JP2008159316A - Lithium ion occlusion/release type organic electrolyte storage battery - Google Patents

Lithium ion occlusion/release type organic electrolyte storage battery Download PDF

Info

Publication number
JP2008159316A
JP2008159316A JP2006344771A JP2006344771A JP2008159316A JP 2008159316 A JP2008159316 A JP 2008159316A JP 2006344771 A JP2006344771 A JP 2006344771A JP 2006344771 A JP2006344771 A JP 2006344771A JP 2008159316 A JP2008159316 A JP 2008159316A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
storage battery
positive electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006344771A
Other languages
Japanese (ja)
Inventor
Yasuo Suzuki
靖生 鈴木
Kazuo Takada
和夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2006344771A priority Critical patent/JP2008159316A/en
Publication of JP2008159316A publication Critical patent/JP2008159316A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To increase productivity by smoothly quickly conducting pre-occlusion of lithium ions into a negative electrode and decreasing frequencies handling lithium metal in a production process in a lithium ion occulusion/release type organic electrolyte storage battery having an electrode body formed by laminating a positive electrode made of a substance capable of reversely carrying lithium ions or anions and a negative electrode capable of occluding/releasing lithium ions which are an electrolyte cation through a separator in order. <P>SOLUTION: In the storage battery, a through hole 52 passing through a laminated electrode body 20 in the laminated direction, a lithium metal 41 for pre-occluding lithium ions into a negative electrode is filled in the through hole 52, the lithium metal 41 is electrically connected to a conductor 25 arranged on the outermost layer of the laminated electrode body 20, and the lithium metal 41 is electrically connected to the negative electrode on the inside or the outside of the storage battery through the conductor 25. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウムイオン吸蔵・放出型有機電解質蓄電池に関し、とくに、電解質アニオンの吸蔵・放出が可能な正極と電解質カチオンであるリチウムイオンの吸蔵・放出が可能な負極とが間にセパレータを介在させながら順次積層された積層構造の電極体を用いたものに関する。   The present invention relates to a lithium ion storage / release type organic electrolyte storage battery, and more particularly, a separator is interposed between a positive electrode capable of storing / releasing electrolyte anions and a negative electrode capable of storing / releasing lithium ions as electrolyte cations. However, the present invention relates to one using an electrode body having a laminated structure which is sequentially laminated.

近年、たとえば風力発電や太陽電池等における負荷平準化、瞬低・停電対策、自動車等におけるエネルギー回生などのために、比較的大きな電気エネルギーの急速充放電が可能な蓄電手段が求められるようになってきた。   In recent years, power storage means capable of rapid charging / discharging of relatively large electrical energy have been required for load leveling in wind power generation, solar cells, etc., countermeasures for instantaneous voltage drop / power failure, energy recovery in automobiles, etc. I came.

従来、蓄電手段としては、エネルギー密度が高く充電も可能なリチウムイオン二次電池が提供されている。しかし、そのリチウムイオン二次電池は、充放電の繰り返しによる特性の劣化が早く、充放電サイクル数(寿命)に制限があった。また、充電所要時間が長く、上記エネルギー回生などで要求されるような急速充電は無理であった。つまり、充放電特性に問題があった。これは、リチウムイオン二次電池に限らず、二次電池全般に共通する問題でもあった。   Conventionally, lithium ion secondary batteries that have high energy density and can be charged have been provided as power storage means. However, the lithium ion secondary battery is rapidly deteriorated in characteristics due to repeated charge and discharge, and has a limited number of charge / discharge cycles (lifetime). In addition, the time required for charging is long, and rapid charging as required by the energy regeneration is impossible. That is, there was a problem in charge / discharge characteristics. This is a problem common to all secondary batteries as well as lithium ion secondary batteries.

充放電特性だけに注目するならば、上記二次電池よりも、電気二重層キャパシタが適している。電気二重層キャパシタの充放電特性は、上記二次電池とは比較にならないほどすぐれており、また、長期間メンテナンスフリーで使用することができ、急速充放電も可能である。しかし、電気二重層キャパシタは、キャパシタとしては非常に大きな容量(静電容量)を持つことができるが、充放電可能な電気容量は上記リチウムイオン二次電池に比べて、かなり見劣りする。   If attention is paid only to the charge / discharge characteristics, the electric double layer capacitor is more suitable than the secondary battery. The charge / discharge characteristics of the electric double layer capacitor are superior to those of the secondary battery, and can be used without maintenance for a long period of time, and can be rapidly charged / discharged. However, the electric double layer capacitor can have a very large capacity (capacitance) as a capacitor, but the chargeable / dischargeable capacity is considerably inferior to that of the lithium ion secondary battery.

そこで、電気二重層キャパシタとリチウムイオン二次電池を折衷させたような特質を有するリチウムイオン吸蔵・放出型有機電解質蓄電池が提案されている。この蓄電池は、アニオンの吸蔵・放出が可能な正極と、リチウムイオンの吸蔵・放出が可能な負極と、リチウム塩を含む電解液を用いて構成される(特許文献1,2参照)。   In view of this, a lithium ion storage / release type organic electrolyte storage battery has been proposed that has the characteristics of combining an electric double layer capacitor and a lithium ion secondary battery. This storage battery is configured using a positive electrode capable of inserting and extracting anions, a negative electrode capable of inserting and extracting lithium ions, and an electrolyte containing a lithium salt (see Patent Documents 1 and 2).

上記リチウムイオン二次電池では、正極にリチウムを含む複合酸化物(たとえばコバルト酸リチウム)を用い、電解液を介して行われる正極と負極間でのリチウムイオンのやりとりによって充放電の可逆プロセスが行われる。これに対して、上記リチウムイオン吸蔵・放出型有機電解質蓄電池は、正極での電解質アニオンの吸蔵・放出と負極でのリチウムイオン(電解質カチオン)の吸蔵・放出とによって充放電の可逆プロセスが行われる。   In the above lithium ion secondary battery, a composite oxide containing lithium (for example, lithium cobaltate) is used for the positive electrode, and a reversible process of charge and discharge is performed by exchanging lithium ions between the positive electrode and the negative electrode through an electrolytic solution. Is called. On the other hand, in the lithium ion storage / release type organic electrolyte storage battery, a reversible process of charge / discharge is performed by storage / release of electrolyte anions at the positive electrode and storage / release of lithium ions (electrolyte cations) at the negative electrode. .

このリチウムイオン吸蔵・放出型有機電解質蓄電池は、上記リチウムイオン二次電池と上記電気二重層キャパシタがそれぞれに有する利点を兼ね備えたような性質を有する。すなわち、充放電サイクル特性は上記リチウムイオン二次電池よりも各段にすぐれ、充放電容量(充放電可能な電気容量)は上記電気二重層キャパシタよりも各段に大きい、といった利点がある。   This lithium ion storage / release type organic electrolyte storage battery has such properties that the lithium ion secondary battery and the electric double layer capacitor have the respective advantages. That is, the charge / discharge cycle characteristics are superior to each stage as compared with the lithium ion secondary battery, and the charge / discharge capacity (capacity capable of being charged / discharged) is greater than each stage of the electric double layer capacitor.

このリチウムイオン吸蔵・放出型有機電解質蓄電池は、高性能のキャパシタ型二次電池として好適に使用できるのはもちろんであるが、メンテナンス負担が少なく急速充放電も可能であることから、たとえば風力発電における負荷平準化、瞬低・停電対策、自動車等におけるエネルギー回生などを行うめための蓄電手段としても好適に使用可能である。   This lithium ion storage / release type organic electrolyte storage battery can be suitably used as a high-performance capacitor-type secondary battery. It can also be suitably used as a power storage means for performing load leveling, instantaneous voltage drop / power failure countermeasures, energy regeneration in automobiles and the like.

上記リチウムイオン吸蔵・放出型有機電解質蓄電池は、リチウムイオンを含む電解液を使用する点などで従来のリチウムイオン二次電池と共通するが、リチウムイオン二次電池と違って、正極にリチウムイオンを供給するような物質(たとえばコバルト酸リチウム)は使わず、電解液中に電解質成分として存在するアニオンとリチウムイオン(カチオン)を使って充放電を行う。   The lithium ion storage / release type organic electrolyte storage battery is the same as a conventional lithium ion secondary battery in that an electrolyte containing lithium ions is used. Unlike lithium ion secondary batteries, lithium ion is stored in the positive electrode. Charging / discharging is performed by using anions and lithium ions (cations) present as electrolyte components in the electrolyte without using a substance to be supplied (for example, lithium cobaltate).

正極は充電時に電解液中のアニオンを吸蔵し、放電時にそれを放出する。負極は充電時に電解液中のリチウムイオンを吸蔵し、放電時にそれを放出する。このアニオンとリチウムイオンの可逆的な吸蔵・放出により、充放電の可逆プロセスが行われるようになっている。   The positive electrode occludes anions in the electrolyte during charging and releases them during discharging. The negative electrode occludes lithium ions in the electrolyte during charging and releases it during discharging. A reversible charging / discharging process is performed by reversible occlusion / release of these anions and lithium ions.

ここで、上記充放電の可逆プロセスが電解液のガス発生反応を起こすことなく効率的に行われるためには、充電初期(あるいは放電末期)から充電末期(あるいは放電初期)の全範囲にわたって、負極の電位がリチウム電位付近に安定に固定されている必要がある。このため、負極にあらかじめリチウムイオンを吸蔵(ドープ)させること、いわゆる予備吸蔵(プレ・ドープ)が行われる。この予備吸蔵は、電解液中にリチウム金属を配置するとともに、このリチウム金属を負極と導電接続させることにより行わせることができる。   Here, in order for the reversible process of charge / discharge to be efficiently performed without causing a gas generation reaction of the electrolytic solution, the negative electrode covers the entire range from the initial charge stage (or the final discharge stage) to the final charge stage (or the initial discharge stage). Must be stably fixed around the lithium potential. Therefore, the negative electrode is preliminarily occluded (doped) with lithium ions, so-called pre-occlusion (pre-doping). This pre-occlusion can be performed by arranging lithium metal in the electrolyte and electrically connecting the lithium metal to the negative electrode.

上記リチウムイオン吸蔵・放出型有機電解質蓄電池の構造は種々提案されているが、電極体については、正極と負極の対向面積を大きく確保するために、正極と負極が間にセパレータを挟んで順次積層された積層構造が提案されている。   Various structures of the lithium ion storage / release type organic electrolyte storage battery have been proposed. In order to ensure a large facing area between the positive electrode and the negative electrode, the positive electrode and the negative electrode are sequentially stacked with a separator in between. A laminated structure has been proposed.

このため、正極と負極はそれぞれシート状に形成される。シート状の正極は、電解質アニオンの吸蔵・放出が可能な正極電極を金属箔等の集電体に塗布等の方法で添着することにより作製される。同様に、シート状の負極は、電解質カチオンであるリチウムイオンの吸蔵・放出が可能な負極電極を金属箔等の集電体に塗布等の方法で添着することにより作製される。負極の作製に際しては、集電体に負極電極を添着しない余白部に設け、そこに予備吸蔵用のリチウム金属箔を貼着することが行われていた(特許文献1,2参照)。
特開2000−21392 特開平9−147835
For this reason, a positive electrode and a negative electrode are each formed in a sheet form. The sheet-like positive electrode is produced by attaching a positive electrode capable of occluding and releasing electrolyte anions to a current collector such as a metal foil by a method such as coating. Similarly, a sheet-like negative electrode is produced by attaching a negative electrode capable of inserting and extracting lithium ions, which are electrolyte cations, to a current collector such as a metal foil by a method such as coating. When producing the negative electrode, it was provided in a blank portion where the negative electrode was not attached to the current collector, and a lithium metal foil for pre-occlusion was adhered thereto (see Patent Documents 1 and 2).
JP 2000-21392 JP-A-9-147835

上述した従来のリチウムイオン吸蔵・放出型有機電解質蓄電池では、次のような問題のあることが本発明者らにより明らかとされた。   The present inventors have revealed that the above-described conventional lithium ion storage / release type organic electrolyte storage battery has the following problems.

(1)予備吸蔵用のリチウム金属は、電極体を構成する前の負極シートの集電体にあらかじめ貼着することにより設置されていたが、これは生産性を著しく阻害する。リチウム金属は反応性が強く、その取り扱いには特別の注意を要する。とくに、箔状に薄く展開された状態のリチウム金属は反応しやすく、工程中に発火したりする恐れが大きい。このため、リチウム金属を設置した後の工程は、特別の防護対策が必要となって生産性を低下させる。したがって、負極用集電体にあらかじめリチウム金属を貼着した場合、その貼着のための工数増加に加えて、それ以降の電極体の組立てを含む一連の工程が大幅に複雑化し、生産性が阻害されてしまう。   (1) Lithium metal for preocclusion has been installed by sticking in advance to the current collector of the negative electrode sheet before constituting the electrode body, but this significantly impedes productivity. Lithium metal is highly reactive and requires special care when handling it. In particular, lithium metal in the state of being thinly developed in a foil shape is likely to react and is likely to ignite during the process. For this reason, the process after the installation of lithium metal requires special protective measures and reduces productivity. Therefore, when lithium metal is attached to the negative electrode current collector in advance, in addition to the increase in man-hours for the attachment, a series of processes including assembly of the subsequent electrode bodies are greatly complicated, and productivity is increased. It will be disturbed.

(2)リチウム金属が電解液に溶解し、リチウムイオンとして負極全体に吸蔵されるまでに、長時間を要していた。これは、集電体に貼着されたリチウム金属が電極体の層間に閉じ込められてしまうためと考えられる。この状態で設置されたリチウム金属は、電解液への溶出および移動が必ずしも円滑でなく、負極への吸蔵に時間がかかるとともに、その吸蔵が均一に行われ難いことが判明した。   (2) It took a long time for the lithium metal to dissolve in the electrolyte and be occluded by the entire negative electrode as lithium ions. This is considered because the lithium metal stuck on the current collector is confined between the layers of the electrode body. It has been found that the lithium metal placed in this state does not necessarily smoothly elute and move into the electrolyte, takes time to occlude in the negative electrode, and is difficult to uniformly occlude.

本発明は、以上のような問題を鑑みてなされたものであり、その目的は、リチウムイオンもしくはアニオンを可逆的に担持可能な正極電極がシート状正極用集電体上に形成された矩形シート状正極部と、リチウムイオンの吸蔵・放出が可能な負極電極がシート状負極用集電体上に形成された矩形シート状負極部が、間にセパレータを介在させながら交互に積層された積層電極体と、上記正極用集電体と上記負極用集電体にそれぞれ接続される外部端子とを備えたリチウムイオン吸蔵・放出型有機電解質蓄電池にあって、負極へのリチウムイオンの予備吸蔵を円滑かつ迅速に行わせることを可能にするとともに、生産工程にてリチウム金属を扱う頻度を低減させて生産性を高めることにある。   The present invention has been made in view of the above problems, and the object thereof is a rectangular sheet in which a positive electrode capable of reversibly carrying lithium ions or anions is formed on a sheet-like positive electrode current collector. Electrode in which a sheet-like negative electrode part and a rectangular sheet-like negative electrode part on which a negative electrode capable of occluding and releasing lithium ions is formed on a sheet-like negative electrode current collector are alternately laminated with a separator interposed therebetween A lithium ion storage / release type organic electrolyte storage battery including a positive electrode current collector and an external terminal connected to each of the positive electrode current collector and the negative electrode current collector. In addition, it is possible to increase the productivity by making it possible to perform the process quickly and reducing the frequency of handling lithium metal in the production process.

また、本発明は、充電中あるいは直列接続での充放電中に正極の電位が高くなり過ぎて電解液が分解されることによるガス発生についても、これを確実に抑制させることを可能にしたリチウムイオン吸蔵・放出型有機電解質蓄電池を提供することにある。   In addition, the present invention is a lithium battery that can reliably suppress gas generation due to decomposition of the electrolyte due to excessively high potential of the positive electrode during charging or charging / discharging in series connection. The object is to provide an ion storage / release type organic electrolyte storage battery.

本発明の上記以外の目的および構成については、本明細書の記述および添付図面からあきらかになるであろう。   Other objects and configurations of the present invention will become apparent from the description of the present specification and the accompanying drawings.

本発明が提供する解決手段は以下のとおりである。
(1)リチウムイオンもしくはアニオンを可逆的に担持可能な正極電極がシート状正極用集電体上に形成された矩形シート状正極部と、リチウムイオンの吸蔵・放出が可能な負極電極がシート状負極用集電体上に形成された矩形シート状負極部が、間にセパレータを介在させながら交互に積層された積層電極体と、上記正極用集電体と上記負極用集電体にそれぞれ接続される外部端子とを備えたリチウムイオン吸蔵・放出型有機電解質蓄電池であって、
上記積層電極体に積層方向に抜ける貫通孔を形成し、この貫通孔に上記負極電極にリチウムイオンを予備吸蔵させるためのリチウム金属を装填するとともに、このリチウム金属を上記積層電極体の最外層に配置された導電体に導電接続し、この導電体を介して上記リチウム金属を蓄電池の内部あるいは外部にて負極電極に導電接続させるようにしたことを特徴とするリチウムイオン吸蔵・放出型有機電解質蓄電池。
The solution provided by the present invention is as follows.
(1) A rectangular sheet-like positive electrode part in which a positive electrode capable of reversibly carrying lithium ions or anions is formed on a sheet-like positive electrode current collector, and a negative electrode capable of occluding and releasing lithium ions are in a sheet form A rectangular sheet-shaped negative electrode portion formed on the negative electrode current collector is connected to each of the stacked electrode body alternately stacked with a separator interposed therebetween, and the positive electrode current collector and the negative electrode current collector. A lithium ion storage / release type organic electrolyte storage battery having an external terminal,
A through hole extending in the stacking direction is formed in the laminated electrode body, and lithium metal for preliminarily occluding lithium ions in the negative electrode is loaded into the through hole, and the lithium metal is placed in the outermost layer of the laminated electrode body. Lithium ion storage / release organic electrolyte storage battery characterized in that the lithium metal is conductively connected to a negative electrode on the inside or outside of the storage battery through conductive connection to the disposed conductor. .

(2)前記手段(1)において、外部端子として正極端子および負極端子とは別に第3電極端子を備え、この第3電極端子が上記導電体に接続されていることを特徴とするリチウムイオン吸蔵・放出型有機電解質蓄電池。
(3)前記手段(2)において、第3電極端子と正極端子間の電圧が所定以下となるような定電圧回路を備えたことを特徴とするリチウムイオン吸蔵・放出型有機電解質蓄電池。
(4)前記手段(1)〜(3)のいずれかにおいて、上記貫通孔の内壁面と上記リチウム金属の間に透液性の絶縁層を介在させたことを特徴とするリチウムイオン吸蔵・放出型有機電解質蓄電池。
(2) The means (1) includes a third electrode terminal as an external terminal separately from the positive electrode terminal and the negative electrode terminal, and the third electrode terminal is connected to the conductor.・ Releasable organic electrolyte storage battery.
(3) A lithium ion occlusion / release type organic electrolyte storage battery characterized in that in the means (2), a constant voltage circuit is provided so that the voltage between the third electrode terminal and the positive electrode terminal is a predetermined value or less.
(4) In any one of the means (1) to (3), a lithium ion occlusion / release is characterized in that a liquid-permeable insulating layer is interposed between the inner wall surface of the through hole and the lithium metal. Type organic electrolyte storage battery.

リチウムイオンもしくはアニオンを可逆的に担持可能な正極電極がシート状正極用集電体上に形成された矩形シート状正極部と、リチウムイオンの吸蔵・放出が可能な負極電極がシート状負極用集電体上に形成された矩形シート状負極部が、間にセパレータを介在させながら交互に積層された積層電極体と、上記正極用集電体と上記負極用集電体にそれぞれ接続される外部端子とを備えたリチウムイオン吸蔵・放出型有機電解質蓄電池にあって、負極へのリチウムイオンの予備吸蔵を円滑かつ迅速に行わせることを可能にするとともに、生産工程にてリチウム金属を扱う頻度を低減させて生産性を高めることができる。   A rectangular sheet-like positive electrode portion in which a positive electrode capable of reversibly carrying lithium ions or anions is formed on a sheet-like positive electrode current collector, and a negative electrode electrode capable of occluding and releasing lithium ions are provided for the sheet-like negative electrode collector. A rectangular sheet-shaped negative electrode portion formed on the electric current body is alternately laminated with a separator interposed therebetween, and an external body connected to the positive electrode current collector and the negative electrode current collector, respectively. This is a lithium ion storage / release type organic electrolyte storage battery equipped with a terminal, which makes it possible to smoothly and quickly perform the preliminary storage of lithium ions into the negative electrode, and the frequency of handling lithium metal in the production process. It can be reduced to increase productivity.

また、充電中あるいは直列接続での充放電中に正極の電位が高くなり過ぎて電解液が分解されることによるガス発生についても、これを確実に抑制させることが可能である。   Further, it is possible to reliably suppress gas generation due to decomposition of the electrolytic solution due to the potential of the positive electrode becoming too high during charging or charging / discharging in series connection.

上記以外の作用/効果については、本明細書の記述および添付図面からあきらかになるであろう。   Operations / effects other than those described above will be apparent from the description of the present specification and the accompanying drawings.

図1は、本発明によるリチウムイオン吸蔵・放出型有機電解質蓄電池の第1実施形態を示す。同図において、(a)は素子の主要部をなす積層電極体20の断面図であり、(b)はその一部の拡大断面図である。また、(c)は上記積層電極体20を電解液とともに素子容器11に収容した状態を示す上面図である。電解液には有機媒体を用いた非水電解液が使用されている。   FIG. 1 shows a first embodiment of a lithium ion storage / release type organic electrolyte storage battery according to the present invention. In the figure, (a) is a cross-sectional view of the laminated electrode body 20 constituting the main part of the element, and (b) is an enlarged cross-sectional view of a part thereof. (C) is a top view showing a state in which the laminated electrode body 20 is housed in the element container 11 together with the electrolytic solution. A nonaqueous electrolytic solution using an organic medium is used as the electrolytic solution.

同図に示すリチウムイオン吸蔵・放出型有機電解質蓄電池は、正極部21と負極部23が間にセパレータ22を挟みながら順次積層されて矩形平型の積層電極体20を構成している。正極部21は、リチウムイオンもしくはアニオンを可逆的に担持可能な炭素材料を用いた正極電極211が、金属箔(Al)からなるシート状集電体212の両面に塗布等により層状に添着されて、全体がシート状に形成されている。   In the lithium ion storage / release type organic electrolyte storage battery shown in the figure, a positive electrode portion 21 and a negative electrode portion 23 are sequentially stacked with a separator 22 interposed therebetween to form a rectangular flat stacked electrode body 20. In the positive electrode part 21, a positive electrode 211 made of a carbon material capable of reversibly supporting lithium ions or anions is attached in layers to both surfaces of a sheet-like current collector 212 made of a metal foil (Al) by coating or the like. The whole is formed in a sheet shape.

同様に、負極部23は、リチウムイオンの吸蔵・放出が可能な負極電極231が、金属箔(Cu)からなるシート状集電体232の両面に塗布等により層状に添着されて、全体がシート状に形成されている。正極部21と負極部23はセパレータ22を挟みながら順次積層されて矩形平型の積層電極体20を構成している。   Similarly, the negative electrode portion 23 has a negative electrode 231 capable of occluding and releasing lithium ions attached to both surfaces of a sheet-like current collector 232 made of metal foil (Cu) in a layered manner by coating or the like, so that the whole is a sheet. It is formed in a shape. The positive electrode portion 21 and the negative electrode portion 23 are sequentially stacked while sandwiching the separator 22 to form a rectangular flat stacked electrode body 20.

正極部21は充電時に電解液中のアニオンを吸蔵し、放電時にそれを放出する。負極部23は充電時に電解液中のリチウムイオン(カチオン)を吸蔵し、放電時にそれを放出する。正極電極211および負極電極231の材料としては炭素材料とくに黒鉛が好適である。   The positive electrode part 21 occludes anions in the electrolyte during charging and releases them during discharging. The negative electrode part 23 occludes lithium ions (cations) in the electrolytic solution during charging and releases it during discharging. As a material for the positive electrode 211 and the negative electrode 231, a carbon material, particularly graphite, is suitable.

集電体212,232は電解液に対して不活性の良導体であれば、その形態はとくに限定されず、たとえば金属ネットなども使用可能であるが、積層電極体20の容積効率や集電効率などを考慮した場合、金属箔の使用が好ましい。材質については、正極用集電体212にアルミニウム(Al)を使用し、負極用集電体232に銅(Cu)を使用するとよい。   The shape of the current collectors 212 and 232 is not particularly limited as long as they are good conductors that are inert to the electrolytic solution. For example, a metal net can be used, but the volumetric efficiency and current collection efficiency of the laminated electrode body 20 can be used. In view of the above, it is preferable to use a metal foil. As for the material, aluminum (Al) may be used for the positive electrode current collector 212 and copper (Cu) may be used for the negative electrode current collector 232.

集電体212,232にはそれぞれ外部端子との接続をなすために、電極材が塗布されていない導電リード部213,233が、積層電極体20の側方にはみ出すように設けられている。正極用集電体212の導電リード部213は互いに共通接続されて正極端子31に溶接接続されている。同様に、負極用集電体232の導電リード部233は互いに共通接続されて負極端子33に溶接接続されている。正極端子31および負極端子33はそれぞれ、素子容器11の密閉状態を保ちながらその素子容器11の内外に跨って設置されている。   In order to connect the current collectors 212 and 232 to external terminals, conductive lead portions 213 and 233 to which no electrode material is applied are provided so as to protrude from the side of the laminated electrode body 20. The conductive lead portions 213 of the positive electrode current collector 212 are commonly connected to each other and welded to the positive electrode terminal 31. Similarly, the conductive lead portions 233 of the negative electrode current collector 232 are commonly connected to each other and welded to the negative electrode terminal 33. The positive electrode terminal 31 and the negative electrode terminal 33 are installed across the inside and outside of the element container 11 while keeping the sealed state of the element container 11.

素子容器11は、電解液を含む蓄電池の構成要素を安定に密閉収容できるものであればとくに限定されないが、この実施形態では、ラミネートフィルム等の気密性軟包装材を融着等により矩形袋状に加工したソフト容器が使用されている。上記積層電極体20は電解液とともに、このソフト容器に真空パック状態で包装および封入されている。   The element container 11 is not particularly limited as long as it can stably and hermetically contain the components of the storage battery including the electrolytic solution, but in this embodiment, a rectangular bag shape is formed by fusing an airtight flexible packaging material such as a laminate film. The soft container processed into is used. The laminated electrode body 20 is packaged and sealed in a vacuum packed state in the soft container together with the electrolytic solution.

上記構成に加えて、この実施形態のリチウムイオン吸蔵・放出型有機電解質蓄電池では、積層電極体20の積層方向に貫通孔52が形成され、この貫通孔52に予備吸蔵用のリチウム金属41が挿入・装填されている。これとともに、上記積層電極体20の最外層に金属箔を用いた導電体25が配置され、この導電体25にリチウム金属41の一端部が貼着して導電接続している。導電体25は、正極端子31および負極端子33とは別の外部引き出し端子である第3電極端子35に接続されている。   In addition to the above configuration, in the lithium ion storage / release type organic electrolyte storage battery of this embodiment, a through hole 52 is formed in the stacking direction of the stacked electrode body 20, and a lithium metal 41 for preliminary storage is inserted into the through hole 52.・ It is loaded. At the same time, a conductor 25 using a metal foil is disposed on the outermost layer of the laminated electrode body 20, and one end portion of the lithium metal 41 is attached to the conductor 25 for conductive connection. The conductor 25 is connected to a third electrode terminal 35 that is an external lead terminal different from the positive electrode terminal 31 and the negative electrode terminal 33.

第3電極端子35は、正極端子31および負極端子33と同様、素子容器11の密閉状態を保ちながらその素子容器11の内外に跨って設置されている。この第3電極端子35は負極端子33と同じ側に設置され、ジャンパー導体61によって負極端子33と導電接続されるようになっている。   As with the positive electrode terminal 31 and the negative electrode terminal 33, the third electrode terminal 35 is installed across the inside and outside of the element container 11 while maintaining the sealed state of the element container 11. The third electrode terminal 35 is installed on the same side as the negative electrode terminal 33 and is electrically connected to the negative electrode terminal 33 by a jumper conductor 61.

第3電極端子35と負極端子33を接続することにより、リチウム金属41は電解液中にリチウムイオンとして溶解し、負極部23に移動して吸蔵されるようになる。このとき、この実施形態のリチウムイオン吸蔵・放出型有機電解質蓄電池では、リチウム金属41が電極体20の積層方向に形成された貫通孔52に装填されていて、その貫通孔52の内壁面に現れる積層断面から各層の負極部23へ同時並行的に移動して吸蔵される。さらに、リチウムイオンは、積層電極体20の貫通孔52から層面方向へ放射状に拡散することにより、各層の負極部23の全体に最短距離で移動して吸蔵されることになる。   By connecting the third electrode terminal 35 and the negative electrode terminal 33, the lithium metal 41 is dissolved as lithium ions in the electrolytic solution, and moves to the negative electrode portion 23 to be occluded. At this time, in the lithium ion storage / release type organic electrolyte storage battery of this embodiment, the lithium metal 41 is loaded in the through hole 52 formed in the stacking direction of the electrode body 20 and appears on the inner wall surface of the through hole 52. From the laminated cross section, it moves to the negative electrode part 23 of each layer simultaneously and occluded. Further, the lithium ions diffuse radially from the through-hole 52 of the laminated electrode body 20 in the layer surface direction, so that the lithium ions move and are occluded in the entire negative electrode portion 23 of each layer by the shortest distance.

これにより、積層電極体20内の各層の負極部23にリチウムイオンを迅速かつ均一に予備吸蔵させることができ。したがって、従来は長時間を要していた予備吸蔵を、それよりも大幅に短い時間で円滑かつ均一に行わせることができる。   Thereby, lithium ions can be preoccluded quickly and uniformly in the negative electrode portion 23 of each layer in the laminated electrode body 20. Therefore, the pre-occlusion which conventionally required a long time can be performed smoothly and uniformly in a significantly shorter time.

リチウム金属41は積層電極体20の貫通孔52に挿されて装填されるが、この装填は積層電極体20の作製工程後に行うことができる。したがって、少なくとも、積層電極体20が完成するまでの生産工程では、反応性の強いリチウム金属を扱う必要がなく、これにより、生産工程にてリチウム金属を扱う頻度を低減させて生産性を高めることができる。   The lithium metal 41 is inserted and loaded into the through hole 52 of the laminated electrode body 20, and this loading can be performed after the production process of the laminated electrode body 20. Therefore, at least in the production process until the laminated electrode body 20 is completed, it is not necessary to handle highly reactive lithium metal, thereby reducing the frequency of handling lithium metal in the production process and increasing productivity. Can do.

図2は、上記貫通孔52を有する積層電極体20の各層の構成を示す。
上記積層電極体20に貫通孔52を形成する場合は、同図に示すように、その積層電極体20の各層を形成する正極部21、セパレータ22、負極部23にそれぞれ、互いに重なり合う穴521をあらかじめ設けておく。これらを順次積層して積層電極体20を作製すると、それぞれの穴521は層方向に重なり、積層電極体20の積層面に対して垂直な貫通孔52を形成する。この貫通孔52へのリチウム金属41の挿入・装填は、積層電極体20の完成後に簡単に行うことができる。
FIG. 2 shows a configuration of each layer of the laminated electrode body 20 having the through hole 52.
When the through-hole 52 is formed in the laminated electrode body 20, as shown in the figure, holes 521 that overlap each other are formed in the positive electrode portion 21, the separator 22, and the negative electrode portion 23 that form each layer of the laminated electrode body 20. Prepare in advance. When these are sequentially laminated to produce the laminated electrode body 20, the respective holes 521 overlap in the layer direction and form a through hole 52 perpendicular to the laminated surface of the laminated electrode body 20. The insertion and loading of the lithium metal 41 into the through hole 52 can be easily performed after the laminated electrode body 20 is completed.

図3は本発明の第2実施形態の要部断面図を示す。この実施形態では、積層電極体20の正極部21が貫通孔52の内壁面から後退するように構成されている。これにより、貫通孔52に装填されたリチウム金属41が正極部21と接触するのを確実に回避させることができる。正極部21が後退した個所には電解液が溜まるので、電解液の減損による電解液不足の予防にも効果がある。電解液の減損は長期間の使用で生じることがある。   FIG. 3 shows a cross-sectional view of the main part of the second embodiment of the present invention. In this embodiment, the positive electrode portion 21 of the laminated electrode body 20 is configured to recede from the inner wall surface of the through hole 52. Thereby, it is possible to reliably avoid the lithium metal 41 loaded in the through hole 52 from coming into contact with the positive electrode portion 21. Since the electrolytic solution accumulates at the location where the positive electrode portion 21 is retracted, it is effective in preventing shortage of the electrolytic solution due to the loss of the electrolytic solution. Electrolyte depletion can occur over long periods of use.

図4は本発明の第3実施形態の要部断面図を示す。この実施形態では、貫通孔52の内壁面とリチウム金属41の間に透液性の絶縁層71を介在させている。この絶縁層71の材質としては、たとえば多孔質の樹脂あるいは不織布などが好適である。また、セパレータ22と同じ素材を使用してもよい。   FIG. 4 shows a cross-sectional view of an essential part of a third embodiment of the present invention. In this embodiment, a liquid-permeable insulating layer 71 is interposed between the inner wall surface of the through hole 52 and the lithium metal 41. As a material of the insulating layer 71, for example, a porous resin or a nonwoven fabric is preferable. Further, the same material as the separator 22 may be used.

この実施形態では、貫通孔52に装填されたリチウム金属41が正極部21と接触するのを確実に回避させることができるとともに、絶縁層71に電解液が保液されることにより、リチウム金属41の溶解およびリチウムイオンの移動が円滑化されて、負極部23へのリチウムイオンの吸蔵を一層円滑かつ迅速に行わせることができる。   In this embodiment, it is possible to reliably prevent the lithium metal 41 loaded in the through-hole 52 from coming into contact with the positive electrode portion 21, and the electrolyte solution is retained in the insulating layer 71, whereby the lithium metal 41 As a result, the lithium ions are smoothly moved and the lithium ions are moved, so that the lithium ions can be occluded into the negative electrode portion 23 more smoothly and quickly.

図5は本発明の第4実施形態の要部断面図を示す。この実施形態では、貫通孔52に装填されたリチウム金属41の一端側に導電体25を配置するとともに、その他端側に透液性の絶縁体72を載置している。   FIG. 5 shows a cross-sectional view of an essential part of the fourth embodiment of the present invention. In this embodiment, the conductor 25 is disposed on one end side of the lithium metal 41 loaded in the through hole 52, and the liquid-permeable insulator 72 is placed on the other end side.

この実施形態は、前記素子容器11(図1参照)として気密性軟包装材によるソフト容器を用いた場合にとくに有効である。すなわち、積層電極体20はソフト容器に真空パック状態で収容されて圧迫されることにより、その積層形状を安定に保持させることができるが、このとき、貫通孔52に装填されたリチウム金属41は、上記絶縁体72と導電体25で両端から挟み込まれて安定に位置決めされ、また、導電体25との接続安定性も高められる。この効果を確実に得るためには、図5に示すように、上記絶縁体72が電極体20の最外層よりも少しはみ出るように設置することが望ましい。   This embodiment is particularly effective when a soft container made of an airtight flexible packaging material is used as the element container 11 (see FIG. 1). That is, the laminated electrode body 20 is housed and compressed in a soft container in a vacuum packed state, so that the laminated shape can be stably held. At this time, the lithium metal 41 loaded in the through hole 52 is The insulator 72 and the conductor 25 are sandwiched from both ends and positioned stably, and the connection stability with the conductor 25 is also improved. In order to reliably obtain this effect, it is desirable to install the insulator 72 so that it protrudes slightly from the outermost layer of the electrode body 20, as shown in FIG.

図6は本発明の第5実施形態の要部断面図を示す。同図において、(a)は素子の主要部をなす積層電極体20を示す要部断面図であり、(b)は積層電極体20を電解液とともに素子容器11に収容した状態を示す上面図である。   FIG. 6 shows a cross-sectional view of a relevant part of a fifth embodiment of the present invention. In the same figure, (a) is a principal part sectional view showing a laminated electrode body 20 constituting the main part of the element, and (b) is a top view showing a state in which the laminated electrode body 20 is housed in an element container 11 together with an electrolytic solution. It is.

この実施形態では、積層電極体20の複数個所(2箇所)に貫通孔52を形成し、各貫通孔52にそれぞれリチウム金属41を装填している。これにより、リチウム金属41から溶出したリチウムイオンは、積層電極体20の内部の複数箇所からそれぞれ、積層電極体20の層面方向に放射状に移動して各層の負極部23に吸蔵されるようになる。このため、負極部23へのリチウムイオンの吸蔵をさらに迅速かつ円滑に行わせることができる。   In this embodiment, through holes 52 are formed at a plurality of locations (two locations) of the laminated electrode body 20, and lithium metal 41 is loaded into each through hole 52. Thereby, lithium ions eluted from the lithium metal 41 move radially from the plurality of locations inside the laminated electrode body 20 in the layer surface direction of the laminated electrode body 20 and are occluded in the negative electrode portion 23 of each layer. . For this reason, occlusion of lithium ions into the negative electrode portion 23 can be performed more quickly and smoothly.

なお、リチウム金属41と貫通孔52の内壁面との間には、電解液を保液する絶縁層71を介在させるなど、前記実施形態の構成を併用することが好ましい。   In addition, it is preferable to use the structure of the said embodiment together, such as interposing the insulating layer 71 which retains electrolyte solution between the lithium metal 41 and the inner wall face of the through-hole 52.

上述した本発明のリチウムイオン吸蔵・放出型有機電解質蓄電池は、外部端子として、正極端子31および負極端子33のほかに、リチウム金属41に導電接続している第3電極端子35を有する。この第3電極端子35を使うことで、リチウムイオンの予備吸蔵時間を短縮化したり、リチウムイオン吸蔵・放出型有機電解質蓄電池の使用中にガス発生が生じるのを抑制したりすることが可能となる。   The lithium ion storage / release type organic electrolyte storage battery of the present invention described above has, as an external terminal, the third electrode terminal 35 that is conductively connected to the lithium metal 41 in addition to the positive electrode terminal 31 and the negative electrode terminal 33. By using the third electrode terminal 35, it is possible to shorten the pre-occlusion time of lithium ions and to suppress the generation of gas during use of the lithium ion storage / release type organic electrolyte storage battery. .

すなわち、図7に示すように、直流通電装置63を用いて、第3電極端子35にプラス、負極端子33にマイナスを通電することにより、リチウム金属41から負極へのリチウムの移動を速めて予備吸蔵時間を大幅に短縮させることができる。   That is, as shown in FIG. 7, by using a direct current energizing device 63 to apply positive to the third electrode terminal 35 and negative to the negative electrode terminal 33, the movement of lithium from the lithium metal 41 to the negative electrode is accelerated. The storage time can be greatly shortened.

また、図8に示すように、正極端子31と第3電極端子35の間に定電圧回路65を接続し、両端子31−35間の電圧が所定電圧Vsを超えたときだけシャント電流Isを通電させる並列電圧制御を行わせるようにすれば、正極の電位が高くなり過ぎることによる電解液の分解を防ぐことができる。これにより、充電中あるいは直列接続での充放電中に正極の電位が高くなり過ぎることにより生じるガス発生についても、これを確実に抑制させることができる。   Further, as shown in FIG. 8, a constant voltage circuit 65 is connected between the positive electrode terminal 31 and the third electrode terminal 35, and the shunt current Is is applied only when the voltage between both terminals 31-35 exceeds a predetermined voltage Vs. By performing parallel voltage control for energization, it is possible to prevent the electrolyte from being decomposed due to the potential of the positive electrode becoming too high. Thereby, it is possible to reliably suppress gas generation caused by the potential of the positive electrode becoming too high during charging or charging / discharging in series connection.

この場合、リチウム金属41は、負極への予備吸蔵に必要な量よりも多めに設置するとよい。定電圧回路65は、電圧検出回路などの能動回路またはツェナーダイオード等の受動素子を用いて構成することができる。   In this case, the lithium metal 41 is preferably installed in a larger amount than is necessary for pre-occlusion in the negative electrode. The constant voltage circuit 65 can be configured using an active circuit such as a voltage detection circuit or a passive element such as a Zener diode.

リチウムイオンもしくはアニオンを可逆的に担持可能な正極電極がシート状正極用集電体上に形成された矩形シート状正極部と、リチウムイオンの吸蔵・放出が可能な負極電極がシート状負極用集電体上に形成された矩形シート状負極部が、間にセパレータを介在させながら交互に積層された積層電極体と、上記正極用集電体と上記負極用集電体にそれぞれ接続される外部端子とを備えたリチウムイオン吸蔵・放出型有機電解質蓄電池にあって、負極へのリチウムイオンの予備吸蔵を円滑かつ迅速に行わせることを可能にするとともに、生産工程にてリチウム金属を扱う頻度を低減させて生産性を高めることができる。   A rectangular sheet-like positive electrode portion in which a positive electrode capable of reversibly carrying lithium ions or anions is formed on a sheet-like positive electrode current collector, and a negative electrode electrode capable of occluding and releasing lithium ions are provided for the sheet-like negative electrode collector. A rectangular sheet-shaped negative electrode portion formed on the electric current body is alternately laminated with a separator interposed therebetween, and an external body connected to the positive electrode current collector and the negative electrode current collector, respectively. This is a lithium ion storage / release type organic electrolyte storage battery equipped with a terminal, which makes it possible to smoothly and quickly perform the preliminary storage of lithium ions into the negative electrode, and the frequency of handling lithium metal in the production process. It can be reduced to increase productivity.

また、充電中あるいは直列接続での充放電中に正極の電位が高くなり過ぎて電解液が分解されることによるガス発生についても、これを確実に抑制させることが可能である。   Further, it is possible to reliably suppress gas generation due to decomposition of the electrolytic solution due to the potential of the positive electrode becoming too high during charging or charging / discharging in series connection.

本発明によるリチウムイオン吸蔵・放出型有機電解質蓄電池の第1実施形態を示す要部断面図および上面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view and a top view of an essential part showing a first embodiment of a lithium ion storage / release type organic electrolyte storage battery according to the present invention. 積層電極体の層を展開した平面図および積層状態を示す断面図である。It is the top view which expand | deployed the layer of the laminated electrode body, and sectional drawing which shows a lamination | stacking state. 本発明によるリチウムイオン吸蔵・放出型有機電解質蓄電池の第2実施形態を示す要部断面図である。It is principal part sectional drawing which shows 2nd Embodiment of the lithium ion storage-release organic electrolyte storage battery by this invention. 本発明によるリチウムイオン吸蔵・放出型有機電解質蓄電池の第3実施形態を示す要部断面図である。It is principal part sectional drawing which shows 3rd Embodiment of the lithium ion storage-release type organic electrolyte storage battery by this invention. 本発明によるリチウムイオン吸蔵・放出型有機電解質蓄電池の第4実施形態を示す要部断面図である。It is principal part sectional drawing which shows 4th Embodiment of the lithium ion occlusion / release organic electrolyte storage battery by this invention. 本発明によるリチウムイオン吸蔵・放出型有機電解質蓄電池の第5実施形態を示す要部断面図および上面図である。It is principal part sectional drawing and top view which show 5th Embodiment of the lithium ion occlusion / release type organic electrolyte storage battery by this invention. 第3電極端子を用いて予備吸蔵を行う方法を模式的に示す上面図である。It is a top view which shows typically the method of performing preocclusion using a 3rd electrode terminal. 第3電極端子を用いてガス発生を防止する構成を模式的に示す上面図である。It is a top view which shows typically the structure which prevents gas generation | occurrence | production using a 3rd electrode terminal.

符号の説明Explanation of symbols

11 素子容器
20 積層電極体
21 正極部
211 正極電極
212 集電体
213 導電リード部
22 セパレータ
23 負極部
231 負極電極
232 集電体
233 導電リード部
25 導電体
31 正極端子
33 負極端子
35 第3電極端子
41 リチウム金属
52 貫通孔
521 穴
61 ジャンパー導体
63 直流通電装置
65 定電圧回路
71 透液性の絶縁層
72 透液性の絶縁体
DESCRIPTION OF SYMBOLS 11 Element container 20 Stacked electrode body 21 Positive electrode part 211 Positive electrode 212 Current collector 213 Conductive lead part 22 Separator 23 Negative electrode part 231 Negative electrode 232 Current collector 233 Conductive lead part 25 Conductor 31 Positive electrode terminal 33 Negative electrode terminal 35 3rd electrode Terminal 41 Lithium metal 52 Through-hole 521 Hole 61 Jumper conductor 63 DC energizing device 65 Constant voltage circuit 71 Liquid-permeable insulating layer 72 Liquid-permeable insulator

Claims (4)

リチウムイオンもしくはアニオンを可逆的に担持可能な正極電極がシート状正極用集電体上に形成された矩形シート状正極部と、リチウムイオンの吸蔵・放出が可能な負極電極がシート状負極用集電体上に形成された矩形シート状負極部が、間にセパレータを介在させながら交互に積層された積層電極体と、上記正極用集電体と上記負極用集電体にそれぞれ接続される外部端子とを備えたリチウムイオン吸蔵・放出型有機電解質蓄電池であって、
上記積層電極体に積層方向に抜ける貫通孔を形成し、この貫通孔に上記負極電極にリチウムイオンを予備吸蔵させるためのリチウム金属を装填するとともに、このリチウム金属を上記積層電極体の最外層に配置された導電体に導電接続し、この導電体を介して上記リチウム金属を蓄電池の内部あるいは外部にて負極電極に導電接続させるようにしたことを特徴とするリチウムイオン吸蔵・放出型有機電解質蓄電池。
A rectangular sheet-like positive electrode portion in which a positive electrode capable of reversibly carrying lithium ions or anions is formed on a sheet-like positive electrode current collector, and a negative electrode electrode capable of occluding and releasing lithium ions are provided for the sheet-like negative electrode collector. A rectangular sheet-shaped negative electrode portion formed on the electric current body is alternately laminated with a separator interposed therebetween, and an external body connected to the positive electrode current collector and the negative electrode current collector, respectively. A lithium ion storage / release type organic electrolyte storage battery with a terminal,
A through hole extending in the stacking direction is formed in the laminated electrode body, and lithium metal for preliminarily occluding lithium ions in the negative electrode is loaded into the through hole, and the lithium metal is placed in the outermost layer of the laminated electrode body. Lithium ion storage / release organic electrolyte storage battery characterized in that the lithium metal is conductively connected to a negative electrode on the inside or outside of the storage battery through conductive connection to the disposed conductor. .
請求項1において、外部端子として正極端子および負極端子とは別に第3電極端子を備え、この第3電極端子が上記導電体に接続されていることを特徴とするリチウムイオン吸蔵・放出型有機電解質蓄電池。   2. The lithium ion occlusion / release organic electrolyte according to claim 1, wherein a third electrode terminal is provided as an external terminal separately from the positive electrode terminal and the negative electrode terminal, and the third electrode terminal is connected to the conductor. Storage battery. 請求項2において、第3電極端子と正極端子間の電圧が所定以下となるような定電圧回路を備えたことを特徴とするリチウムイオン吸蔵・放出型有機電解質蓄電池。   3. The lithium ion storage / release type organic electrolyte storage battery according to claim 2, further comprising a constant voltage circuit in which a voltage between the third electrode terminal and the positive electrode terminal is equal to or lower than a predetermined value. 請求項1〜3のいずれかにおいて、上記貫通孔の内壁面と上記リチウム金属の間に透液性の絶縁層を介在させたことを特徴とするリチウムイオン吸蔵・放出型有機電解質蓄電池。   4. The lithium ion storage / release type organic electrolyte storage battery according to claim 1, wherein a liquid-permeable insulating layer is interposed between the inner wall surface of the through hole and the lithium metal.
JP2006344771A 2006-12-21 2006-12-21 Lithium ion occlusion/release type organic electrolyte storage battery Pending JP2008159316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344771A JP2008159316A (en) 2006-12-21 2006-12-21 Lithium ion occlusion/release type organic electrolyte storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344771A JP2008159316A (en) 2006-12-21 2006-12-21 Lithium ion occlusion/release type organic electrolyte storage battery

Publications (1)

Publication Number Publication Date
JP2008159316A true JP2008159316A (en) 2008-07-10

Family

ID=39660003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344771A Pending JP2008159316A (en) 2006-12-21 2006-12-21 Lithium ion occlusion/release type organic electrolyte storage battery

Country Status (1)

Country Link
JP (1) JP2008159316A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089623A (en) * 2011-10-13 2013-05-13 Nec Tokin Corp Power storage device and method of manufacturing the same
CN103219524A (en) * 2013-04-28 2013-07-24 奇瑞汽车股份有限公司 Positive pole current collector foil and positive pole piece of laminated lithium ion battery and laminated lithium ion battery
JP2014531111A (en) * 2011-09-20 2014-11-20 エルジー ケム. エルティーディ. Porous electrode assembly and secondary battery including the same
JP2016157687A (en) * 2015-02-24 2016-09-01 株式会社半導体エネルギー研究所 Device, secondary battery, manufacturing method thereof, and electronic device
US9754726B2 (en) 2012-11-12 2017-09-05 Ricoh Company, Ltd. Nonaqueous electrolytic capacitor element
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element
KR20180072065A (en) * 2016-12-21 2018-06-29 주식회사 엘지화학 Battery Cell and Manufacturing Method thereof
CN112768812A (en) * 2020-12-31 2021-05-07 的卢技术有限公司 Soft package lithium battery cell capable of prolonging service cycle and manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531111A (en) * 2011-09-20 2014-11-20 エルジー ケム. エルティーディ. Porous electrode assembly and secondary battery including the same
US9899708B2 (en) 2011-09-20 2018-02-20 Lg Chem, Ltd. Electrode assembly with porous structure and secondary battery including the same
JP2013089623A (en) * 2011-10-13 2013-05-13 Nec Tokin Corp Power storage device and method of manufacturing the same
US9754726B2 (en) 2012-11-12 2017-09-05 Ricoh Company, Ltd. Nonaqueous electrolytic capacitor element
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element
CN103219524A (en) * 2013-04-28 2013-07-24 奇瑞汽车股份有限公司 Positive pole current collector foil and positive pole piece of laminated lithium ion battery and laminated lithium ion battery
JP2016157687A (en) * 2015-02-24 2016-09-01 株式会社半導体エネルギー研究所 Device, secondary battery, manufacturing method thereof, and electronic device
US10581060B2 (en) 2015-02-24 2020-03-03 Semiconductor Energy Laboratory Co., Ltd. Apparatus, secondary battery, manufacturing method, and electronic device
KR20180072065A (en) * 2016-12-21 2018-06-29 주식회사 엘지화학 Battery Cell and Manufacturing Method thereof
KR102234993B1 (en) * 2016-12-21 2021-04-01 주식회사 엘지화학 Battery Cell and Manufacturing Method thereof
CN112768812A (en) * 2020-12-31 2021-05-07 的卢技术有限公司 Soft package lithium battery cell capable of prolonging service cycle and manufacturing method

Similar Documents

Publication Publication Date Title
EP3223357B1 (en) Secondary battery module having a cooling plate
EP2135310B1 (en) Cell structure for electrochemical devices and method of making same
KR100686804B1 (en) Electrod Assemblay with Supercapacitor and Li Secondary Battery comprising the same
JP4878963B2 (en) Storage element and method for manufacturing the same
US7476463B2 (en) Rechargeable bipolar high power electrochemical device with reduced monitoring requirement
JP4928824B2 (en) Method for manufacturing lithium ion storage element
US9472796B2 (en) Stacked secondary battery with separator between electrodes
JP2008159316A (en) Lithium ion occlusion/release type organic electrolyte storage battery
CN112602229B (en) Hybrid lithium ion capacitor battery with carbon-coated separator and method of making same
JP2008159315A (en) Lithium ion occlusion/release type organic electrolyte storage battery
JP2008097991A (en) Electric storage device
US9385539B2 (en) Surface-mediated cell-powered portable computing devices and methods of operating same
JP2010097891A (en) Stacked lithium-ion secondary battery
JP5308646B2 (en) Lithium ion capacitor
JP2015088605A (en) Method of manufacturing power storage device and power storage device
JP4948109B2 (en) Electricity storage element
JP2008042003A (en) Lithium ion accumulation element
JP4928828B2 (en) Lithium ion storage element
KR101416805B1 (en) Folding cell and super capacitor folding type having the same
JP2007305522A (en) Storage element
JP2008041489A (en) Lithium ion electricity storage element
JP2014212304A (en) Power storage device and method of manufacturing power storage module
JP2008244378A (en) Capacitor device
JP5216292B2 (en) Electricity storage element
JP2011216685A (en) Composite electricity storage device