JPS625328B2 - - Google Patents

Info

Publication number
JPS625328B2
JPS625328B2 JP54065366A JP6536679A JPS625328B2 JP S625328 B2 JPS625328 B2 JP S625328B2 JP 54065366 A JP54065366 A JP 54065366A JP 6536679 A JP6536679 A JP 6536679A JP S625328 B2 JPS625328 B2 JP S625328B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
voltage
current
counter electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54065366A
Other languages
Japanese (ja)
Other versions
JPS55157225A (en
Inventor
Satoshi Sekido
Yoshito Ninomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6536679A priority Critical patent/JPS55157225A/en
Priority to GB7944084A priority patent/GB2044535B/en
Priority to DE2952662A priority patent/DE2952662C2/en
Priority to FR7932056A priority patent/FR2445601A1/en
Publication of JPS55157225A publication Critical patent/JPS55157225A/en
Priority to US06/276,693 priority patent/US4363079A/en
Publication of JPS625328B2 publication Critical patent/JPS625328B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、出力エネルギー密度が高く、リーク
電流の小さい固体電解質を用いた電気二重層キヤ
パシタに関する。 従来、分極性電極と固体電解質の界面に形成す
る電気二重層を応用する、この種の固体素子の例
としては、電解質にRbAg4I5、NR4Ag4I5
Ag3SI、Ag6I4WO4などの銀イオン伝導性の固体
電解質を用い、分極性電極にカーボンやカルコゲ
ン化銀を用い、対極にAgを用いたものがある。
これらの素子は、Agおよび銀塩を用いているた
め、高価であり、電位記憶素子のような機能素子
として用いられることが多く、キヤパシタとして
用いられることは稀であつた。 本発明者らは、先に、ハロゲン化第一銅と擬ア
ドマンタン化合物のアルキルハライドとの反応物
からなるCu+イオン伝導性固体電解質を用い、分
極性電極にカーボンやCu2S、対極にCu2Sを用い
るキヤパシタ素子を提案した(特開昭53−133756
号公報)。 この提案は、固体電解質にCu+イオン伝導性の
固体電解質を用いるとともに、それに伴う問題
点、例えば対極のAgを単にCuに代えただけでは
早期短絡を起こしてしまうことをCu2Sを用いる
ことによつて解決してキヤパシタのコスト低減に
成功したものである。 しかし、対極としてCu2Sを用いると、Cuに比
べて通電による分極が小さく、可逆性に優れてい
るが、Cu電極に対して310mV程の電位を示し、
一方カーボンはCu電極に対して0〜約600mV
(電解質の分解電位まで)の間は分極性電極とし
て働くにもかかわらず、RAM(Randam Access
Memory)のバツクアツプ用等のキヤパシタとし
て利用できるのは、Cu対極の約600mVの半分で
不利となる。 また、前記の固体電解質は、特に高温にする
と、ハロゲン化第一銅の再析出を起こしてリーク
電流が大となり、そのため電位保持能も銀塩で作
つたキヤパシタより悪くなる欠点を有していた。 本発明は、対極にCu2SとCuの混合物を用いる
とともに、その混合割合を適切にして、貯蔵エネ
ルギー密度が大きく、電圧保持性が高く、しかも
耐圧が大きく、長寿命の電気二重層キヤパシタを
提供するものである。 すなわち、本発明は、活性炭と固体電解質との
混合物からなる分極性電極、Cu2SとCuと固体電
解質の混合物からなり、Cu2SとCuとの混合割合
Cu2S/Cuが重量比で20/80〜40/60である対
極、および両電極間に介在させた固体電解質によ
り電気二重層キヤパシタを構成するものである。 ここで、固体電解質として、Cu+イオンの1/5
をK+、Rb+、NH4 +、N(CH34 +から選んだカチ
オンで、Cl-イオンの1/4以上1/3未満をI-イオン
でそれぞれ置換したCuClを用いると、リーク電
流が小さく、電位保持能がさらにすぐれたものと
なる。 以下、本発明を実施例によつて詳しく説明す
る。 第1図〜第3図は本発明の電気二重層キヤパシ
タの構成例を示すもので、第1図は素子の構成を
示し、第2図は積み重ね方式の構成、第3図は横
に直列に接続した構成を示す。 第1図において、1は対極で、Cu2SとCuとの
混合割合Cu2S/Cuが重量比で40/60〜20/80の
ものにさらに固体電解質を混合し、プレス成形し
たものである。固体電解質の混合割合は、10〜20
重量%である。2は対極の集極体で、金、クロ
ム、または両者の合金を蒸着、またはスパツタリ
ングによつて対極1上に形成したものである。3
はプレス成形した固体電解質であり、この製法の
詳細については後述する。4は分極性電極で、活
性炭10重量部と固体電解質90重量部との混合物を
成形したものである。5は分極性電極の集電体
で、金、クロム、または両者の合金を蒸着、また
はスパツタリングによつて分極性電極4上に形成
したものである。 ここで、単セルの耐圧は600mVであり、直列
接続によつて所定の耐圧を得ることができる。初
めに積み重ね接続の構成例を第2図により説明す
る。 6は上記の素子で、これを複数個積み重ねてい
る。各素子6間、および素子6と金属ケース7と
の間の接触は圧接するよりAgペーストを介して
行なつた方が特性のバラツキは少ない。8,9は
リードで、それぞれ金属ケース7および端末素子
の集電体5に溶接、半田付けなどによつて取付け
られている。10はパツキングゴム、11は絶縁
用の樹脂板である。金属ケース7の開口端を内側
にカールさせ、パツキングゴム10、樹脂板11
によつて素子6間を圧接させている。 次に、横に直列接続する構成例について述べ
る。第3図a,bにおいて、6は上記の素子であ
る。半田付け、スポツト溶接、超音波ボンデイン
グなどの適当な方法で素子6の集電体2,5を金
属箔リード12で結線した素子群を熱可塑性樹脂
フイルム13の間に挿入し、周囲を熱溶着によつ
て封止している。14はフイルムの一部を切り取
り、リード12の一部を外部に露出させた端子で
ある。 第2図に示す構成とすれば、強固でコンパクト
であるという特長を得ることができ、第3図の構
成とすれば、薄形にできる。 次に、固体電解質の製法の例を説明する。あら
かじめ140℃で2時間加熱して水分と過剰のハロ
ゲンを除去したハロゲン化第一銅、およびハロゲ
ン化アルカリ(アルカリイオンはRb+、K+
NH4 +、N(CH34 +から選ばれたもの)を原料と
してCu+イオンの1/5がRb+、K+、NH4 +,N
(CH34 +から選ばれたカチオンで置換されるよう
に所定の割合で混合し、この混合物を円盤状に成
形した後、脱気した容器に入れて200℃で17時間
加熱する。この加熱により、原料とは異なるX線
回折像を示す新しい物質が得られる。この回折像
は、アルカリイオンの種類によつて、N
(CH34 +の場合やや面間隔が広く、K+の場合やや
狭くなる程度で結晶形は全く同じであつた。これ
は、これらのアルカリイオンのイオン半径がほぼ
等しいためと思われる。一方、I-イオンによる
Cl-イオン置換割合が1/3未満のものは、CuIの残
留が認められないが、それ以上の置換割合では
CuIが残留する。その状況を第4図に示してい
る。CuIの残留は電解質の電子輸率の増大に関連
し、キヤパシタのリーク電流の増大と電位保持能
の低下にもつながる。また、I-の置換割合が1/4
未満であるとCuClによる電解質の電子輸率の増
大を招く。 ところで、バツクアツプ用のキヤパシタとして
必要な条件には次のようなものがある。 (i) 蓄積エネルギー密度が高いこと (ii) 大電流の出入れができること(充電時間が短
縮でき、大きな電流の供給ができるから) (iii) リーク電流が小さいこと(チヤージアクセプ
タンスが高く、蓄積エネルギーのロスが少なく
できるから) (iv) 対極の分極が小さく、酸化−還元電位がCu
の電位に近いこと(素子の耐圧が高く、電圧損
失が小さくできるから) (v) これらの条件が広い温度範囲で満足できるこ
と(使用温度範囲が広くできるから) (vi) 安価な材料で構成できること 次に、本発明の効果を、分極性電極として活性
炭10重量部と固体電解質90重量部との混合物0.24
g、固体電解質0.2g、対極としてCu2S/Cuが
40/60のもの80重量部と固体電解質20重量部との
混合物0.48gを直径10mmφの円筒形に成形した素
子の耐圧3V、容量0.6Fのものを中心に説明す
る。なお、電解質は前記の製法によるもので、式
Rb2Cu8I3Cl7で表される化合物を用いた。 まず、上記(i)および(iii)に関しては、次表に示す
ような特長を有する。次表は、アルミ電解コンデ
ンサとの比較において、蓄積エネルギー密度と同
一容量、同一印加電圧のリーク電流(rL値)を
示したものである。
The present invention relates to an electric double layer capacitor using a solid electrolyte with high output energy density and low leakage current. Conventionally, examples of this type of solid-state device that applies an electric double layer formed at the interface between a polarizable electrode and a solid electrolyte include RbAg 4 I 5 , NR 4 Ag 4 I 5 ,
Some use a silver ion conductive solid electrolyte such as Ag 3 SI or Ag 6 I 4 WO 4 , carbon or silver chalcogenide for the polarizable electrode, and Ag for the counter electrode.
Since these elements use Ag and silver salt, they are expensive and are often used as functional elements such as potential storage elements, but are rarely used as capacitors. The present inventors previously used a Cu + ion conductive solid electrolyte consisting of a reaction product of cuprous halide and an alkyl halide of a pseudoadmantane compound, carbon or Cu 2 S for the polarizable electrode, and Cu for the counter electrode. 2 proposed a capacitor element using S (Japanese Patent Application Laid-Open No. 133756
Publication No.). This proposal uses Cu + ion conductive solid electrolyte as the solid electrolyte, and solves the problems associated with this, such as the fact that simply replacing Ag on the counter electrode with Cu would cause premature short circuits . This problem was solved and the cost of the capacitor was successfully reduced. However, when Cu 2 S is used as a counter electrode, the polarization caused by current application is smaller than that of Cu, and it has excellent reversibility, but it exhibits a potential of about 310 mV with respect to the Cu electrode.
On the other hand, carbon has a voltage of 0 to about 600mV with respect to the Cu electrode.
(up to the electrolyte decomposition potential), RAM (Random Access
It is disadvantageous that it can be used as a capacitor for back-up of memory, etc., since it has about half the voltage of Cu counter electrode, which is about 600mV. In addition, the above-mentioned solid electrolyte had the disadvantage that, especially when heated to high temperatures, cuprous halide redeposited, resulting in a large leakage current, and as a result, its potential holding ability was worse than that of a capacitor made of silver salt. . The present invention uses a mixture of Cu 2 S and Cu for the counter electrode, and makes the mixing ratio appropriate to create an electric double layer capacitor with a high storage energy density, high voltage retention, high withstand voltage, and long life. This is what we provide. That is, the present invention provides a polarizable electrode made of a mixture of activated carbon and a solid electrolyte, a polarizable electrode made of a mixture of Cu 2 S, Cu, and a solid electrolyte, and a polarizable electrode made of a mixture of activated carbon and a solid electrolyte.
An electric double layer capacitor is constituted by a counter electrode having a weight ratio of Cu 2 S/Cu of 20/80 to 40/60 and a solid electrolyte interposed between both electrodes. Here, as a solid electrolyte, 1/5 of Cu + ions
When using CuCl in which 1/4 or more and less than 1/3 of the Cl - ions are replaced with I - ions with cations selected from K + , Rb + , NH 4 + , and N(CH 3 ) 4 + , leakage The current is small and the potential holding ability is even better. Hereinafter, the present invention will be explained in detail with reference to Examples. Figures 1 to 3 show configuration examples of the electric double layer capacitor of the present invention. Figure 1 shows the configuration of the element, Figure 2 shows the stacked configuration, and Figure 3 shows the configuration of the electric double layer capacitor in series. Shows the connected configuration. In Figure 1 , 1 is the counter electrode, which is press-molded by mixing a solid electrolyte with a Cu 2 S/Cu mixture ratio of 40/60 to 20/80 by weight. be. The mixing ratio of solid electrolyte is 10 to 20
Weight%. Reference numeral 2 denotes a collector of counter electrodes, which is formed on the counter electrode 1 by vapor deposition or sputtering of gold, chromium, or an alloy of both. 3
is a press-molded solid electrolyte, and details of this manufacturing method will be described later. 4 is a polarizable electrode formed from a mixture of 10 parts by weight of activated carbon and 90 parts by weight of solid electrolyte. Reference numeral 5 denotes a current collector of the polarizable electrode, which is formed on the polarizable electrode 4 by vapor deposition or sputtering of gold, chromium, or an alloy of both. Here, the breakdown voltage of a single cell is 600 mV, and a predetermined breakdown voltage can be obtained by series connection. First, a configuration example of stacked connection will be explained with reference to FIG. 6 is the above-mentioned element, and a plurality of these are stacked. When the contact between the elements 6 and between the elements 6 and the metal case 7 is made through Ag paste rather than through pressure contact, there is less variation in characteristics. Leads 8 and 9 are respectively attached to the metal case 7 and the current collector 5 of the terminal element by welding, soldering, or the like. 10 is packing rubber, and 11 is an insulating resin plate. Curl the open end of the metal case 7 inward, and attach the packing rubber 10 and the resin plate 11.
The elements 6 are brought into contact with each other by pressure. Next, an example of a configuration in which the devices are connected in series laterally will be described. In FIGS. 3a and 3b, 6 is the above-mentioned element. An element group in which the current collectors 2 and 5 of the element 6 are connected with the metal foil lead 12 by an appropriate method such as soldering, spot welding, or ultrasonic bonding is inserted between the thermoplastic resin films 13, and the surroundings are heat welded. It is sealed by. 14 is a terminal in which a part of the film is cut out to expose a part of the lead 12 to the outside. The structure shown in FIG. 2 has the advantage of being strong and compact, and the structure shown in FIG. 3 allows it to be made thin. Next, an example of a method for producing a solid electrolyte will be explained. Cuprous halides, which had been heated in advance at 140°C for 2 hours to remove moisture and excess halogen, and alkali halides (alkali ions include Rb + , K + ,
NH 4 + , N(CH 3 ) 4 + ) as raw material, 1/5 of Cu + ions are Rb + , K + , NH 4 + , N
They are mixed at a predetermined ratio so that they are substituted with cations selected from (CH 3 ) 4 + , and this mixture is formed into a disk shape, then placed in a degassed container and heated at 200° C. for 17 hours. This heating produces a new material that exhibits an X-ray diffraction pattern different from that of the raw material. This diffraction image differs depending on the type of alkali ion.
In the case of (CH 3 ) 4 + , the interplanar spacing was slightly wider, and in the case of K + , it was slightly narrower, but the crystal shapes were exactly the same. This seems to be because the ionic radii of these alkali ions are almost equal. On the other hand, due to I -ion
When the Cl - ion replacement ratio is less than 1/3, no residual CuI is observed, but when the replacement ratio is higher than that, no CuI remains.
CuI remains. The situation is shown in Figure 4. Residual CuI is associated with an increase in the electron transport number of the electrolyte, leading to an increase in capacitor leakage current and a decrease in potential holding ability. In addition, the substitution ratio of I - is 1/4
If it is less than that, the electron transport number of the electrolyte will increase due to CuCl. By the way, the following conditions are necessary for a backup capacitor. (i) High storage energy density (ii) Capable of supplying and discharging large current (charging time can be shortened and large current can be supplied) (iii) Low leakage current (high charge acceptance, (iv) The polarization of the counter electrode is small, and the oxidation-reduction potential is Cu
(because the element has a high breakdown voltage and voltage loss can be reduced) (v) These conditions can be satisfied over a wide temperature range (because the operating temperature range can be wide) (vi) It can be constructed from inexpensive materials Next, the effect of the present invention was demonstrated using a mixture of 0.24 parts by weight of activated carbon and 90 parts by weight of solid electrolyte as a polarizable electrode.
g, 0.2 g of solid electrolyte, and Cu 2 S/Cu as the counter electrode.
The explanation will focus on an element with a withstand voltage of 3 V and a capacity of 0.6 F, which is made by molding 0.48 g of a mixture of 80 parts by weight of 40/60 and 20 parts by weight of solid electrolyte into a cylindrical shape with a diameter of 10 mm. In addition, the electrolyte is manufactured by the above-mentioned method and has the formula
A compound represented by Rb 2 Cu 8 I 3 Cl 7 was used. First, regarding (i) and (iii) above, it has the features shown in the following table. The following table shows the stored energy density and leakage current (r L value) at the same capacity and the same applied voltage in comparison with aluminum electrolytic capacitors.

【表】 この表から明らかなように、本発明の電気二重
層キヤパシタはアルミ電解コンデンサの約200倍
のエネルギー密度、約1/3000の単位容量、単位電
圧当りのリーク電流を持つている。 また、固体電解質に本発明のものを使うと、従
来の擬アドマンタンのアルキルハライドとハロゲ
ン化第一銅との加熱反応物を用いたものに比べ
て、上記(ii)、(iii)、(v)に関して次の特徴を有する。
すなわち、本発明の固体電解質は、従来のものに
比べて2〜3倍のイオン伝導度を持ち、高温にな
つても電子輸率が高くなることがない。このた
め、第5図に示すように大電流を流しても電位保
持能力の劣化が少なく、また第6図のように特に
高温でもリーク電流が小さい。 第5図は、電解質のみ従来のCu+イオン伝導性
の固体電解質を用いたもの(A)及び本発明の固体電
解質を用いたもの(B)について、室温で1mA、5
mA、10mA、15mA及び20mAの各定電流で端
子電圧600mVまで通電し、通電を止めた後の電
圧低下を示したものである。 第5図から明らかなように、イオン伝導性の劣
る従来の電解質を用いたものは、10mAの通電に
よつて電位低下が著しくなるのに対し、本発明の
ものは20mAの通電でも大きな低下は認められな
い。 また、第6図は各種の電解質を用いたものにつ
いて、600mVの定電圧通電を行ない、電流が減
衰して一定になつた値をリーク電流として示した
ものであり、Aは室温、Bは70℃における値をそ
れぞれ示している。 第6図から明らかなように、従来の電解質を用
いたものは、リーク電流が大きく、高温での増加
が著しいのに対し、本発明のものはこれが小さ
く、温度による増大も少ない。リーク電流が小さ
いことは、電位保持能がよいことにもつながる。 次に、対極におけるCu2SとCuとの混合比と耐
圧等の特性の関係を説明する。なお、Cu2S−Cu
混合物と固体電解質との混合割合は、前者80重量
部に対し後者20重量部である。 第7図は混合比Cu2S/Cuとキヤパシタの耐圧
(A)および10mAの電流で端子電圧0とその耐圧
(図参照)に相当する電圧の間の充放電を繰返し
た場合の短絡を起こすまでのサイクル数(B)を示し
たものである。また、第8図は同じく混合比と
600mV定電圧充電後、30μAで放電した場合の
端子電圧560mV(A)および360mV(B)に達するまで
の時間との関係を示したものである。 第7図および第8図から、対極における
Cu2S/Cuを20/80〜40/60の範囲にすることに
より、耐圧を大きくできるばかりでなく、対極の
分極が小さいので放出エネルギーが大きく、しか
も長寿命にできることがわかる。 以上のように本発明は、安価な銅塩を主体とし
た材料で従来の銅塩電解質のものより大電流の充
放電を可能とし、しかもリーク電流が少なく、大
きなエネルギーの供給が可能となり、RAMのバ
ツクアツプ用、アクチユエータの動作用などの長
期間の繰返しに耐える電気二重層キヤパシタを提
供することができる。
[Table] As is clear from this table, the electric double layer capacitor of the present invention has an energy density of about 200 times that of an aluminum electrolytic capacitor, a unit capacity of about 1/3000, and a leakage current per unit voltage. In addition, when the solid electrolyte of the present invention is used, compared to the conventional one using a heated reaction product of pseudoadmantane alkyl halide and cuprous halide, the solid electrolyte is more effective than the above (ii), (iii), and (v). ) has the following characteristics.
That is, the solid electrolyte of the present invention has an ionic conductivity two to three times higher than that of conventional electrolytes, and the electron transport number does not increase even at high temperatures. Therefore, as shown in FIG. 5, there is little deterioration in the potential holding ability even when a large current is applied, and as shown in FIG. 6, leakage current is small even at particularly high temperatures. Figure 5 shows the electrolyte at room temperature of 1 mA,
The figure shows the voltage drop after the terminal voltage is 600 mV at each constant current of mA, 10 mA, 15 mA, and 20 mA, and the current is stopped. As is clear from Fig. 5, in the case of using a conventional electrolyte with poor ionic conductivity, the potential decreases significantly when a current of 10 mA is applied, whereas in the case of the device of the present invention, there is no significant drop in potential even when a current of 20 mA is applied. unacceptable. In addition, Figure 6 shows the leakage current of various electrolytes using a constant voltage of 600 mV and the value at which the current attenuates and becomes constant, where A is room temperature and B is 70 mV. The values are shown in °C. As is clear from FIG. 6, the leakage current using the conventional electrolyte is large and increases significantly at high temperatures, whereas the leakage current is small and increases little with temperature in the case of the present invention. A small leakage current also leads to good potential holding ability. Next, the relationship between the mixing ratio of Cu 2 S and Cu in the counter electrode and characteristics such as breakdown voltage will be explained. In addition, Cu 2 S−Cu
The mixing ratio of the mixture and the solid electrolyte is 80 parts by weight of the former and 20 parts by weight of the latter. Figure 7 shows the mixture ratio Cu 2 S/Cu and capacitor breakdown voltage.
(A) and the number of cycles (B) until a short circuit occurs when repeated charging and discharging between a terminal voltage of 0 and a voltage corresponding to the withstand voltage (see figure) with a current of 10 mA are shown. Also, Figure 8 also shows the mixing ratio.
The graph shows the relationship between the terminal voltages reaching 560 mV (A) and 360 mV (B) when discharging at 30 μA after charging at a constant voltage of 600 mV. From Figures 7 and 8, at the opposite pole
It can be seen that by setting Cu 2 S/Cu in the range of 20/80 to 40/60, not only can the withstand voltage be increased, but also the polarization of the opposite electrode is small, so the emitted energy is large and the life is long. As described above, the present invention enables charging and discharging of larger currents than conventional copper salt electrolytes using materials mainly made of inexpensive copper salts, and also has low leakage current, making it possible to supply large amounts of energy. It is possible to provide an electric double layer capacitor that can withstand repeated use over a long period of time, such as for backup and operation of actuators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明による電
気二重層キヤパシタを示す縦断面図、第3図aは
同じく本発明による電気二重層キヤパシタを示す
縦断面図、第3図bは同平面図、第4図は電解質
組成によるCuIの残存状況の相違を示すX線回折
図、第5図は従来の銅塩電解質との比較において
本発明の電解質の通電電流による電位保持能への
影響を示す図、第6図は電解質の種類とリーク電
流との関係を示す図、第7図は対極の組成と耐圧
およびサイクル寿命との関係を示す図、第8図は
対極組成と30μA放電持続時間との関係を示す図
である。 1……対極、3……固体電解質、4……分極性
電極、6……素子。
1 and 2 are longitudinal sectional views showing an electric double layer capacitor according to the present invention, FIG. 3 a is a longitudinal sectional view also showing an electric double layer capacitor according to the present invention, and FIG. Figure 4 is an X-ray diffraction diagram showing the difference in the residual state of CuI depending on the electrolyte composition, and Figure 5 is a diagram showing the influence of the applied current on the potential holding ability of the electrolyte of the present invention in comparison with a conventional copper salt electrolyte. , Figure 6 shows the relationship between the type of electrolyte and leakage current, Figure 7 shows the relationship between the composition of the counter electrode, withstand voltage and cycle life, and Figure 8 shows the relationship between the composition of the counter electrode and the 30μA discharge duration. It is a figure showing a relationship. 1...Counter electrode, 3...Solid electrolyte, 4...Polarizable electrode, 6...Element.

Claims (1)

【特許請求の範囲】 1 活性炭と固体電解質との混合物からなる分極
性電極、Cu2SとCuと固体電解質との混合物から
なり、Cu2SとCuとの混合割合Cu2S/Cuが重量
比で20/80〜40/60である対極、および両電極間
に介在させた固体電解質からなることを特徴とす
る電気二重層キヤパシタ。 2 固体電解質が、Cu+イオンの1/5をK+
Rb+、NH4 +、N(CH34 +から選ばれたカチオン
で、Cl-イオンの1/4以上1/3未満をI-イオンでそ
れぞれ置換したCuClである特許請求の範囲第1
項に記載の電気二重層キヤパシタ。
[Claims] 1. A polarizable electrode made of a mixture of activated carbon and a solid electrolyte, made of a mixture of Cu 2 S, Cu, and a solid electrolyte, where the mixing ratio of Cu 2 S and Cu is Cu 2 S/Cu by weight. An electric double layer capacitor comprising a counter electrode having a ratio of 20/80 to 40/60 and a solid electrolyte interposed between both electrodes. 2 The solid electrolyte converts 1/5 of Cu + ions into K + ,
Claim 1 which is CuCl in which 1/4 or more and less than 1/3 of the Cl - ions are replaced with I - ions using cations selected from Rb + , NH 4 + and N(CH 3 ) 4 + .
The electric double layer capacitor described in .
JP6536679A 1978-12-29 1979-05-25 Electric double layer capacitor Granted JPS55157225A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6536679A JPS55157225A (en) 1979-05-25 1979-05-25 Electric double layer capacitor
GB7944084A GB2044535B (en) 1978-12-29 1979-12-21 Solid state double layer capacitor
DE2952662A DE2952662C2 (en) 1978-12-29 1979-12-28 Double layer capacitor
FR7932056A FR2445601A1 (en) 1978-12-29 1979-12-28 SOLID STATE DOUBLE LAYER CAPACITOR
US06/276,693 US4363079A (en) 1978-12-29 1981-06-23 Solid state double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6536679A JPS55157225A (en) 1979-05-25 1979-05-25 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPS55157225A JPS55157225A (en) 1980-12-06
JPS625328B2 true JPS625328B2 (en) 1987-02-04

Family

ID=13284887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6536679A Granted JPS55157225A (en) 1978-12-29 1979-05-25 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPS55157225A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108558A (en) * 1973-02-20 1974-10-16
JPS53133756A (en) * 1977-04-27 1978-11-21 Matsushita Electric Ind Co Ltd Electric double layer capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108558A (en) * 1973-02-20 1974-10-16
JPS53133756A (en) * 1977-04-27 1978-11-21 Matsushita Electric Ind Co Ltd Electric double layer capacitor

Also Published As

Publication number Publication date
JPS55157225A (en) 1980-12-06

Similar Documents

Publication Publication Date Title
US5568353A (en) Electrochemical capacitor and method of making same
CN111433873B (en) Chip type super capacitor
JPS6343310A (en) Long life capacitor and manufacture of the same
JPH0416008B2 (en)
US8465554B2 (en) Method of manufacturing lithium ion capacitor
US4363079A (en) Solid state double layer capacitor
JP6765857B2 (en) Lithium ion capacitor
US3186875A (en) Solid state battery
JP2003346779A (en) Non-aqueous secondary battery
US4057679A (en) Organic electrolyte batteries
JPS625328B2 (en)
US4010043A (en) Lithium-iodine cells and method for making same
JP3167781B2 (en) Electric double layer condenser
JPS6322050B2 (en)
JP4928828B2 (en) Lithium ion storage element
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JPS5940284B2 (en) electric double layer capacitor
JPS6012665A (en) Reversible copper electrode
JP5748178B2 (en) Molten salt battery
JP2000188244A (en) Electric double layer capacitor
JP2770492B2 (en) Manufacturing method of solid state secondary battery
JP2005223155A (en) Electrochemical device and electrode member
JP5808641B2 (en) Electric storage device and manufacturing method thereof
JPS5979517A (en) Device for storing electric energy
JPS596050B2 (en) electric double layer capacitor