JPS5940284B2 - electric double layer capacitor - Google Patents

electric double layer capacitor

Info

Publication number
JPS5940284B2
JPS5940284B2 JP53148352A JP14835278A JPS5940284B2 JP S5940284 B2 JPS5940284 B2 JP S5940284B2 JP 53148352 A JP53148352 A JP 53148352A JP 14835278 A JP14835278 A JP 14835278A JP S5940284 B2 JPS5940284 B2 JP S5940284B2
Authority
JP
Japan
Prior art keywords
electric double
double layer
solid electrolyte
layer capacitor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53148352A
Other languages
Japanese (ja)
Other versions
JPS5574130A (en
Inventor
聰 関戸
義人 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP53148352A priority Critical patent/JPS5940284B2/en
Publication of JPS5574130A publication Critical patent/JPS5574130A/en
Publication of JPS5940284B2 publication Critical patent/JPS5940284B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は電気二重層キャパシターの通電可能な電流の増
大とリーク電流の低減、すなわち電位記憶能力の向上を
図ることに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to increasing the current that can be passed through an electric double layer capacitor and reducing leakage current, that is, improving potential storage ability.

従来、分極性電極と固体電解質との界面に形成される電
気二重層容量を利用するこの種の固体素子としては、電
解質にRb 1g4 I 5 、N841g 4 I
5 。
Conventionally, this type of solid-state device that utilizes the electric double layer capacitance formed at the interface between a polarizable electrode and a solid electrolyte uses Rb 1g4 I 5 and N841g 4 I in the electrolyte.
5.

へ93S■、八g6I4WO3などの銀イオン導電性の
固体電解質を用い、分極性電極にカーボンとか、(Ag
2S)0.69 ・(Ag1.7Te )0.285・
(A74P207)0.025を用い、対極にはAgを
用いていた。
A silver ion conductive solid electrolyte such as 93S■, 8g6I4WO3, etc. is used, and the polarizable electrode is made of carbon or (Ag
2S)0.69・(Ag1.7Te)0.285・
(A74P207) 0.025 was used, and Ag was used for the counter electrode.

すなわち、従来の電気二重層キャパシターは、Agおよ
び銀塩で構成されていたため、高価であるという欠点を
有していた。
That is, since conventional electric double layer capacitors were composed of Ag and silver salt, they had the disadvantage of being expensive.

そこで、本発明者らは以前に、動作極、対極および基準
極にCu2Sと固体電解質との混合成型物を用い、これ
らの電極の間に、ハロゲン(tJ−銅とハロゲン化N、
N’メチルへキサメチレンテトラミン、あるいはハロゲ
ン化Nメチルトリエチレンジアミンとの反応物からなる
銅イオン伝導性固体電解質を介在させた構造の電気二重
層キャパシターを特許出願した。
Therefore, the present inventors previously used a molded mixture of Cu2S and solid electrolyte for the working electrode, counter electrode, and reference electrode, and placed halogen (tJ-copper and halogenated N,
We have filed a patent application for an electric double layer capacitor with a structure in which a copper ion conductive solid electrolyte made of a reactant with N'methylhexamethylenetetramine or halogenated Nmethyltriethylenediamine is interposed.

これは、電解質にCu+イオン伝導性の固体電解質を用
いるとともに、それに伴なう問題点、例えば対極のAg
をCu、に代えただけでは可逆性が悪く、早期短給を起
すことをCu2Sを用いることに上って解決して価格の
低減を図ったものである。
This uses a solid electrolyte with Cu+ ion conductivity as the electrolyte, and there are problems associated with it, such as the use of Ag as a counter electrode.
If only Cu was used instead of Cu, the reversibility would be poor, leading to premature shortening, which was solved by using Cu2S, thereby reducing the price.

しかしながら、このような電解質のイオン導電率は、室
温で10 v/Cmで銀塩のそれに比べてて115〜
1/10であり、その分だけ通電可能な電流は小さく、
また電子伝導性を持つ・・ロゲン化第−銅の再析出が起
って電位保持能力が銀塩で作ったキャパシターより悪い
という欠点を有していた。
However, the ionic conductivity of such electrolytes is 115~10 v/Cm at room temperature compared to that of silver salts.
1/10, and the current that can be passed is smaller by that much.
In addition, it had the disadvantage that cupric halogenide, which has electron conductivity, redeposited, and its potential holding ability was worse than that of a capacitor made of silver salt.

本発明はこのような問題点を電解質を変えることにより
解消したものであり、以下本発明の電気二重層キャパシ
ターについて第1図〜第6図の図面を用いて説明する。
The present invention solves these problems by changing the electrolyte, and the electric double layer capacitor of the present invention will be explained below with reference to the drawings of FIGS. 1 to 6.

第1図に素子本体を15朋φの径とした本発明の一実施
例による電気二重層キャパシターの内部構造を示してお
り、図において、1は対極であり、Cu2Sと後述する
固体電解質とのCu2Sが80wt係の混合物1gをプ
レス成型することにより構成されている。
Fig. 1 shows the internal structure of an electric double layer capacitor according to an embodiment of the present invention in which the element body has a diameter of 15mm. It is constructed by press-molding 1 g of a mixture containing 80 wt of Cu2S.

2はこの対極1の集電体であり、約30μの銅箔からな
り、アルミニウムケース3と対極1との間に介在されて
いる。
Reference numeral 2 denotes a current collector for this counter electrode 1, which is made of a copper foil of about 30 μm and is interposed between the aluminum case 3 and the counter electrode 1.

また、集電体2のアルミニウムケース3側には、銀ペー
ストが塗布され接触抵抗が小さくなるようになされてい
る。
Furthermore, silver paste is applied to the aluminum case 3 side of the current collector 2 to reduce contact resistance.

4は動作極であり、前記対極1と同一組成の混合物0.
5gをプレス成型することにより構成されており、この
動作極4と前記対極1との間には、電解質1gをプレス
成型した固体電解質層5が介在されている。
4 is a working electrode, which is made of a mixture 0.4 having the same composition as the counter electrode 1.
A solid electrolyte layer 5 formed by press-molding 1 g of electrolyte is interposed between the working electrode 4 and the counter electrode 1.

6は前記対極1および動作極4と同一組成の混合物1g
をプレス成型して得た基準極であり、この基準極6と前
記動作極4との間には、前記固体電解質層と同様な固体
電解質層7が介在されている。
6 is 1 g of a mixture having the same composition as the counter electrode 1 and the working electrode 4.
A solid electrolyte layer 7 similar to the solid electrolyte layer described above is interposed between the reference electrode 6 and the working electrode 4.

8はこの基準極の集電体であり、100メツシユの銅ネ
ットが用いられている。
8 is a current collector of this reference electrode, and a 100-mesh copper net is used.

これらの成型物は個々にペレットにして重ね合わすこと
の他に、円筒プレス金型にまず対極1の混合物を入れ、
100 Ky/c、iの圧力で仮プレスし、その後順次
固体電解質層5、動作極4の粉末を入れて仮プレスを繰
返した後、金メッキを施した銅線9を動作極4の端に圧
入し、さらにその後固体電解質層7、基準極6の粉末を
入れて仮プレスを繰返し、最後に円形の一部を切取った
銅ネット8を切除部が動作極4の銅線9の圧入部の上に
なるように基準極6上に配置して4 ton/crAの
圧力で全体をプレスして素子体を成型してもよい。
In addition to individually pelletizing these molded products and stacking them on top of each other, the mixture of counter electrode 1 is first placed in a cylindrical press mold,
After temporarily pressing at a pressure of 100 Ky/c, i, the solid electrolyte layer 5 and the powder of the working electrode 4 were sequentially added and the temporary pressing was repeated, and then the gold-plated copper wire 9 was press-fitted into the end of the working electrode 4. After that, the solid electrolyte layer 7 and the powder of the reference electrode 6 are added, and the temporary pressing is repeated.Finally, the copper net 8, which has a circular part cut out, is placed so that the cut part is the press-fitting part of the copper wire 9 of the working electrode 4. The element body may be molded by placing it on the reference electrode 6 so as to face it upward and pressing the entire element with a pressure of 4 ton/crA.

この場合、次いで固体電解質層7、基準極6の一部を切
り取り、そして銅線9の一部を掘起して先端部にリード
線10を半田付けし、また集電体8にリード線11を銀
ペーストで接続した後、外底面にリード線12を接続し
たアルミニウムケースの内底面に銀ペーストにより貼付
けた銅箔よりなる集電体2上に配置し、そしてゴムバッ
キング13と絶縁性樹脂蓋体14とをアルミニウムケー
ス3の開口部に挿着してアルミニウムケー・ス3の上縁
3aを内側にカールさせることにより封口すれば、完成
品とすることができる。
In this case, a part of the solid electrolyte layer 7 and the reference electrode 6 are cut out, a part of the copper wire 9 is dug out, and a lead wire 10 is soldered to the tip part, and a lead wire 11 is attached to the current collector 8. are connected with silver paste, and placed on a current collector 2 made of copper foil pasted with silver paste on the inner bottom surface of an aluminum case with a lead wire 12 connected to the outer bottom surface, and then a rubber backing 13 and an insulating resin lid. The finished product can be obtained by inserting the body 14 into the opening of the aluminum case 3 and sealing it by curling the upper edge 3a of the aluminum case 3 inward.

なお、成型物を重ね合わせる場合は、基準極6、固体電
解質層7の一部を予め切取っておく。
In addition, when the molded products are overlapped, a part of the reference electrode 6 and the solid electrolyte layer 7 is cut out in advance.

ここで、本発明で用いる電解質粉末は、次のように作成
する。
Here, the electrolyte powder used in the present invention is prepared as follows.

予め、140℃で2時間加熱して水分とハロゲンの過剰
を取去ったハロゲン化第−銅およびハロゲン化アルカリ
(アルカリイオンはRb+、に+。
Cupric halides and alkali halides (the alkali ions are Rb+ and Ni+) were heated at 140°C for 2 hours to remove excess moisture and halogen.

Nu、 + 、 N(CH3) 、十から選ばれたもの
)とを原料として粉末を原子比でA:Cu:I:C/=
4 :16 ニア : 13(AはRb、に、NH4,
N(G(3)4から選ばれたもの)になるように混合し
て成型したタブレットを脱気した容器内に入れて200
°Cで17時間加熱した後、粉砕して作った。
Nu, +, N(CH3) (selected from 10) as a raw material, the powder has an atomic ratio of A:Cu:I:C/=
4:16 Near: 13 (A is Rb, NH4,
N (selected from G(3)4) and molded tablets were placed in a deaerated container and heated to 200 ml.
It was prepared by heating at °C for 17 hours and then grinding.

加熱したものが全く新しい物質であることは、第2図a
The fact that the heated substance is a completely new substance is shown in Figure 2a.
.

bに示す加熱前後の試料のX線回折から判る。This can be seen from the X-ray diffraction of the sample before and after heating shown in b.

なお、第2図a r bはアルカリの種類としてRbを
用いたものであるが、アルカリの種類としてK。
Incidentally, Fig. 2 a r b uses Rb as the type of alkali, but K is used as the type of alkali.

NH,、N(CH3) 4を用いたものも加熱反応後の
結晶構造はほぼ類似しており、面間隔がN(CH3)4
においてやや応く、Kにおいてやや狭くなる程度である
The crystal structures using NH,,N(CH3)4 after heating reaction are almost similar, and the interplanar spacing is N(CH3)4.
It is slightly narrower at K, and slightly narrower at K.

これらの電解質の導電率を交流IKHzで測定した結果
、第3図に示すようになった。
The conductivities of these electrolytes were measured at AC IKHz, and the results were as shown in FIG.

なお、第3図中、AはRbを用いたもの、BはKを用い
たもの、CはNH4を用いたもの、DはN(CH3)4
を用いたもの、Eは従来例の中で最も良かったCuBr
と臭化NメチルトリエチレンジアミンとのCuBr37
.5 mo1%混合反応物の値である。
In addition, in Fig. 3, A is for using Rb, B is for using K, C is for using NH4, and D is for N(CH3)4.
E is the best CuBr among the conventional examples.
and CuBr37 with N-methyltriethylenediamine bromide
.. 5 mo1% mixed reactant value.

また、カソード電極にCu、アノード電極にptを用い
、分解電圧以下の電圧を印加して電流−電圧の関係を求
めたところ、その関係は電子伝導が優勢な場合のワグナ
−の関係式 %式%)) にいずれの試料も良く合う挙動を示した。
In addition, we used Cu for the cathode electrode and PT for the anode electrode, and applied a voltage below the decomposition voltage to find the current-voltage relationship. %)) All samples showed behavior that matched well with the .

この式において、lは電極間の距離、Rは気体定数、E
は印加電圧、1は流れた電流、Tは絶対温度、Fはファ
ラデ一定数である。
In this equation, l is the distance between the electrodes, R is the gas constant, and E
is the applied voltage, 1 is the current flowing, T is the absolute temperature, and F is the Faraday constant.

ところで、先に求めた交流での導電率σは全伝導度であ
り、それはイオン伝導度σionと電子伝導度σeの和
であると考えられる。
By the way, the electrical conductivity σ in the alternating current obtained above is the total conductivity, which is considered to be the sum of the ionic conductivity σion and the electronic conductivity σe.

電流が電子を運ぶ割り合い、すなわち電子輸率teはt
Q=σe/σであるから、測定値を上記式に入れ、σe
を求めると、いずれの試料も10′v/Cmのオーダー
を示しく teは約1O−7)イオン伝導が主体である
ことがうかがえるる。
The rate at which the current carries electrons, that is, the electron transference number te, is t
Since Q=σe/σ, insert the measured value into the above equation and get σe
All samples show an order of 10'v/Cm (te is about 1O-7), indicating that ionic conduction is the main factor.

第4図に室温で通電電流が50mAでの電位変化を示し
たものであり、第4図中の記号は第3図の記号と同じで
ある。
FIG. 4 shows the potential change when the current applied is 50 mA at room temperature, and the symbols in FIG. 4 are the same as those in FIG. 3.

この第4図から明らかなように、従来の電解質の場合(
特性E)、2mAの通電では本発明のもの(特性A、B
、C,D)と同じ挙動を示すが、50 mAのように通
電電流が大きくなると、通電により電位が直線的に変化
しなくなり、通電を止めると、電位の変動が起るように
なる。
As is clear from Fig. 4, in the case of conventional electrolyte (
Characteristics E), and those of the present invention (characteristics A, B
, C, and D), but when the applied current is large, such as 50 mA, the potential no longer changes linearly when the current is applied, and when the current is stopped, the potential starts to fluctuate.

これは、通常の電気二重層の充電あるいは放電以外の分
極が起っているためと考えられる。
This is considered to be because polarization other than normal charging or discharging of the electric double layer is occurring.

このことは、この素子の用途、例えばタイミング積分素
子として通電電気量と電位との直線関係を使用する。
This means that the application of this element, for example as a timing integration element, uses the linear relationship between the amount of electricity supplied and the potential.

あるいは電子選局などに電位記憶性を利用する用途の支
障となり、本発明によって使用可能な電流値を増大でき
ることを意味する。
Alternatively, this may be a hindrance to applications that utilize potential memory for electronic channel selection, etc., and this means that the present invention can increase the usable current value.

第5図に通電によって動作極の電位を50mV。In Fig. 5, the potential of the working electrode is set to 50 mV by applying current.

Q mV、−40mV にした後、通電を止めた場合の
電位変化を示している。
It shows the potential change when the current supply is stopped after setting Q mV to -40 mV.

なお、温度は60℃一定にしたものである。Note that the temperature was kept constant at 60°C.

また、第6図に50 mVに動作極の電位を設定した場
合の24時間の放置による電位変化を示している。
Further, FIG. 6 shows the change in potential after being left for 24 hours when the potential of the active electrode was set to 50 mV.

この第6図から、従来の電解質(特性E)では、高温に
なるとかなり電位保持が悪くなるのに対し、本発明のも
の(特性A、B、C,D)は、大幅に改善されることが
認められる。
From FIG. 6, it can be seen that while the conventional electrolyte (characteristic E) has a considerably poor potential retention at high temperatures, the electrolyte of the present invention (characteristics A, B, C, and D) significantly improves the potential retention. is recognized.

以上のように本発明によれば、従来の素子の使用電流を
全電位領域まで増大させることができるばかりでなく、
高温での電位保持も著しく良くすることができる非常に
優れたものである。
As described above, according to the present invention, not only can the current used in conventional elements be increased to the entire potential range, but also
It is an extremely excellent material that can significantly improve potential retention at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による電気二重層キャパシタ
ーの内部構造を示す断面図、第2図a。 bは本発明の固体電解質の製造時の反応前後の成分の変
化を示す図、第3図は従来の電解質と本発明の電解質と
の温度による導電率の変化を示す図第4図は同じ<50
rnA(大電流)通電および休止時の電位変化を示す図
、第5図は同じく60℃の温度中に放置した時の電位保
持能力の変化を示す図、第6図は同じ< 50 mAで
の温度による電位保持能力の変化を示す図である。
FIG. 1 is a sectional view showing the internal structure of an electric double layer capacitor according to an embodiment of the present invention, and FIG. 2a is a cross-sectional view. b is a diagram showing changes in components before and after the reaction during the production of the solid electrolyte of the present invention, FIG. 3 is a diagram showing changes in electrical conductivity depending on temperature between the conventional electrolyte and the electrolyte of the present invention, and FIG. 50
Figure 5 shows the change in potential holding capacity when rnA (large current) is energized and at rest. Figure 5 shows the change in potential holding capacity when left at a temperature of 60°C. Figure 6 shows the change in potential holding capacity when the rnA (large current) is energized and at rest. FIG. 3 is a diagram showing changes in potential holding ability due to temperature.

Claims (1)

【特許請求の範囲】 1 動作極および対極がCu2Sと固体電解質との混合
成型物からなり、かつこれらの電極の間にCu+イオン
電導性固体電解質を介在させた電気二重層キャパシター
において、前記固体電解質としてCuCl0Cu+イオ
ンの115をRb十、に+。 NR4+(RはHあるいはアルキル基)の中から選ばれ
たカチオンで置換しかつC1−イオン7/20をI−イ
オンで置換したものを用いたことを特徴とする電気二重
層キャパシター。
[Scope of Claims] 1. An electric double layer capacitor in which the working electrode and the counter electrode are made of a molded mixture of Cu2S and a solid electrolyte, and a Cu + ion conductive solid electrolyte is interposed between these electrodes, wherein the solid electrolyte As CuCl0Cu+ ion 115 to Rb+. An electric double layer capacitor characterized in that it is substituted with a cation selected from NR4+ (R is H or an alkyl group) and in which 7/20 of C1- ions are replaced with I- ions.
JP53148352A 1978-11-29 1978-11-29 electric double layer capacitor Expired JPS5940284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53148352A JPS5940284B2 (en) 1978-11-29 1978-11-29 electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53148352A JPS5940284B2 (en) 1978-11-29 1978-11-29 electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPS5574130A JPS5574130A (en) 1980-06-04
JPS5940284B2 true JPS5940284B2 (en) 1984-09-29

Family

ID=15450833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53148352A Expired JPS5940284B2 (en) 1978-11-29 1978-11-29 electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPS5940284B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250187U (en) * 1985-09-18 1987-03-28
JPS631693A (en) * 1986-06-13 1988-01-06 住金物流株式会社 Article lifting gear
US10612845B2 (en) 2017-03-17 2020-04-07 Kabushiki Kaisha Toshiba Liquid removal apparatus and liquid removal method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250187U (en) * 1985-09-18 1987-03-28
JPS631693A (en) * 1986-06-13 1988-01-06 住金物流株式会社 Article lifting gear
US10612845B2 (en) 2017-03-17 2020-04-07 Kabushiki Kaisha Toshiba Liquid removal apparatus and liquid removal method

Also Published As

Publication number Publication date
JPS5574130A (en) 1980-06-04

Similar Documents

Publication Publication Date Title
EP0044427B1 (en) Solid state electric double layer capacitor
JPS62115706A (en) Cell of electric double-layer capacitor and manufacture of the same
JPS623547B2 (en)
US4363079A (en) Solid state double layer capacitor
CN104103849A (en) Lithium iron phosphate power battery and manufacturing method thereof
US3455742A (en) High energy density solid electrolyte cells
US3186875A (en) Solid state battery
US2542574A (en) Alkaline dry cell
JP5995469B2 (en) Coin-type non-aqueous electrolyte secondary battery and method for producing coin-type non-aqueous electrolyte secondary battery
Rüetschi et al. Surface coverage during hydrogen and oxygen evolution
JPS5940284B2 (en) electric double layer capacitor
US2481539A (en) Method of making depolarizer units for alkaline primary cells
JPS5868879A (en) Improved electrochemical generator and method of producing same
JPS5849965B2 (en) Manufacturing method of lithium ion conductive solid electrolyte
US2075351A (en) Electrolytic condenser
JPS6322050B2 (en)
US4688153A (en) Charge transfer complex
JPH0266918A (en) Electric double layer capacitor
US3749606A (en) Reversible cell having a solid electrolyte and a silver anode
JPH0467302B2 (en)
JPS596050B2 (en) electric double layer capacitor
JPH0320861B2 (en)
JPS6340324B2 (en)
JPS59111280A (en) Secondary photocell
US3598654A (en) Solid state battery with solid electrolyte