そ
の濾過液量を秤量し、下記式に従って純水吸水能を算出
する。
A. In a beaker with a pure water absorption capacity of 12, polymer about 0.5.9 and pure water of 1.
Weigh and add each of , e, and mix. Leave for about 60 minutes, then add water. IJ Mama - fully swollen. Next, after draining with a 100-mesh filter, the amount of the filtrate is weighed, and the pure water absorption capacity is calculated according to the following formula.

B、吸水グル強度 ポリマーに自重の200倍量の純水を加えて吸水せしめ
、得られた吸水ケ゛ルの弾力性を指で押えることによっ
て吸水グルの強度を調べて、下記の基準に従って評価し
た。
B. Water-absorbing glue strength 200 times its own weight of pure water was added to the polymer to absorb water, and the strength of the water-absorbing glue was examined by pressing the elasticity of the obtained water-absorbing glue with a finger, and evaluated according to the following criteria.

×:弱い △:やや弱い ○:普通(基準)■=やや強
い 01強い 実施例1 ゛ 攪拌機、還流冷却器、温度計、窒素ガス導入管を付
設した容量500m/!の四つ口丸底フラスコと、シク
ロヘキサン185g入れ、これにα−オレフィンと無水
マレイン酸共重合体(三菱化成■製部品名「ダイヤカル
テ30」、分子量約10,000 ) 1.8 fiを
添加溶解せしめ、窒素ガス雰囲り下内温を65℃とした
×: Weak △: Slightly weak ○: Normal (standard) ■ = Slightly strong 01 Strong Example 1 ゛ Capacity 500m/! with stirrer, reflux condenser, thermometer, and nitrogen gas inlet pipe! Put 185 g of cyclohexane into a four-necked round-bottomed flask, and add 1.8 fi of α-olefin and maleic anhydride copolymer (part name: "Diacarte 30" manufactured by Mitsubishi Kasei ■, molecular weight approximately 10,000). The mixture was dissolved and the internal temperature was set to 65° C. under a nitrogen gas atmosphere.

別に容量200116のコニカルフラスコに、アクリル
酸30gを外部よシ冷却しながらこれに水49gを溶解
した12.9gの苛性ソーダを加えて、カルぎキシル基
の77.4 %を中和した。
Separately, 12.9 g of caustic soda in which 49 g of water was dissolved was added to 30 g of acrylic acid while externally cooling it to a conical flask having a capacity of 200,116 mm, thereby neutralizing 77.4% of the carboxylic groups.

この場合の水に対するモノマー濃度は、中和後の七ツマ
ー濃度として40重量%に相当する。
In this case, the monomer concentration with respect to water corresponds to 40% by weight as a heptamer concentration after neutralization.

次いでこれに過硫酸カリウム0.1gを加えて溶解した
Next, 0.1 g of potassium persulfate was added and dissolved.

前記の四つ口丸底フラスコの内容物に、この200I1
1のフラスコの内容物を添加し、攪拌下65〜70℃に
て約1時間重合を行った。尚、攪拌は300 rpmで
行った。
Add this 200I1 to the contents of the four-necked round bottom flask.
The contents of flask No. 1 were added, and polymerization was carried out at 65 to 70° C. for about 1 hour while stirring. Note that stirring was performed at 300 rpm.

1時間反応後に攪拌を停止すると、湿潤ポリマー粒子が
フラスコの底に沈降し、デカンテーションでシクロヘキ
サン相と容易に分離することができた。分離した湿れ1
ポリマーを減圧乾燥器に移し、80〜90℃で加熱して
付着したシクロヘキサン及び水を除去した。
When stirring was stopped after 1 hour of reaction, the wet polymer particles settled to the bottom of the flask and could be easily separated from the cyclohexane phase by decantation. Separated moisture 1
The polymer was transferred to a vacuum dryer and heated at 80 to 90°C to remove attached cyclohexane and water.

得られた乾燥ポリマーは、さらさらとした容易に粉砕で
きる塊を含む粉末であった。
The resulting dry polymer was a powder containing free-flowing, easily grindable clumps.

実施例2 実施例1で使用したダイヤカルテ30を大過剰のメタノ
ールで還流下、約8時間処理せしめ、過剰メタノールを
減圧下除去したものを界面活性剤として使用した以外は
、実施例1と同処方にて重合及び後処理した。
Example 2 The procedure was the same as in Example 1, except that the Diacarte 30 used in Example 1 was treated with a large excess of methanol under reflux for about 8 hours, and the excess methanol was removed under reduced pressure. Polymerization and post-treatment were carried out according to the recipe.

鞘られたポリマーは、さらさらとした容易に粉砕できる
塊を含む粉末であった。
The sheathed polymer was a powder with free-flowing, easily grindable clumps.

実施例3 実施例1で使用したダイヤカルテ30を大過剰のブチル
アミンで還流下、70℃にて約8時間処理せしめ、過剰
のブチルアミンを減圧下除去したものを界面活性剤とし
て使用した以外は実施例1と同処方にて重合及び後処理
した。
Example 3 The same procedure was carried out except that the Diacarte 30 used in Example 1 was treated with a large excess of butylamine under reflux at 70°C for about 8 hours, and the excess butylamine was removed under reduced pressure and the product was used as a surfactant. Polymerization and post-treatment were carried out using the same recipe as in Example 1.

得られたポリマーは、さらさらとした容易に粉砕できる
塊を含む粉末であった。
The resulting polymer was a powder containing free-flowing, easily grindable clumps.

実施例4 実施例1におけるアクリル酸の代シに、アクリル酸28
gとメタクリル酸2.9との混合物を使用し、その他は
実施例1と同様に反応させ、後処理した。
Example 4 In place of acrylic acid in Example 1, acrylic acid 28
The reaction was carried out in the same manner as in Example 1, except that a mixture of 2.9 g and 2.9 g of methacrylic acid was used, and the post-treatment was carried out in the same manner as in Example 1.

得られたポリマーはさらさらとした容易に粉砕できる塊
を含む粉末であった。
The resulting polymer was a powder containing free-flowing, easily grindable clumps.

実施例5 実施例1における苛性ソーダの溶解に用いた水の量を6
3.1 、!i+に変更し、そのほかは実施例1と同様
にして重合反応を打力わせ、同様の後処理をした。この
場合の反応系の水に対するモノマー濃度は中和後の七ツ
マー濃度として35重量%である。
Example 5 The amount of water used to dissolve caustic soda in Example 1 was reduced to 6
3.1,! i+, but otherwise the polymerization reaction was carried out in the same manner as in Example 1, and the same post-treatments were carried out. In this case, the monomer concentration with respect to water in the reaction system is 35% by weight as a seven-mer concentration after neutralization.

得られたポリマーは、さらさらとした容易に粉砕できる
塊を含む粉末でありた。
The resulting polymer was a powder containing free-flowing, easily grindable clumps.

実施例6 実施例1における苛1z1ソーダの量を10.9とし、
苛性ソーダのr=hに用いた水の童を48.8gに変更
した以外は実施例1と同様にして重合反応を行わせ、同
様の後処理をした。この場合、アクリル酸中060モル
チが中和され、反応系の水に対するモノマー濃度d中和
後のモノマー濃度として40重量%でおる。
Example 6 The amount of caustic 1z1 soda in Example 1 was set to 10.9,
The polymerization reaction was carried out in the same manner as in Example 1, except that the amount of water used for r=h of caustic soda was changed to 48.8 g, and the same post-treatment was carried out. In this case, 0.60% of acrylic acid is neutralized, and the monomer concentration d based on the water in the reaction system is 40% by weight as the monomer concentration after neutralization.

得られたプリマーは、さらさらとした容易に粉砕できる
塊を含む粉末であった。
The resulting primer was a powder containing free-flowing, easily grindable clumps.

比較例1 特開昭56−76419号公報実施例−1と同処方洞操
作にて重合を行ない、乾燥ポリマーを得た。部ち、攪拌
機、還流冷却器、滴下沖斗、窒素ガス導入管を付した5
 0 Qcc4つロフラスコにヘキサン230m/!ソ
ルビタンモノステアレート1.8.@を取シ窒素ガスを
吹き込んで溶存酸素を追い出した後、60〜65℃に加
温した。別にビーカー中でアクリル8309を外部より
氷冷しつつ水499に溶解した134gの98%苛せソ
ーダでカル?キシル基の78%を中和した。
Comparative Example 1 Polymerization was carried out in the same manner as in Example 1 of JP-A-56-76419 to obtain a dry polymer. 5 with a section, stirrer, reflux condenser, dropping tube, and nitrogen gas inlet pipe.
0 Qcc 4 Lof flasks with hexane 230m/! Sorbitan monostearate 1.8. After nitrogen gas was blown into the reactor to drive out dissolved oxygen, the reactor was heated to 60 to 65°C. Separately, in a beaker, acrylic 8309 was cooled with ice from the outside and dissolved in water 499, and 134 g of 98% caustic soda was added to the solution. 78% of the xyl groups were neutralized.

水相中のモノマー濃度は40重量%となった。The monomer concentration in the aqueous phase was 40% by weight.

次いでヒドロキシエチルセルロース(エーテル化度0.
8、付加モル数1.9)1.8.9を加えて溶解したの
ち、窒素ガスを吹き込んで溶存酸素を除去した。ビーカ
ー内の内容物を上記4つロフラスコに加えて分散させ内
温を60〜65℃に保持し、3時間攪拌を続けた。ヘキ
サンを減圧下に留去し、残った膨潤ポリマ一部分を約8
0℃で減圧下に乾燥し、粉末状のプリマーを得た。
Next, hydroxyethyl cellulose (degree of etherification 0.
8. Number of moles added: 1.9) After adding and dissolving 1.8.9, nitrogen gas was blown in to remove dissolved oxygen. The contents in the beakers were added to the four flasks and dispersed, the internal temperature was maintained at 60 to 65° C., and stirring was continued for 3 hours. The hexane was distilled off under reduced pressure, and the remaining swollen polymer portion was about 8
It was dried under reduced pressure at 0°C to obtain a powdery primer.

上記実施例1〜6及び比較例1によりて得られた乾燥ポ
リマーの純水吸水能、吸水グル強度及び粒子径を測定し
た結果を第1表に示す。
Table 1 shows the results of measuring the pure water absorption capacity, water absorption glue strength, and particle size of the dry polymers obtained in Examples 1 to 6 and Comparative Example 1.

本結果から明らかな様に、不発、明方法で得られたポリ
マーは吸水能が大きく、かつ吸水グル強度が大きく、粒
子径の大きなしかも粒度分布の比較的狭いことがわかる
As is clear from the results, the polymer obtained by the undiscovered method has a high water absorption capacity, a high water absorption gluing strength, a large particle size, and a relatively narrow particle size distribution.

第1表Table 1

Claims (1)

【特許請求の範囲】 1)アクリル酸又はアクリル酸/メタクリル酸混合物と
アクリル酸又はアクリル酸/メタクリル酸混合物のアル
カリ金属塩(以下、アクリル酸系モノマーという)とを
、水溶性ラジカル重合開始剤、分散媒、界面活性剤及び
水の存在下で油中水滴型の逆相懸濁重合法によって重合
させる方法において、界面活性剤としてα−オレフィン
とα,β−不飽和多価カルボン酸無水物との共重合体又
はその誘導体を用い、重合反応系に存在する水に対する
前記アクリル酸系モノマー濃度を中和後のモノマー量と
して30重量%以上〜飽和濃度の範囲とし、且つ架橋剤
の不存在下で重合させることを特徴とするビーズ状自己
架橋型吸水性ポリマーの製造法 2)アクリル酸/メタクリル酸混合物のメタクリル酸が
20モル%以下であることを特徴とする特許請求の範囲
第1項記載の製造方法 3)アクリル酸系モノマーが、その全カルボキシル基の
50モル%以上がアルカリ金属塩に中和されたものであ
ることを特徴とする特許請求の範囲第1項記載の製造方
法 4)水溶性ラジカル重合開始剤が過酸化水素、過硫酸塩
からなる群から選ばれた1種又は2種以上であることを
特徴とする特許請求の範囲第1項記載の製造方法
[Claims] 1) Acrylic acid or an acrylic acid/methacrylic acid mixture and an alkali metal salt of acrylic acid or an acrylic acid/methacrylic acid mixture (hereinafter referred to as an acrylic acid monomer) are combined with a water-soluble radical polymerization initiator, In a method of polymerizing by a water-in-oil reverse phase suspension polymerization method in the presence of a dispersion medium, a surfactant, and water, an α-olefin and an α,β-unsaturated polycarboxylic acid anhydride are used as surfactants. using a copolymer or a derivative thereof, the concentration of the acrylic acid monomer relative to the water present in the polymerization reaction system is in the range of 30% by weight or more as the monomer amount after neutralization to the saturated concentration, and in the absence of a crosslinking agent. 2) A method for producing a bead-like self-crosslinking water-absorbing polymer, characterized in that the amount of methacrylic acid in the acrylic acid/methacrylic acid mixture is 20 mol% or less, according to claim 1. 3) A manufacturing method according to claim 1, wherein the acrylic acid monomer has 50 mol% or more of its total carboxyl groups neutralized with an alkali metal salt. The manufacturing method according to claim 1, wherein the water-soluble radical polymerization initiator is one or more selected from the group consisting of hydrogen peroxide and persulfates.
JP60193404A 1985-09-02 1985-09-02 Method for producing beaded self-crosslinking water-absorbing polymer Expired - Lifetime JPH0713109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60193404A JPH0713109B2 (en) 1985-09-02 1985-09-02 Method for producing beaded self-crosslinking water-absorbing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60193404A JPH0713109B2 (en) 1985-09-02 1985-09-02 Method for producing beaded self-crosslinking water-absorbing polymer

Publications (2)

Publication Number Publication Date
JPS6253310A true JPS6253310A (en) 1987-03-09
JPH0713109B2 JPH0713109B2 (en) 1995-02-15

Family

ID=16307387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60193404A Expired - Lifetime JPH0713109B2 (en) 1985-09-02 1985-09-02 Method for producing beaded self-crosslinking water-absorbing polymer

Country Status (1)

Country Link
JP (1) JPH0713109B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047389C (en) * 1993-10-15 1999-12-15 李光德 Method and equipment for preparation of acrylate water-absorbing resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721405A (en) * 1980-07-14 1982-02-04 Kao Corp Production of bead polymer from water-soluble ethylenically unsaturated monomer
JPS5749602A (en) * 1980-09-10 1982-03-23 Kao Corp Preparation of bead polymer
JPS5774309A (en) * 1980-10-27 1982-05-10 Kao Corp Production of water-soluble bead polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721405A (en) * 1980-07-14 1982-02-04 Kao Corp Production of bead polymer from water-soluble ethylenically unsaturated monomer
JPS5749602A (en) * 1980-09-10 1982-03-23 Kao Corp Preparation of bead polymer
JPS5774309A (en) * 1980-10-27 1982-05-10 Kao Corp Production of water-soluble bead polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047389C (en) * 1993-10-15 1999-12-15 李光德 Method and equipment for preparation of acrylate water-absorbing resin

Also Published As

Publication number Publication date
JPH0713109B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US5807916A (en) Process for obtaining polymers which are superabsorbent for water and aqueous fluids in the form of particle aggregates
US4647617A (en) Water absorbent crosslinked polymer and a method of producing the same containing cellulosis fibers
EP0303440B1 (en) Method for production of water absorbent resin
JP4210432B2 (en) Postcrosslinking of hydrogels with 2-oxazolidinone
EP0242478B1 (en) Water absorbent acrylic copolymers
KR0148487B1 (en) Process for producing highly water-absorptive polymers
US5994419A (en) Preparation of rapidly dissolving/absorbing powders of hydrophilic/super absorbent (CO)polymers
WO2007126002A1 (en) Process for production of water-absorbable resin
JPS648006B2 (en)
JP2002517561A (en) Breakage resistant superabsorbent polymer
JPH0219122B2 (en)
JPH078882B2 (en) Manufacturing method of highly water-absorbent resin with excellent durability
JPH0725810B2 (en) Super absorbent resin manufacturing method
JPH0310642B2 (en)
JPH03195713A (en) Production of polymer having high water absorption
JP2555159B2 (en) Method for producing water absorbent resin
JPH0848721A (en) Preparation of water-absorptive resin
JPH0931107A (en) Production of water-absorbing resin
JPS6295308A (en) Production of highly water-absorbing polymer bead
JPS6253310A (en) Production of beadlike self-crosslinking water-absorbing polymer
JPS6352662B2 (en)
JPS61157513A (en) Production of polymer having high water absorption property
JPS6295307A (en) Production of self-crosslinking water-absorbing polymer bead
JP2966539B2 (en) Method for producing hydrogel polymer
JPH01292003A (en) Purification of water-absorbable resin

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term