JP4928828B2 - Lithium ion storage element - Google Patents

Lithium ion storage element Download PDF

Info

Publication number
JP4928828B2
JP4928828B2 JP2006135163A JP2006135163A JP4928828B2 JP 4928828 B2 JP4928828 B2 JP 4928828B2 JP 2006135163 A JP2006135163 A JP 2006135163A JP 2006135163 A JP2006135163 A JP 2006135163A JP 4928828 B2 JP4928828 B2 JP 4928828B2
Authority
JP
Japan
Prior art keywords
laminated
lithium
negative electrode
electrode body
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006135163A
Other languages
Japanese (ja)
Other versions
JP2007305521A (en
Inventor
和夫 高田
俊之 美和
琢司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2006135163A priority Critical patent/JP4928828B2/en
Publication of JP2007305521A publication Critical patent/JP2007305521A/en
Application granted granted Critical
Publication of JP4928828B2 publication Critical patent/JP4928828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウムイオン蓄電素子に関し、とくに、アニオンの吸蔵・放出が可能な正極とリチウムイオンの吸蔵・放出が可能な負極とが間にセパレータを介在させながら交互に積層された積層電極体を用いるものに関する。   The present invention relates to a lithium ion storage element, and in particular, a laminated electrode body in which a positive electrode capable of inserting and extracting anions and a negative electrode capable of inserting and extracting lithium ions are alternately laminated with a separator interposed therebetween. It relates to what is used.

近年、たとえば風力発電や太陽電池等における負荷平準化、瞬低・停電対策、自動車におけるエネルギー回生等のために、比較的大きな電気エネルギーの急速充放電が可能な蓄電手段が求められるようになってきた。   In recent years, power storage means capable of rapid charging / discharging of relatively large electric energy has been required for load leveling in wind power generation, solar cells, etc., countermeasures for voltage sag and power failure, and energy regeneration in automobiles. It was.

従来、蓄電手段としては、エネルギー密度が高く充電も可能なリチウムイオン二次電池が提供されている。しかし、そのリチウムイオン二次電池は、充放電の繰り返しによる特性の劣化が早く、充放電サイクル数(寿命)に制限があった。また、充電所要時間が長く、上記エネルギー回生などで要求されるような急速充電は無理であった。つまり、充放電特性に問題があった。これは、リチウムイオン二次電池に限らず、二次電池全般に共通する問題でもあった。   Conventionally, lithium ion secondary batteries that have high energy density and can be charged have been provided as power storage means. However, the lithium ion secondary battery is rapidly deteriorated in characteristics due to repeated charge and discharge, and has a limited number of charge / discharge cycles (lifetime). In addition, the time required for charging is long, and rapid charging as required by the energy regeneration is impossible. That is, there was a problem in charge / discharge characteristics. This is a problem common to all secondary batteries as well as lithium ion secondary batteries.

充放電特性だけに注目するならば、上記二次電池よりも、電気二重層キャパシタが適している。電気二重層キャパシタの充放電特性は、上記二次電池とは比較にならないほどすぐれており、また、長期間メンテナンスフリーで使用することができ、急速充放電も可能である。しかし、電気二重層キャパシタは、キャパシタとしては非常に大きな容量(静電容量)を持つことができるが、充放電可能な電気容量は上記リチウムイオン二次電池に比べて、かなり見劣りする。   If attention is paid only to the charge / discharge characteristics, the electric double layer capacitor is more suitable than the secondary battery. The charge / discharge characteristics of the electric double layer capacitor are superior to those of the secondary battery, and can be used without maintenance for a long period of time, and can be rapidly charged / discharged. However, the electric double layer capacitor can have a very large capacity (capacitance) as a capacitor, but the chargeable / dischargeable capacity is considerably inferior to that of the lithium ion secondary battery.

そこで、電気二重層キャパシタとリチウムイオン二次電池を折衷させたような特質を有するリチウムイオン蓄電素子が提案されている。この蓄電素子は、アニオンの吸蔵・放出が可能な正極と、リチウムイオンの吸蔵・放出が可能な負極と、リチウム塩を含む非水電解液を用いて構成される(特許文献1,2参照)。   Therefore, a lithium ion storage element having such characteristics as an electric double layer capacitor and a lithium ion secondary battery are proposed. This power storage element is configured using a positive electrode capable of occluding and releasing anions, a negative electrode capable of occluding and releasing lithium ions, and a non-aqueous electrolyte containing a lithium salt (see Patent Documents 1 and 2). .

上記リチウムイオン二次電池では、正極にリチウムを含む複合酸化物(たとえばコバルト酸リチウム)を用い、非水電解液を介して行われる正極と負極間でのリチウムイオンのやりとりによって充放電の可逆プロセスが行われる。これに対して、上記リチウムイオン蓄電素子は、正極での電解質アニオンの吸蔵・放出と負極でのリチウムイオンの吸蔵・放出とによって充放電の可逆プロセスが行われる。   In the above lithium ion secondary battery, a reversible process of charge and discharge is performed by exchanging lithium ions between the positive electrode and the negative electrode through a non-aqueous electrolyte using a composite oxide containing lithium as the positive electrode (for example, lithium cobaltate). Is done. On the other hand, in the lithium ion storage element, a reversible process of charging and discharging is performed by occlusion / release of electrolyte anions at the positive electrode and occlusion / release of lithium ions at the negative electrode.

このリチウムイオン蓄電素子は、上記リチウムイオン二次電池と上記電気二重層キャパシタがそれぞれに有する利点を兼ね備えたような性質を有する。すなわち、充放電サイクル特性は上記リチウムイオン二次電池よりも各段にすぐれ、充放電容量(充放電可能な電気容量)は上記電気二重層キャパシタよりも各段に大きい、といった利点がある。   This lithium ion storage element has such a property that the lithium ion secondary battery and the electric double layer capacitor have both advantages. That is, the charge / discharge cycle characteristics are superior to each stage as compared with the lithium ion secondary battery, and the charge / discharge capacity (capacity capable of being charged / discharged) is greater than each stage of the electric double layer capacitor.

このリチウムイオン蓄電素子は、高性能のキャパシタ型二次電池として好適に使用できるのはもちろんであるが、メンテナンス負担が少なく急速充放電も可能であることから、たとえば風力発電における負荷平準化、瞬低・停電対策、自動車におけるエネルギー回生等を行うための蓄電手段としても好適に使用可能である。   This lithium ion storage element can be suitably used as a high-performance capacitor-type secondary battery, but it has a low maintenance burden and can be charged and discharged quickly. It can be suitably used as a power storage means for performing low power outage countermeasures, energy regeneration in automobiles, and the like.

上記リチウムイオン蓄電素子は、リチウムイオンを含む電解液を使用する点で従来のリチウムイオン二次電池と共通するが、リチウムイオン二次電池と違って、正極にリチウムイオンを供給するような物質(たとえばコバルト酸リチウム)は使わず、電解液中に電解質成分として存在するアニオンとリチウムイオンを使って充放電を行う。   The lithium ion storage element is the same as a conventional lithium ion secondary battery in that an electrolyte containing lithium ions is used, but unlike a lithium ion secondary battery, a substance that supplies lithium ions to a positive electrode ( For example, lithium cobaltate) is not used, and charging and discharging are performed using anions and lithium ions present as electrolyte components in the electrolytic solution.

正極は充電時に電解液中の電解質アニオンを吸蔵し、放電時にそれを放出する。負極は充電時に電解液中のリチウムイオン(カチオン)を吸蔵し、放電時にそれを放出する。このアニオンとリチウムイオンの可逆的な吸蔵・放出により、充放電の可逆プロセスが行われるようになっている。   The positive electrode occludes the electrolyte anion in the electrolyte during charging and releases it during discharge. The negative electrode occludes lithium ions (cations) in the electrolyte during charging and releases it during discharging. A reversible charging / discharging process is performed by reversible occlusion / release of these anions and lithium ions.

ここで、充放電の可逆プロセスが電解液のガス発生反応を起こすことなく効率的に行われるためには、充電初期(あるいは放電末期)から充電末期(あるいは放電初期)の全範囲にわたって、負極の電位がリチウム電位付近に安定に固定されている必要がある。このため、負極にあらかじめリチウムイオンを吸蔵(ドープ)させること、いわゆる予備吸蔵(プレ・ドープ)が行われる。   Here, in order for the reversible process of charge / discharge to be performed efficiently without causing the gas generation reaction of the electrolyte, the negative electrode is covered over the entire range from the initial charge stage (or the final discharge stage) to the final charge stage (or the initial discharge stage). The potential needs to be stably fixed around the lithium potential. Therefore, the negative electrode is preliminarily occluded (doped) with lithium ions, so-called pre-occlusion (pre-doping).

この予備吸蔵は、電解液中にリチウム金属を配置するとともに、このリチウム金属を負極と導通接続させることにより行わせることができる。正極と負極とが間にセパレータを介在させながら交互に積層された積層電極体を用いる構造のリチウムイオン蓄電素子では、図2に示すように、負極集電体232の表面に余白部を設け、この余白部に箔状のリチウム金属41を添着することが従来において行われていた(特許文献1,2)。   This pre-occlusion can be performed by arranging lithium metal in the electrolytic solution and electrically connecting the lithium metal to the negative electrode. In the lithium ion storage element having a structure using a stacked electrode body in which positive electrodes and negative electrodes are alternately stacked with a separator interposed therebetween, as shown in FIG. 2, a blank portion is provided on the surface of the negative electrode current collector 232, Conventionally, a foil-like lithium metal 41 is attached to the blank portion (Patent Documents 1 and 2).

図2は、従来のリチウムイオン蓄電素子の要部を示す。同図において、(a)は積層電極体20を示し、(b)はその積層電極体20中の負極23を取り出して示す。   FIG. 2 shows a main part of a conventional lithium ion storage element. In the same figure, (a) shows the laminated electrode body 20, and (b) shows the negative electrode 23 in the laminated electrode body 20 taken out.

積層電極体20は、矩形シード状の正極21と負極23とが間にセパレータ22を介在させながら交互に積層されている。正極21は、金属箔からなるシート状正極集電体212の両面にアニオンの吸蔵・放出が可能な正極材211が塗布等により層状に設置されている。負極23は、金属箔からなるシート状負極集電体232の両面にリチウムイオンの吸蔵・放出が可能な負極材231が塗布等により層状に設置されている。   In the laminated electrode body 20, rectangular seed-like positive electrodes 21 and negative electrodes 23 are alternately laminated with a separator 22 interposed therebetween. In the positive electrode 21, a positive electrode material 211 capable of occluding and releasing anions is disposed in layers on both surfaces of a sheet-like positive electrode current collector 212 made of a metal foil. In the negative electrode 23, a negative electrode material 231 capable of occluding and releasing lithium ions is disposed in layers on both surfaces of a sheet-like negative electrode current collector 232 made of a metal foil by coating or the like.

負極側および正極側の集電体212,232にはそれぞれ、外部端子に接続するためのリード状タブ213,233が一体に形成されている。リチウム金属41は、負極集電体232上に薄く展開された状態で貼着されている。これにより、リチウム金属41が負極23と導電接続されている。   Lead-shaped tabs 213 and 233 for connecting to external terminals are integrally formed on the current collectors 212 and 232 on the negative electrode side and the positive electrode side, respectively. The lithium metal 41 is stuck on the negative electrode current collector 232 in a thinly developed state. Thereby, the lithium metal 41 is conductively connected to the negative electrode 23.

上記積層電極体20を非水電解液とともに素子容器に収容することにより、リチウム金属41が電解液にリチウムイオンとして溶解し、やがて負極231に吸蔵される。
特開2000−21392 特開平9−147835
By housing the laminated electrode body 20 in the element container together with the non-aqueous electrolyte, the lithium metal 41 is dissolved in the electrolyte as lithium ions and eventually inserted in the negative electrode 231.
JP 2000-21392 JP-A-9-147835

上述した従来のリチウムイオン蓄電素子では、次のような問題のあることが本発明者らにより明らかとされた。   It has been clarified by the present inventors that the above-described conventional lithium ion storage element has the following problems.

(1)積層電極体の作製はリチウム金属を貼着した負極を用いて行われるが、これは生産性を著しく阻害する。リチウム金属は反応性が高く、その取り扱いには特別の注意を要する。とくに、箔状に薄く展開された状態のリチウム金属は反応しやすく、工程中に発火したりする恐れが大きい。このため、リチウム金属を設置した後の工程は、特別の防護対策が必要となって生産性を低下させる。負極集電体にあらかじめリチウム金属を貼着した場合、その貼着のための工数増加に加えて、それ以降の積層電極体の組立てを含む一連の工程が大幅に複雑化し、生産性が阻害されてしまう。   (1) Although the production of the laminated electrode body is performed using a negative electrode on which lithium metal is adhered, this significantly impedes productivity. Lithium metal is highly reactive and requires special care when handling it. In particular, lithium metal in the state of being thinly developed in a foil shape is likely to react and is likely to ignite during the process. For this reason, the process after the installation of lithium metal requires special protective measures and reduces productivity. When lithium metal is bonded to the negative electrode current collector in advance, in addition to the increase in man-hours for the bonding, a series of processes including assembly of the subsequent laminated electrode bodies are greatly complicated, and productivity is hindered. End up.

(2)リチウム金属が非水電解液に溶解し、リチウムイオンとして負極全体に吸蔵されるまでに、長時間を要していた。これは、リチウム金属が積層電極体の層間に閉じ込められた状態で設置されているためと考えられる。この状態で設置されたリチウム金属は、電解液への溶出が必ずしも円滑でなく、負極への吸蔵に時間がかかるとともに、その吸蔵が均一に行われ難いことが判明した。   (2) It took a long time for the lithium metal to be dissolved in the non-aqueous electrolyte and stored as lithium ions throughout the negative electrode. This is presumably because lithium metal is placed in a state of being confined between the layers of the laminated electrode body. It has been found that the lithium metal placed in this state does not necessarily elute smoothly into the electrolyte, takes time to occlude in the negative electrode, and is difficult to uniformly occlude.

本発明は、以上のような問題を鑑みてなされたものであり、その目的は、アニオンの吸蔵・放出が可能な正極とリチウムイオンの吸蔵・放出が可能な負極とが間にセパレータを介在させながら交互に積層されてなる矩形状の積層電極体を用いたリチウムイオン蓄電素子において、予備吸蔵用リチウム金属の溶解および負極へのリチウムイオンの予備吸蔵を円滑かつ迅速に行わせるとともに、生産工程にてリチウム金属を扱う頻度を低減させて生産性を高めることにある。   The present invention has been made in view of the above problems, and its purpose is to interpose a separator between a positive electrode capable of occluding and releasing anions and a negative electrode capable of occluding and releasing lithium ions. However, in the lithium ion storage element using the rectangular laminated electrode body that is alternately laminated, the pre-occlusion of the lithium metal for pre-occlusion and the pre-occlusion of the lithium ion to the negative electrode are smoothly and rapidly performed, and the production process The purpose is to increase the productivity by reducing the frequency of handling lithium metal.

本発明の上記以外の目的および構成については、本明細書の記述および添付図面からあきらかになるであろう。   Other objects and configurations of the present invention will become apparent from the description of the present specification and the accompanying drawings.

本発明が提供する解決手段は以下のとおりである。   The solution provided by the present invention is as follows.

(1)アニオンの吸蔵・放出が可能な正極材が正極集電体上に設置された矩形シート状正極と、リチウムイオンの吸蔵・放出が可能な負極材が負極集電体上に設置された矩形シート状負極が、間にセパレータを介在させながら交互に積層された矩形状の積層電極体と、リチウム塩を溶解させた非水電解液と、上記積層電極体を上記非水電解液とともに収容して密閉封止された素子容器とを備えたリチウムイオン蓄電素子であって、
上記積層電極体の積層端面に平行対面しながら沿うように設置された帯状導電支持体と、この導電支持体の上記電極体側面に沿って添着されたリチウム金属を有するとともに、このリチウム金属が上記導電支持体を介して上記電極体の負極に導電接続されていることを特徴とするリチウムイオン蓄電素子。
(1) A rectangular sheet-like positive electrode on which a positive electrode material capable of occluding and releasing anions is disposed on a positive electrode current collector, and a negative electrode material capable of occluding and releasing lithium ions are disposed on a negative electrode current collector. A rectangular sheet-like negative electrode having rectangular laminated electrode bodies alternately laminated with a separator interposed therebetween, a non-aqueous electrolyte solution in which lithium salt is dissolved, and the laminated electrode body are accommodated together with the non-aqueous electrolyte solution A lithium ion storage element including a hermetically sealed element container,
It has a strip-shaped conductive support that is installed so as to be parallel to the stacked end face of the stacked electrode body, and lithium metal that is attached along the side of the electrode body of the conductive support, and the lithium metal A lithium ion storage element, wherein the lithium ion storage element is conductively connected to the negative electrode of the electrode body through a conductive support.

(2)前記手段(1)において、前記積層電極体は、その一側辺から正極および負極の端子リードが引き出されるように構成され、前記導電支持体は、上記積層電極体の4側辺のうち、上記端子リードの引き出し側辺を除く3側辺の積層端面に平行対面しながら沿うように設置され、前記リチウム金属は、その3側辺の積層端面に対面すべく添着されていることを特徴とするリチウムイオン蓄電素子。   (2) In the means (1), the laminated electrode body is configured such that positive and negative terminal leads are drawn out from one side thereof, and the conductive support is formed on the four side sides of the laminated electrode body. Among them, it is installed so as to be parallel to and facing the laminated end surface of the three side sides excluding the lead side of the terminal lead, and the lithium metal is attached to face the laminated end surface of the three side sides. Lithium ion storage element characterized.

アニオンの吸蔵・放出が可能な正極とリチウムイオンの吸蔵・放出が可能な負極とが間にセパレータを介在させながら交互に積層されてなる矩形状の積層電極体を用いたリチウムイオン蓄電素子において、予備吸蔵用リチウム金属の溶解および負極へのリチウムイオンの予備吸蔵を円滑かつ迅速に行わせることができるとともに、生産工程にてリチウム金属を扱う頻度を低減させて生産性を高めることができる。   In a lithium ion storage element using a rectangular laminated electrode body in which a positive electrode capable of occluding and releasing anions and a negative electrode capable of occluding and releasing lithium ions are alternately laminated with a separator interposed therebetween, Dissolution of the pre-occlusion lithium metal and pre-occlusion of lithium ions into the negative electrode can be performed smoothly and quickly, and the frequency of handling the lithium metal in the production process can be reduced to increase productivity.

上記以外の作用/効果については、本明細書の記述および添付図面からあきらかになるであろう。  Operations / effects other than those described above will be apparent from the description of the present specification and the accompanying drawings.

図1は、本発明によるリチウムイオン蓄電素子の第1実施形態を示す。
同図において、(a)は破断正面図、(b)は(a)のA−A断面図をそれぞれ示す。同図に示す蓄電素子10は、正極21と負極23とがセパレータ22を介して対向させられた電極体20が、非水電解液24とともに素子容器11に密閉収容されている。
FIG. 1 shows a first embodiment of a lithium ion storage element according to the present invention.
In the figure, (a) is a broken front view, and (b) is a cross-sectional view taken along line AA of (a). In the electric storage element 10 shown in the figure, an electrode body 20 in which a positive electrode 21 and a negative electrode 23 are opposed to each other through a separator 22 is hermetically accommodated in an element container 11 together with a nonaqueous electrolytic solution 24.

正極21は、アニオンの吸蔵・放出が可能な炭素材料を用いた正極材211が、金属箔(Al)からなるシート状集電体212の両面に塗布等により層状に付着されて、全体がシート状に形成されている。同様に、負極23は、リチウムイオンの吸蔵・放出が可能な負極材231が金属箔(Cu)からなるシート状集電体232の両面に塗布等により層状に付着されて、全体がシート状に形成されている。正極21と負極23はセパレータ22を挟みながら順次積層されて矩形平型の積層電極体20を構成している。   The positive electrode 21 is formed by laminating a positive electrode material 211 using a carbon material capable of occluding and releasing anions on both surfaces of a sheet-like current collector 212 made of a metal foil (Al) by coating or the like, and the whole is a sheet. It is formed in a shape. Similarly, the negative electrode 23 has a negative electrode material 231 capable of occluding and releasing lithium ions attached to both surfaces of a sheet-like current collector 232 made of a metal foil (Cu) by coating or the like, and the whole is formed into a sheet shape. Is formed. The positive electrode 21 and the negative electrode 23 are sequentially stacked while sandwiching the separator 22 to form a rectangular flat stacked electrode body 20.

集電体212,232にはそれぞれ外部端子との接続をなすためのリード状タブ213,233が一体形成されている。正極集電体212のタブ213は互いに共通接続されて正極端子31に接続されている。同様に、負極集電体232のタブ233は互いに共通接続されて負極端子33に接続されている。この端子リードの引き出しは、積層電極体20の4側辺のうちの1側辺にて行われている。正極端子31および負極端子33はそれぞれ、素子容器11の密閉状態を保ちながらその素子容器11の内外に跨って設置されている。   The current collectors 212 and 232 are integrally formed with lead-like tabs 213 and 233 for connecting to external terminals, respectively. The tabs 213 of the positive electrode current collector 212 are commonly connected to each other and connected to the positive electrode terminal 31. Similarly, the tabs 233 of the negative electrode current collector 232 are commonly connected to each other and connected to the negative electrode terminal 33. The terminal lead is drawn out on one side of the four sides of the laminated electrode body 20. The positive electrode terminal 31 and the negative electrode terminal 33 are installed across the inside and outside of the element container 11 while keeping the sealed state of the element container 11.

正極21は充電時に電解液中のアニオンを吸蔵し、放電時にそれを放出する。負極23は充電時に電解液中のリチウムイオン(カチオン)を吸蔵し、放電時にそれを放出する。このアニオンとリチウムイオンの可逆的な吸蔵・放出により、充放電の可逆プロセスが行われるようになっている。正極材211および負極材231の材料としては炭素材料がそれぞれ好適である。   The positive electrode 21 occludes anions in the electrolyte during charging and releases them during discharging. The negative electrode 23 occludes lithium ions (cations) in the electrolyte during charging and releases it during discharging. A reversible charging / discharging process is performed by reversible occlusion / release of these anions and lithium ions. As the material for the positive electrode material 211 and the negative electrode material 231, a carbon material is suitable.

素子容器11は、非水電解液24を含む素子構成要素を安定に密閉収容できるものであればとくに限定されないが、この実施形態では、ラミネートフィルム等の気密性軟包装材を融着等により矩形袋状に加工したソフト容器が使用されている。このソフト容器は、開口部の熱融着により簡単に封止することができる。熱融着による封止は、その融着部に正極端子31および負極端子33を挟み込んだ状態で行うことができる。   The element container 11 is not particularly limited as long as it can stably and hermetically contain element components including the non-aqueous electrolyte 24, but in this embodiment, an airtight flexible packaging material such as a laminate film is rectangular by fusion or the like. Soft containers processed into bags are used. This soft container can be easily sealed by heat-sealing the opening. Sealing by thermal fusion can be performed in a state where the positive electrode terminal 31 and the negative electrode terminal 33 are sandwiched between the fusion portions.

さらに、上記リチウムイオン蓄電素子では、金属箔からなる帯状導電支持体25が、積層電極体20の4側辺のうち、上記端子リードの引き出し側辺を除く3側辺の積層端面に平行対面しながら沿うように設置されている。そして、この導電支持体25の電極体20側面に沿ってリチウム金属41が添着されている。これとともに、その導電支持体25の一端部が、連結リード26を介して負極端子33の素子容器11内側部分に溶接接続されている。   Furthermore, in the lithium ion storage element, the strip-like conductive support 25 made of metal foil faces parallel to the laminated end faces of the three sides of the four sides of the laminated electrode body 20 excluding the lead side of the terminal lead. It is installed along the way. A lithium metal 41 is attached along the side surface of the electrode body 20 of the conductive support 25. At the same time, one end of the conductive support 25 is welded to the inner portion of the element container 11 of the negative electrode terminal 33 via the connecting lead 26.

上述したリチウムイオン蓄電素子は、予備吸蔵用のリチウム金属41が積層電極体20の外部に設置されている。したがって、積層電極体20の作製はリチウム金属が介在しない状態で行うことができる。これにより、リチウム金属を扱うことにともなう工数増加や工程の複雑化を大幅に回避させて、良好な生産性を確保することができる。   In the lithium ion storage element described above, the lithium metal 41 for preocclusion is installed outside the laminated electrode body 20. Therefore, the laminated electrode body 20 can be produced in a state where no lithium metal is present. As a result, it is possible to largely avoid the increase in man-hours and the complexity of the process associated with the handling of lithium metal, thereby ensuring good productivity.

また、リチウム金属41は積層電極体20の層間に閉じ込められず、その層間の外に配置されていることにより、電解液への溶解が円滑かつ迅速に行われるとともに、その電解液にリチウムイオンとして溶解した後の拡散性が良好となり、これにより、電極体20内の負極全体に均一にリチウムイオンが行き渡って速やかに吸蔵されるようになる。   Further, since the lithium metal 41 is not confined between the layers of the laminated electrode body 20 and is disposed outside the layer, the lithium metal 41 is smoothly and quickly dissolved in the electrolyte solution, and the electrolyte solution contains lithium ions as lithium ions. The diffusibility after dissolution becomes good, and thereby, lithium ions are uniformly distributed over the entire negative electrode in the electrode body 20 and quickly occluded.

さらに、そのリチウムイオンの供給源であるリチウム金属41が積層電極体20の積層端面に沿って配置されていることにより、リチウム金属41から溶出したリチウムイオンは、積層電極体20内の各層のセパレータ22を介して各層の負極23に同時並行的に到達して吸蔵されるようになる。この結果、電極体20内の各層の負極23にリチウムイオンを迅速かつ均一に予備吸蔵させることができ。したがって、従来は長時間を要していた予備吸蔵を、それよりも大幅に短い時間で行わせることができる。   Furthermore, since the lithium metal 41 that is the lithium ion supply source is arranged along the laminated end face of the laminated electrode body 20, the lithium ions eluted from the lithium metal 41 are separated from each other in the laminated electrode body 20. Through 22, it reaches the negative electrode 23 of each layer simultaneously and is occluded. As a result, lithium ions can be preoccluded quickly and uniformly in the negative electrode 23 of each layer in the electrode body 20. Therefore, the pre-occlusion that conventionally required a long time can be performed in a significantly shorter time.

さらにまた、上記導電支持体25が、積層電極体の4側辺のうち、端子リードの引き出し側辺を除く3側辺の積層端面に平行に対面しながら沿うとともに、その3側辺の積層端面に対してリチウム金属41が配置されていることにより、リチウム金属41から溶出したリチウムイオンは、その積層電極体20の3側辺の積層端面からそれぞれに電極体20内に移動するようになる。これにより、各層の負極23へのリチウムイオンの予備吸蔵をさらに迅速かつ均一に行わせることができる。   Still further, the conductive support 25 is provided along the laminated end faces of the three side edges excluding the terminal lead drawing side edge among the four side edges of the laminated electrode body while facing in parallel and the laminated end face of the three side edges. On the other hand, the lithium metal 41 is arranged so that lithium ions eluted from the lithium metal 41 move into the electrode body 20 from the laminated end faces on the three sides of the laminated electrode body 20 respectively. Thereby, preliminary occlusion of lithium ions into the negative electrode 23 of each layer can be performed more rapidly and uniformly.

<実施例>
正極の作製:正極材料である黒鉛粉末と結着剤であるカルボキシメチルセルロース(第一工業薬品(株)セロゲン4H)を97:3の重量比で混合し、これにイオン交換水を加えてペースト状の合剤を調製した。この合剤を、集電体となる厚さ20μmのアルミニウム箔の両面に塗布した。これに乾燥および圧延操作を行った後、所定形状態に切断してシート状の正極を作製した。切断した正極には、正極端子との接続のためのタブとなる未塗布部分も含まれている。
<Example>
Production of positive electrode: Graphite powder as a positive electrode material and carboxymethylcellulose (Daiichi Kogyo Kagaku Co., Ltd., Cellogen 4H) as a positive electrode material are mixed at a weight ratio of 97: 3, and ion-exchanged water is added thereto to form a paste. A mixture was prepared. This mixture was applied to both surfaces of a 20 μm thick aluminum foil serving as a current collector. This was dried and rolled, and then cut into a predetermined shape to produce a sheet-like positive electrode. The cut positive electrode also includes an uncoated portion that becomes a tab for connection with the positive electrode terminal.

負極の作製:負極材料である難黒鉛化炭素材料(呉羽化学(株)製のPIC)と結着剤であるポリフッ化ビニリデン樹脂(呉羽化学(株)性のKF#1100)を95:5の重量比で混合し、これに、溶剤としてN−メチル−2−ピロリジノンを加えてペースト状の合剤を調製した。   Production of negative electrode: A non-graphitizable carbon material (PIC manufactured by Kureha Chemical Co., Ltd.) which is a negative electrode material and a polyvinylidene fluoride resin (KF # 1100 of Kureha Chemical Co., Ltd.) which is a binder of 95: 5 It mixed by weight ratio, N-methyl-2-pyrrolidinone was added as a solvent to this, and the paste-form mixture was prepared.

この合剤を、集電体となる厚さ14μmの銅箔の両面に塗布した。これに乾燥および圧延操作を行った後、所定形状態に切断してシート状の負極を作製した。切断した負極には、負極端子との接続のためのタブとなる未塗布部分も含まれている。   This mixture was applied to both sides of a 14 μm thick copper foil serving as a current collector. This was dried and rolled, and then cut into a predetermined shape to produce a sheet-like negative electrode. The cut negative electrode also includes an uncoated portion that becomes a tab for connection with the negative electrode terminal.

電極体の作製:作製した負極と正極を、間にポリオレフィン系セパレータを介して、正極の未塗布部分(タブ)と負極の未塗布部分(タブ)とが重ならないように複数組積層し、矩形平型の積層電極体を構成した。この電極体をアルミニウム・ラミネートフィルム製の素子容器に収容した。   Production of electrode body: The produced negative electrode and positive electrode are laminated with a polyolefin separator between them so that the uncoated part (tab) of the positive electrode and the uncoated part (tab) of the negative electrode do not overlap each other, and are rectangular A flat laminated electrode body was constructed. This electrode body was accommodated in an element container made of an aluminum laminate film.

素子の作製:素子容器内には、所定量のリチウム金属が貼着されたニッケル製リードを配置しておく。このニッケル製リードは前記導電支持体に相当するものであって、素子容器の内側面に沿ってU字状に屈曲させられている。リチウム金属はそのU字状の内側に貼着されている。   Device preparation: A nickel lead having a predetermined amount of lithium metal adhered thereto is placed in the device container. The nickel lead corresponds to the conductive support and is bent in a U shape along the inner surface of the element container. Lithium metal is stuck inside the U-shape.

この素子容器内に上記積層電極体を挿入し、正極の未塗布部(タブ)を束ねて正極端子に溶接した。同様に、負極の未塗布部(タブ)を束ねて負極端子に溶接した。また、ニッケル製リードの一端部を連結リードを介して負極端子に接続した。   The laminated electrode body was inserted into the element container, and the uncoated portion (tab) of the positive electrode was bundled and welded to the positive electrode terminal. Similarly, the uncoated portion (tab) of the negative electrode was bundled and welded to the negative electrode terminal. Also, one end of the nickel lead was connected to the negative electrode terminal via a connecting lead.

この後、容器に非水電解液を注入した。そして、正極端子および負極端子の各一端側がそれぞれ容器の外に出るようにした状態で、容器の開口部を熱融着により密閉封止した。このようにして実施例のリチウムイオン蓄電素子を作製した(図1参照)。   Thereafter, a non-aqueous electrolyte was poured into the container. And the opening part of the container was airtightly sealed by heat sealing | fusion in the state which made each one end side of a positive electrode terminal and a negative electrode terminal come out of a container, respectively. Thus, the lithium ion electrical storage element of the Example was produced (refer FIG. 1).

<従来例>
上記実施例に対し、リチウム金属が貼着されたニッケル製リードは配置せず、その代わり、図2に示したように、負極集電体の未塗布部(余白部)にリチウム金属を貼着した。その他は実施例と同様にして従来例のリチウムイオン蓄電素子を作製した。
<Conventional example>
In contrast to the above example, nickel lead with lithium metal attached is not disposed, and instead, lithium metal is attached to the uncoated part (blank part) of the negative electrode current collector as shown in FIG. did. Other than that, a conventional lithium ion storage element was fabricated in the same manner as in the example.

<試験>
実施例と従来例の蓄電素子をそれぞれ45℃の恒温槽に放置し、リチウム金属が完全に溶解するまでの時間を測定した。その結果は、実施例のもので5日間、従来例のもので20日間となった。
<Test>
The electricity storage elements of the example and the conventional example were each left in a 45 ° C. thermostat and the time until the lithium metal was completely dissolved was measured. The result was 5 days for the example and 20 days for the conventional example.

以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以外にも種々の態様が可能である。   As mentioned above, although this invention was demonstrated based on the typical Example, this invention can have various aspects other than having mentioned above.

アニオンの吸蔵・放出が可能な正極とリチウムイオンの吸蔵・放出が可能な負極とが間にセパレータを介在させながら交互に積層されてなる矩形状の積層電極体を用いたリチウムイオン蓄電素子において、予備吸蔵用リチウム金属の溶解および負極へのリチウムイオンの予備吸蔵を円滑かつ迅速に行わせることができるとともに、生産工程にてリチウム金属を扱う頻度を低減させて生産性を高めることができる。   In a lithium ion storage element using a rectangular laminated electrode body in which a positive electrode capable of occluding and releasing anions and a negative electrode capable of occluding and releasing lithium ions are alternately laminated with a separator interposed therebetween, Dissolution of the pre-occlusion lithium metal and pre-occlusion of lithium ions into the negative electrode can be performed smoothly and quickly, and the frequency of handling the lithium metal in the production process can be reduced to increase productivity.

本発明によるリチウムイオン蓄電素子の一実施形態を示す破断正面図および側断面図である。1 is a cutaway front view and a side sectional view showing an embodiment of a lithium ion storage element according to the present invention. 従来のリチウムイオン蓄電素子の構成例を示す側断面図および斜視図である。It is the sectional side view and perspective view which show the structural example of the conventional lithium ion electrical storage element.

符号の説明Explanation of symbols

10 蓄電素子、11 素子容器、20 積層電極体、
21 正極、211 正極材、212 正極集電体、213 タブ、
22 セパレータ
23 負極、231 負極材、232 負極集電体、233 タブ、
24 非水電解液、25 導電支持体、26 連結リード、
31 正極端子、33 負極端子、41 リチウム金属
10 power storage elements, 11 element containers, 20 laminated electrode bodies,
21 positive electrode, 211 positive electrode material, 212 positive electrode current collector, 213 tab,
22 separator 23 negative electrode, 231 negative electrode material, 232 negative electrode current collector, 233 tab,
24 non-aqueous electrolyte, 25 conductive support, 26 connecting leads,
31 Positive terminal, 33 Negative terminal, 41 Lithium metal

Claims (2)

アニオンの吸蔵・放出が可能な正極材が正極集電体上に設置された矩形シート状正極と、リチウムイオンの吸蔵・放出が可能な負極材が負極集電体上に設置された矩形シート状負極が、間にセパレータを介在させながら交互に積層された矩形状の積層電極体と、リチウム塩を溶解させた非水電解液と、上記積層電極体を上記非水電解液とともに収容して密閉封止された素子容器とを備えたリチウムイオン蓄電素子であって、
上記積層電極体の積層端面に平行対面しながら沿うように設置された帯状導電支持体と、この導電支持体の上記電極体側面に沿って添着されたリチウム金属を有するとともに、このリチウム金属が上記導電支持体を介して上記電極体の負極に導電接続されていることを特徴とするリチウムイオン蓄電素子。
A rectangular sheet-shaped positive electrode in which a positive electrode material capable of occluding and releasing anions is installed on a positive electrode current collector, and a rectangular sheet shape in which a negative electrode material capable of occluding and releasing lithium ions is installed on a negative electrode current collector A rectangular laminated electrode body in which negative electrodes are alternately laminated with a separator interposed therebetween, a non-aqueous electrolyte solution in which lithium salt is dissolved, and the laminated electrode body together with the non-aqueous electrolyte solution are sealed A lithium ion storage element comprising a sealed element container,
It has a strip-shaped conductive support that is installed so as to be parallel to the stacked end face of the stacked electrode body, and lithium metal that is attached along the side of the electrode body of the conductive support, and the lithium metal A lithium ion storage element, wherein the lithium ion storage element is conductively connected to the negative electrode of the electrode body through a conductive support.
請求項1において、前記積層電極体は、その一側辺から正極および負極の端子リードが引き出されるように構成され、前記導電支持体は、上記積層電極体の4側辺のうち、上記端子リードの引き出し側辺を除く3側辺の積層端面に平行対面しながら沿うように設置され、前記リチウム金属は、その3側辺の積層端面に対面すべく添着されていることを特徴とするリチウムイオン蓄電素子。

2. The laminated electrode body according to claim 1, wherein positive electrode and negative electrode terminal leads are drawn out from one side of the laminated electrode body, and the conductive support is the terminal lead among the four side edges of the laminated electrode body. Lithium ion, wherein the lithium metal is attached so as to face the laminated end surface of the three side sides excluding the lead side of the metal, while facing the laminated end surface of the three side sides. Power storage element.

JP2006135163A 2006-05-15 2006-05-15 Lithium ion storage element Active JP4928828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006135163A JP4928828B2 (en) 2006-05-15 2006-05-15 Lithium ion storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006135163A JP4928828B2 (en) 2006-05-15 2006-05-15 Lithium ion storage element

Publications (2)

Publication Number Publication Date
JP2007305521A JP2007305521A (en) 2007-11-22
JP4928828B2 true JP4928828B2 (en) 2012-05-09

Family

ID=38839265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006135163A Active JP4928828B2 (en) 2006-05-15 2006-05-15 Lithium ion storage element

Country Status (1)

Country Link
JP (1) JP4928828B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9754726B2 (en) 2012-11-12 2017-09-05 Ricoh Company, Ltd. Nonaqueous electrolytic capacitor element
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6718874B2 (en) 2015-07-10 2020-07-08 太陽誘電株式会社 Electrochemical device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002093666A1 (en) * 2001-05-15 2002-11-21 Fdk Corporation Nonaqueous electrolytic secondary battery and method of producing anode material thereof
JP4516845B2 (en) * 2002-10-11 2010-08-04 Fdk株式会社 Nonaqueous electrolyte secondary battery and method for producing positive electrode used in this nonaqueous electrolyte secondary battery
JP4314087B2 (en) * 2003-09-22 2009-08-12 Fdk株式会社 Nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9754726B2 (en) 2012-11-12 2017-09-05 Ricoh Company, Ltd. Nonaqueous electrolytic capacitor element
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element

Also Published As

Publication number Publication date
JP2007305521A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
EP3223357B1 (en) Secondary battery module having a cooling plate
US10283807B2 (en) Longitudinal constraints for energy storage devices
JP4878963B2 (en) Storage element and method for manufacturing the same
JP4928824B2 (en) Method for manufacturing lithium ion storage element
JP4562693B2 (en) Secondary battery with improved stability by fixing a separator to the battery case
EP2779269B1 (en) Battery cell having a novel structure
JP3116643B2 (en) Electrochemical element, assembled battery, and method of manufacturing electrochemical element
JP6788107B2 (en) Manufacturing method of electrode unit for battery cell and electrode unit
JP4211769B2 (en) Automotive battery
JP6086240B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
US20070042264A1 (en) Rechargeable bipolar high power electrochemical device with reduced monitoring requirement
JP6788106B2 (en) How to Make Electrode Stacks for Battery Cells and Battery Cells
JP5458898B2 (en) Solid battery stack
JP2008159316A (en) Lithium ion occlusion/release type organic electrolyte storage battery
US11189886B2 (en) Stack-type nonaqueous electrolyte secondary battery
JP4948109B2 (en) Electricity storage element
JP3543572B2 (en) Rechargeable battery
JP4928828B2 (en) Lithium ion storage element
JP4590723B2 (en) Winding electrode battery and method for manufacturing the same
KR20220092101A (en) Secondary battery and manufacturing method of the same
JP2007305522A (en) Storage element
CN207967197U (en) The polymer Li-ion battery of monomer vast capacity
JP5216292B2 (en) Electricity storage element
JPH11121040A (en) Lithium secondary battery
US20190051945A1 (en) Stack-type nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4928828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250