JPS6253277B2 - - Google Patents

Info

Publication number
JPS6253277B2
JPS6253277B2 JP1899384A JP1899384A JPS6253277B2 JP S6253277 B2 JPS6253277 B2 JP S6253277B2 JP 1899384 A JP1899384 A JP 1899384A JP 1899384 A JP1899384 A JP 1899384A JP S6253277 B2 JPS6253277 B2 JP S6253277B2
Authority
JP
Japan
Prior art keywords
weight
welding
arc
cellulose
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1899384A
Other languages
Japanese (ja)
Other versions
JPS60162592A (en
Inventor
Kyoshi Nakajima
Shozo Naruse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1899384A priority Critical patent/JPS60162592A/en
Publication of JPS60162592A publication Critical patent/JPS60162592A/en
Publication of JPS6253277B2 publication Critical patent/JPS6253277B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/365Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は被覆アーク溶接棒に関し、特に固定管
の突合せ下進溶接等において優れた溶接作業性を
発揮し、かつ溶接継手部のX線性能を向上させ
た、高セルロース系被覆アーク溶接棒に関するも
のである。 高セルロース系被覆アーク溶接棒はアーク力が
強く且つスラグの生成量が少ないから下進溶接に
適しており、またそのアーク特性から裏波溶接も
容易である。しかも固定管の下進溶接における初
層溶接の段階では極めて高い溶接速度が得られる
から、欧米ではパイプラインの現場溶接等に古く
から採用されている。ところが被覆剤中にはセル
ロース系の有機物が多量に含まれているから、低
水素系やイルミナイト系等の被覆アーク溶接棒に
比べ、高電流を使用すると棒焼けをおこしやすい
ので、低く押えて使用する必要がある。しかしな
がら、パイプラインの下進での初層の裏波溶接で
は、十分な溶け込みが得られない為に適正な裏波
ビードを形成する為に、高電流を採用する必要が
あり、加えて溶接棒の電弧端を開先内ルート部へ
強く押し付けながら運棒する為、棒焼けを起こし
易い。そうなるとアークが不安定になつて溶込み
不良を起こしたり裏波ビードが乱れ、健全な裏波
溶接継手が得られなくなる。 又、2層目以後の下進溶接においても、十分な
アークの強さ,溶け込み,クレーターの拡がり等
の溶接作業性が悪く。しかも、デポが垂れやす
く、溶け込み不良、ピツト等の欠陥が発生するの
で、溶接継手部のX線性能が悪くなる。 そこで、高電流を採用すると棒焼けがおこり上
記と同様な現象がおこる。 従つて、低電流で十分なアークの強さ,溶け込
み,クレーターの拡がり等の溶接作業性が良好
で、かつ、溶接継手部のX線性能が良好であるこ
とが要求される。 本発明者等は上記の様な事情に着目し、前述の
様な高セルロース系被覆アーク溶接棒の特長を損
なうことなく、しかもアークの強さ,溶け込み,
クレーターの拡がり等の溶接作業性および溶接継
手部のX線性能が良好なセルロース系溶接棒を提
供する為に種々研究を重ねた結果Na2CO3の添加
が有効であることを見いだした。 本発明はかかる研究の結果完成されたものであ
つて、その構成とは、多量のセルロースを含む被
覆剤原料を粘結剤と共に混練した被覆剤を鋼心線
外周に被覆してなる高セルロース系被覆アーク溶
接棒において、粘結剤として水ガラスを、被覆剤
全重量に対して固形分量で14〜30%(重量%:以
下同じ)含有させると共に、被覆剤中にNa2CO3
を0.3〜7%,MnCO3を0.3〜8%,セルロースを
17〜40%,金属Mnおよび/もしくはFe−Mnを
Mnに換算して3〜10%,TiO2を8〜25%,SiO2
を15〜30%,MgOを2〜12%,ZrO2を0.3〜7
%,酸化鉄をFeOに換算して1〜17%,500℃以
上で放出される結晶水を含む含水鉱物を500℃以
上で放出される結晶水に換算して0.3〜4%を含
有させ、溶接棒全重量に対する被覆剤の重量比を
0.1〜0.18%にしたところに要旨が存在する。 以下本発明で使用される各成分の作用及び含有
量設定の根拠を説明する。 Na2CO30 .3〜7% 本発明において重要な要件であり高セルロース
系被覆アーク溶接棒のアークの強さ,溶け込み,
クレーターの拡がり等の溶接作業性および継手部
のX線性能を向上させる為に必要な原料であつ
て、十分なアークの強さ,溶け込み,クレーター
の拡がりを得、かつ継手部のX線性能を向上させ
る為には、0.3%以上含有させる必要がある。し
かし、7%を越えるとスラグの量が増え過ぎ下進
溶接が困難になる。 MnCO3 0.3〜8% スラグをポーラスにしてスラグの剥離性を高め
る作用があり0.3%以上含有させなければならな
い、しかし8%を越えるとスラグの流動性が過大
となり下進溶接が困難になる。 セルロース 17〜40% ガス発生剤としての役割を果すもので、高セル
ロース系本来の特長を与えるのに不可欠の成分で
あり、17%未満では深い溶込みと力強いアークが
得られず下進溶接用としての適正が得られない。
また、40%を越えると、他の成分を調整しても棒
焼けを防止できなくなりアークが不安定になる。 金属Mn及び/又はFe−Mn:Mnに換算して
3〜10% 脱酸剤として不可欠の成分であり、3%未満で
は脱酸不足となつて清浄な溶着金属が得られず、
一方10%を越えると脱酸過剰になつてビード表面
にピツトが発生し易くなる。 TiO2:8〜25% アークを安定化させる為には8%以上含有させ
る必要があるが、25%を越えるとアーク力が弱く
なり下進溶接が困難になる。 SiO2:15〜30% SiO2は水ガラス及び珪酸鉱物として混入する
成分であり、適正なスラグの量と粘性を得るのに
不可欠の成分である。15%未満では生成するスラ
グ量が不十分になつてビードの伸びが悪くなり、
健全な裏波ビードが得られなくなる。一方30%を
越えるとスラグ量が多くなりすぎて下進溶接が困
難になる。 MgO:2〜12% スラグの剥離性を高める作用があり2%以上含
有させなければならない。しかし12%を越えると
スラグの流動性が過大となり下進溶接が困難にな
る。 ZrO2:0.3〜7% アークの集中性およびビード表面の光沢を良好
にし、溶着金属と母材のなじみを向上させて耐ア
ンダカツト性を良好にするために0.3%以上含有
させる必要がある。7%を起えるとスラグが緻密
になつてスラグの剥離性が悪くなる。 酸化鉄:FeOに換算して1〜17% スラグをポーラスにしてスラグの剥離性を良好
にすると共に、脱酸過剰によるピツトの発生を防
止するために1%以上含有させなければならな
い。17%を越えるとスラグの流動性が過剰となつ
て下進溶接が困難になる。 500℃以上で放出される結晶水を含む含水鉱
物:500℃以上で放出される結晶水に換算して
0.3〜4% タルク等の含水鉱物が使用され、アークのスプ
レー化に寄与する。この作用を有効に発揮させる
為には0.3%以上添加しなければならない。しか
し4%を越えるとアーク力が低下してアークが不
安定になる。なお500℃以上で放出される結晶水
と規定した理由は、いわゆる吸着水分のように
500℃未満で放出される水分では、溶接時の高温
のため、溶接棒の消耗に先行して、水分の被覆表
面より大気中へ放出されてしまい、アークへの効
果がなくなつてしまうからである。 粘結剤水ガラスの固形分で14〜30% 水ガラスの配合量14%未満では、被覆剤原料粒
子間に十分水ガラスが行き渡らないため、原料粒
子同士の結合力が弱くなるだけでなく。原料粒子
間の滑りも不安定になりかすれによる空間が生
じ、被覆の締りが悪くなる。また、30%を越える
と水ガラスの被膜が厚くなりすぎ、乾燥した時水
ガラスの被膜がもろくなつて原料粒子間の結合力
が低下するだけでなく、被覆剤が滑りすぎて塗装
圧力が上がりにくくなり被覆の締りが悪くなる。 溶接棒全重量に対する被覆剤の重量比(被覆
比):0.1〜0.1% 固定管の下進溶接を容易にする為の基本的条件
で、0.1未満では被覆の保護筒としての機能が不
十分になつてアークが不安定になり、一方0.18を
越えるとアークの集中性が低下して裏波ビードが
形成され難くなり、何れの場合も良好な下進溶接
性は発揮できない。 本発明の被覆アーク溶接棒は上記〜の要件
を満足するものであるが、このほか溶着金属の機
械的性質を改善する為にNi,Cr,Mo等の合金元
素を適量配合したり、溶接態率の向上や作業性の
改善を期して鉄粉(通常被覆剤全量に対して25%
以下)を配合することもできる。更に交流電源用
溶接棒を得る場合は、アーク安定剤として少量の
K2Oを配合することにより性能を一段と高めるこ
とができる。 本発明は以上の様に構成されており、特に
Na2CO3を添加することにより溶接作業性および
溶接継手部のX線性能を向上させることができる
と共に継手性能も一段と向上させることができ
た。 充に実験例を示す。 実験例 第1表に示す成分組成の被覆剤を、鋼心線
(4.0mmφ×350=l)の外周に所定の被覆率とな
る様に塗布して被覆アーク溶接棒を製造した。得
られた各溶接棒を用いて固定管の下進溶接を行な
い、溶接作業性および溶接継手部のX性能の試験
をした結果を示す。 結果を第1表に一括して示す。
The present invention relates to a coated arc welding rod, and in particular to a high cellulose coated arc welding rod that exhibits excellent welding workability in butt downward welding of fixed pipes, etc., and has improved X-ray performance at welded joints. It is. High cellulose-based coated arc welding rods have a strong arc force and produce a small amount of slag, so they are suitable for downward welding, and their arc properties also allow for easy welding. In addition, extremely high welding speeds can be obtained during the first layer welding of downward welding of fixed pipes, so it has long been used in Europe and America for on-site welding of pipelines. However, since the coating material contains a large amount of cellulose-based organic matter, it is more likely to cause stick burn when using a high current compared to coated arc welding rods such as low-hydrogen or illuminite types, so keep the current low. need to use. However, when performing uranami welding on the first layer as the pipeline moves downward, sufficient penetration cannot be obtained, so it is necessary to use a high current to form a proper uranami bead, and in addition, a welding rod is required. Since the electric arc end is pressed strongly against the inner root of the groove while operating the rod, it is easy to cause stick burn. If this happens, the arc becomes unstable, causing poor penetration and the Uranami bead being disturbed, making it impossible to obtain a sound Uranami welded joint. In addition, even in downward welding of the second and subsequent layers, welding workability such as sufficient arc strength, penetration, and crater spread is poor. In addition, the deposit tends to sag, causing defects such as poor penetration and pits, resulting in poor X-ray performance of the welded joint. Therefore, if a high current is used, stick burn occurs and the same phenomenon as above occurs. Therefore, it is required that welding workability such as sufficient arc strength, penetration, and spread of craters at low currents is good, and that the welded joint has good X-ray performance. The present inventors focused on the above-mentioned circumstances, and without sacrificing the above-mentioned features of the high cellulose coated arc welding rod, the strength of the arc, the penetration,
In order to provide a cellulose-based welding rod that has good welding workability such as crater spread and X-ray performance of welded joints, we have conducted various studies and found that the addition of Na 2 CO 3 is effective. The present invention was completed as a result of such research, and consists of a high-cellulose coating material made by kneading coating material raw materials containing a large amount of cellulose with a binder and coating the outer periphery of the steel core wire. The coated arc welding rod contains water glass as a binder in a solid content of 14 to 30% (weight %: the same hereinafter) based on the total weight of the coating material, and also contains Na 2 CO 3 in the coating material.
0.3-7%, MnCO3 0.3-8%, cellulose
17-40%, metallic Mn and/or Fe-Mn
3-10% in terms of Mn, 8-25% in TiO2 , SiO2
15-30%, MgO 2-12%, ZrO 2 0.3-7
%, 1 to 17% iron oxide converted to FeO, 0.3 to 4% hydrated minerals containing crystallized water released at temperatures above 500°C, converted to crystallized water released at temperatures above 500°C, The weight ratio of the coating material to the total weight of the welding rod is
The gist lies in the range of 0.1 to 0.18%. The effects of each component used in the present invention and the basis for setting the content will be explained below. Na 2 CO 3 0. 3-7% This is an important requirement in the present invention, and the arc strength, penetration,
It is a necessary raw material to improve welding workability such as crater expansion and the X-ray performance of the joint.It is necessary to obtain sufficient arc strength, penetration, and crater expansion, and to improve the X-ray performance of the joint. In order to improve this, it is necessary to contain 0.3% or more. However, if it exceeds 7%, the amount of slag increases too much and downward welding becomes difficult. MnCO 3 0.3 to 8% MnCO 3 has the effect of making the slag porous and increasing the peelability of the slag, and must be contained at 0.3% or more. However, if it exceeds 8%, the fluidity of the slag becomes excessive and downward welding becomes difficult. Cellulose 17-40% It plays the role of a gas generating agent, and is an essential component to provide the original characteristics of high cellulose. If it is less than 17%, deep penetration and a powerful arc cannot be obtained, making it suitable for downward welding. It is not possible to obtain appropriateness as a.
Moreover, if it exceeds 40%, burnout cannot be prevented even if other components are adjusted, and the arc becomes unstable. Metal Mn and/or Fe-Mn: 3 to 10% in terms of Mn It is an essential component as a deoxidizing agent, and if it is less than 3%, deoxidizing is insufficient and clean weld metal cannot be obtained.
On the other hand, if it exceeds 10%, deoxidation becomes excessive and pits are likely to occur on the bead surface. TiO 2 :8-25% In order to stabilize the arc, it is necessary to contain 8% or more, but if it exceeds 25%, the arc force becomes weak and downward welding becomes difficult. SiO 2 : 15-30% SiO 2 is a component mixed in as water glass and silicate mineral, and is an essential component to obtain an appropriate amount and viscosity of slag. If it is less than 15%, the amount of slag generated will be insufficient, resulting in poor bead elongation.
A healthy Uranami bead cannot be obtained. On the other hand, if it exceeds 30%, the amount of slag becomes too large and downward welding becomes difficult. MgO: 2 to 12% MgO has the effect of increasing the releasability of slag, and must be contained at 2% or more. However, if it exceeds 12%, the fluidity of the slag becomes excessive and downward welding becomes difficult. ZrO 2 :0.3-7% It is necessary to contain 0.3% or more in order to improve the arc concentration and the gloss of the bead surface, improve the compatibility between the weld metal and the base metal, and improve the undercut resistance. If it exceeds 7%, the slag becomes dense and the slag removability deteriorates. Iron oxide: 1 to 17% in terms of FeO It must be contained in an amount of 1% or more in order to make the slag porous and improve its removability, as well as to prevent the formation of pits due to excessive deoxidation. If it exceeds 17%, the fluidity of the slag becomes excessive and downward welding becomes difficult. Hydrous minerals containing water of crystallization released at temperatures above 500°C: In terms of water of crystallization released at temperatures above 500°C.
0.3-4% Hydrous minerals such as talc are used and contribute to the formation of arc spray. In order to effectively exhibit this effect, it must be added at 0.3% or more. However, if it exceeds 4%, the arc force decreases and the arc becomes unstable. The reason why it is defined as crystallization water that is released at temperatures above 500°C is that it is defined as crystallization water that is released at temperatures above 500°C.
If moisture is released at temperatures below 500℃, the high temperature during welding will cause the welding rod to wear out and be released into the atmosphere from the coated surface, making it ineffective against the arc. be. The solid content of the binder water glass is 14 to 30%. If the amount of water glass blended is less than 14%, the water glass will not be sufficiently spread between the particles of the coating material raw material, which will not only weaken the bonding force between the raw material particles. The slippage between raw material particles also becomes unstable, creating spaces due to scratches, and the tightness of the coating deteriorates. In addition, if it exceeds 30%, the water glass coating will become too thick, and when it dries, the water glass coating will not only become brittle and reduce the binding force between raw material particles, but also cause the coating material to slip too much, increasing the coating pressure. This will cause the coating to become difficult to tighten. Weight ratio of coating material to total weight of welding rod (coating ratio): 0.1 to 0.1% This is a basic condition to facilitate downward welding of fixed pipes. If it is less than 0.1, the coating will not function adequately as a protective tube. If it exceeds 0.18, the arc becomes unstable, and on the other hand, if it exceeds 0.18, the concentration of the arc decreases, making it difficult to form an underwave bead, and in either case, good downward weldability cannot be achieved. The coated arc welding rod of the present invention satisfies the above-mentioned requirements. In addition, in order to improve the mechanical properties of the deposited metal, appropriate amounts of alloying elements such as Ni, Cr, and Mo may be added, and the welding conditions may be adjusted. In order to improve efficiency and workability, iron powder (usually 25% of the total amount of coating material)
The following) can also be blended. Furthermore, when obtaining welding rods for AC power supplies, a small amount of arc stabilizer is added.
Performance can be further improved by blending K 2 O. The present invention is configured as described above, and in particular
By adding Na 2 CO 3 , it was possible to improve welding workability and the X-ray performance of the welded joint, and further improve the joint performance. An experimental example is shown below. Experimental Example A coated arc welding rod was manufactured by applying a coating having the composition shown in Table 1 to the outer periphery of a steel core wire (4.0 mmφ x 350=l) to a predetermined coverage rate. The obtained welding rods were used to perform downward welding of fixed pipes, and the welding workability and X performance of the welded joints were tested.The results are shown below. The results are summarized in Table 1.

【表】【table】

【表】 第1表より次の様に考察できる。 1 符号12は従来の高セルロース系被覆アーク
溶接棒の代表例でNa2CO3およびZrO2が含有さ
れていないので、アークの強さ,クレーターの
拡がり、溶け込み,なじみ,溶着金属のたれ等
の溶接作業性が悪く、しかも融合不良およびブ
ロホールが発生して溶接継手のX線性能が悪
い。 2 符号13はZrO2の添加が多過ぎるので、ス
ラグが緻密になりスラグの剥離性も悪くなり、
しかもFeOの添加が少な過ぎる為に脱酸過剰と
なりビード表面にピツトの発生およびブロホー
ルも発生してX線性能が悪い。 3 符号14はNa2CO3の添加が多過ぎる例で、
スラグ量が多過ぎる為に下進溶接でスラグが邪
魔してアークが不安定となり融合不良になりX
線性能が悪い。 4 符号15はTiO2の添加が少な過ぎる為にア
ークが不安定になる。又Mnの添加量が少な過
ぎる為に脱酸不足となりブロホールが発生しX
線性能が悪くなる。 5 符号16は、セルロースの添加が少な過ぎる
例でアークが弱く、しかもクレータの拡がり、
溶け込み等の溶接作業性が悪過ぎて溶接できな
い。 6 符号17は被覆率が低過ぎる例で棒焼けがお
こるので、アークの強さ,クレーターの拡が
り,溶け込み,ビードのなじみ等の溶接作業性
が悪くなり、ビード表面にピツトの発生および
ブロホールが発生してX線性能が悪くなる。 7 符号18はMgOとFeOが多過ぎる為に、両
者の相乗作用によりスラグの粘性が悪くなり過
ぎスラグが邪魔して溶接できない。 8 符号19は被覆率が高過ぎ、しかも結晶水が
入つてないので両者に相剰作用によりアークの
集中性が低下し、溶け込みも浅くなる為に裏波
ビードが形成されない。 9 符号20はセルロースの添加が多過ぎる例で
棒焼けがおこりアークの強さ、溶け込み,クレ
ーターの拡がり等の溶接作業性が悪くなり、し
かもピツトおよびブロホールが発生してX線性
能が悪くなる。又、MgOを添加していない為
にスラグの剥離性も悪い。 10 符号21はTiO2の添加が多い為にアークが
弱くなり、スラグが邪魔して下進溶接がやりに
くくなり、融合不良ができX線性能が悪くな
る。 11 符号22はMnCO3を添加していないのでス
ラグがポーラスにならない為にスラグの剥離が
やゝ悪くなる。又、Mnの添加が多過ぎるの
で、脱酸過剰となりピツトおよびプロホールが
発生してX線性能が悪くなる。 12 これらに対して符号1〜11は本発明で規定
する要件をすべて満足する実施例で、アークの
強さ,クレーターの拡がり、溶け込み,なじ
み,スラグの剥離性等の溶接作業性は良好であ
り、しかも融合不良等の欠陥がないので、X線
性能を向上させることができたので、溶接継手
性能は一段と向上させることができた。
[Table] From Table 1, the following conclusions can be drawn. 1 Code 12 is a typical example of a conventional high-cellulose coated arc welding rod, which does not contain Na 2 CO 3 or ZrO 2 , so it is difficult to control arc strength, crater spread, melting, conformation, sag of weld metal, etc. Welding workability is poor, and the X-ray performance of welded joints is poor due to poor fusion and blowholes. 2 Code 13 has too much ZrO 2 added, so the slag becomes dense and the slag peelability becomes poor.
Moreover, since too little FeO is added, the deoxidation is excessive, causing pits and blowholes to occur on the bead surface, resulting in poor X-ray performance. 3 Code 14 is an example where too much Na 2 CO 3 is added,
Because the amount of slag is too large, the slag gets in the way during downward welding, making the arc unstable and causing poor fusion.
Line performance is poor. 4 No. 15 indicates that the addition of TiO 2 is too small, making the arc unstable. Also, because the amount of Mn added is too small, deoxidation is insufficient and blowholes are generated.
Line performance deteriorates. 5 Code 16 is an example where too little cellulose is added, the arc is weak, and the crater spreads.
Welding cannot be performed because welding workability such as penetration is too poor. 6 Code 17 is an example where the coverage is too low and stick burn occurs, which deteriorates welding workability such as arc strength, crater spread, melting, bead conformity, etc., and pits and blowholes occur on the bead surface. X-ray performance deteriorates. 7 No. 18 has too much MgO and FeO, so the viscosity of the slag becomes too bad due to the synergistic effect of the two, and welding cannot be performed because the slag gets in the way. 8. In the case of code 19, the coverage is too high and crystal water is not included, so the mutual action of the two causes the concentration of the arc to decrease and the penetration to become shallow, so that no Uranami bead is formed. 9. Reference numeral 20 is an example in which too much cellulose is added, which causes stick burn and deteriorates welding workability such as arc strength, penetration, and crater spread, and also causes pits and blowholes to occur, resulting in poor X-ray performance. Also, since MgO is not added, the slag removability is also poor. 10 Code 21 has a large amount of TiO 2 added, so the arc becomes weak, slag gets in the way, making it difficult to perform downward welding, resulting in poor fusion and poor X-ray performance. 11 Since no MnCO 3 is added to code 22, the slag does not become porous, so the peeling of the slag becomes somewhat difficult. Furthermore, since too much Mn is added, excessive deoxidation occurs, causing pits and proholes, resulting in poor X-ray performance. 12 In contrast, numerals 1 to 11 are examples that satisfy all the requirements stipulated by the present invention, and have good welding workability such as arc strength, crater spread, penetration, conformation, and slag removability. Moreover, since there were no defects such as poor fusion, the X-ray performance could be improved, and the welded joint performance could be further improved.

Claims (1)

【特許請求の範囲】[Claims] 1 多量のセルロースを含む被覆剤原料を粘結剤
と共に混練した被覆剤を鋼心線外周に被覆してな
る高セルロース系被覆アーク溶接棒において、粘
結剤として水ガラスを被覆剤全重量に対して固形
分量で14〜30重量%含有させると共に、被覆剤中
にNa2CO3を0.3〜7重量%,MnCO3を0.3〜8重
量%,セルロースを17〜40重量%,金属Mnおよ
び/もしくはFe−MnをMnに換算して3〜10重
量%,TiO2を8〜25重量%,SiO2を15〜30重量
%,MgOを2〜12重量%,ZrO2を0.3〜7重量
%,酸化鉄をFeOに換算して1〜17重量%,500
℃以上で放出される結晶水を含む鉱物を500℃以
上で放出される結晶水に換算して0.3〜4重量%
を含有させ、溶接棒全重量に対する被覆剤の重量
比を0.1〜0.18としたことを特徴とする高セルロ
ース系被覆アーク溶接棒。
1. In a high-cellulose-based coated arc welding rod in which the outer periphery of a steel core wire is coated with a coating material made by kneading a coating material containing a large amount of cellulose with a binder, water glass is added as a binder to the total weight of the coating material. In addition, the coating material contains 0.3 to 7% by weight of Na 2 CO 3 , 0.3 to 8% by weight of MnCO 3 , 17 to 40% by weight of cellulose, metal Mn and/or Fe-Mn is 3-10% by weight in terms of Mn, TiO 2 is 8-25% by weight, SiO 2 is 15-30% by weight, MgO is 2-12% by weight, ZrO 2 is 0.3-7% by weight, Iron oxide converted to FeO is 1 to 17% by weight, 500
0.3 to 4% by weight of minerals containing crystallized water released at temperatures above 500°C, converted to crystallized water released at temperatures above 500°C.
A high cellulose-based coated arc welding rod, characterized in that the weight ratio of the coating material to the total weight of the welding rod is 0.1 to 0.18.
JP1899384A 1984-02-03 1984-02-03 High cellulose coated electrode Granted JPS60162592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1899384A JPS60162592A (en) 1984-02-03 1984-02-03 High cellulose coated electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1899384A JPS60162592A (en) 1984-02-03 1984-02-03 High cellulose coated electrode

Publications (2)

Publication Number Publication Date
JPS60162592A JPS60162592A (en) 1985-08-24
JPS6253277B2 true JPS6253277B2 (en) 1987-11-10

Family

ID=11987088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1899384A Granted JPS60162592A (en) 1984-02-03 1984-02-03 High cellulose coated electrode

Country Status (1)

Country Link
JP (1) JPS60162592A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367312B2 (en) * 2008-06-27 2013-12-11 株式会社神戸製鋼所 High cellulosic coated arc welding rod
CN112958939B (en) * 2021-02-05 2022-12-16 天津市金桥焊材集团股份有限公司 AC/DC high-power blowing cellulose welding rod

Also Published As

Publication number Publication date
JPS60162592A (en) 1985-08-24

Similar Documents

Publication Publication Date Title
AU2009202190B2 (en) High cellulose type covered electrode
JPS6253277B2 (en)
JP2675894B2 (en) Flux-cored wire for welding high strength austenitic stainless steel
JP7387450B2 (en) Iron powder low hydrogen coated arc welding rod
JPH0780064B2 (en) High cellulosic coated arc welding rod
JPS58205696A (en) Stainless steel flux cored wire for gas shielded arc welding
JPS5820398A (en) Flux for build-up welding
JPS6358077B2 (en)
JP6669680B2 (en) Lime titania coated arc welding rod
JPS6234697A (en) Flux cored wide for welding
JPH0335033B2 (en)
JPS5938877B2 (en) High cellulose coated arc welding rod
JP6938361B2 (en) Lime titania-based shielded metal arc welding rod
JPH04313492A (en) Low hydrogen type coated electrode
JP6999461B2 (en) High titanium oxide-based shielded metal arc welding rod
JPH0632870B2 (en) High cellulose coated arc welding rod
JPH01138098A (en) Coated electrode for stainless steel
JPH10230390A (en) Coated electrode for welding stainless steel
US4086389A (en) Coating composition comprising crystalline cellulose and a coated electrode for arc welding produced therewith
JPH0335034B2 (en)
JPH07124784A (en) Stainless steel coated electrode for cryogenic temperature
JPS59174294A (en) Coated arc welding rod
JPS6358078B2 (en)
JPH03146298A (en) Coated electrode for cast iron
JPS58196195A (en) Baked flux for horizontal fillet submerged arc welding