JPS58205696A - Stainless steel flux cored wire for gas shielded arc welding - Google Patents

Stainless steel flux cored wire for gas shielded arc welding

Info

Publication number
JPS58205696A
JPS58205696A JP8727582A JP8727582A JPS58205696A JP S58205696 A JPS58205696 A JP S58205696A JP 8727582 A JP8727582 A JP 8727582A JP 8727582 A JP8727582 A JP 8727582A JP S58205696 A JPS58205696 A JP S58205696A
Authority
JP
Japan
Prior art keywords
wire
stainless steel
flux
slag
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8727582A
Other languages
Japanese (ja)
Other versions
JPS6249160B2 (en
Inventor
Rokuro Fujimoto
藤本 六郎
Kyukichi Yanagidate
柳舘 久吉
Tatsuo Enomoto
榎本 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8727582A priority Critical patent/JPS58205696A/en
Publication of JPS58205696A publication Critical patent/JPS58205696A/en
Publication of JPS6249160B2 publication Critical patent/JPS6249160B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials

Abstract

PURPOSE:To improve the slag removability, resistance to cracking, etc. in a weld zone, by using a fine hollow wire of stainless steel packed therein with a slag forming material and metallic powder of specific compsns. for a flux cored wire for gas shielded arc welding of stainless steel. CONSTITUTION:A wire contg. 0.001-0.1% S alone or various sulfides and sulfates in terms of S based on the weight of wire, 0.001-0.04% Bi alone or compds. such as Bi2O3, Bi(OH)3 or the like in terms of Bi, 1-10% rutile, ilmenite, etc. in terms of TiO2, 1-10% slilica sand or a silicate compd. in terms of SiO2 and >=45% metallic powder of Cr, Ni, etc. for controlling the components of molten metal and Si, Al, etc. as a deoxidizing agent in a hollow tube made of stainless steel or mild steel is used as a wire to be used in the stage of gas shielded arc welding of stainless steel.

Description

【発明の詳細な説明】 本発明は、ガスシールドアーク溶接用ステンレス鋼溶接
材料に係り、さらに詳しくはがスシールドアーク溶接に
おいて溶接作業性にすぐれ、また生産性のよいステンレ
ス鋼フラックス入シワイヤに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stainless steel welding material for gas-shielded arc welding, and more particularly to a stainless steel flux-cored shear wire that has excellent welding workability and productivity in gas-shielded arc welding. It is.

ステンレス鋼は、すぐれた耐誘性、耐食性、耐酸化性、
耐熱性を有することから各方面で広く使用されているが
、溶接法として被覆アーク溶接棒による手溶接が主体で
あるが、能率が劣るという点で問題がある。これに代る
奄のとしてソリッドワイヤによるMIG溶接法が普及し
てきている。
Stainless steel has excellent resistance to corrosion, corrosion, and oxidation.
Although it is widely used in various fields due to its heat resistance, manual welding using a coated arc welding rod is the main welding method, but there is a problem in that it is less efficient. As an alternative to this, MIG welding using solid wire is becoming popular.

しかるにソリッドワイヤによるMiG溶接法は能率面で
すぐれているが、ステンレス鋼に適用するとブローホー
ルが発生しやすいこと、また多層溶接で溶接金属の広が
9が得られに<<、融合不良を生じやすく適正条件範囲
が非常にせまいなど問題がある。これらのことから能率
面ですぐれ、溶接作業性が良好で、しか龜!ローホール
、融合不良など溶接欠陥の発生しにくい溶接法の確立が
必要である。
However, although the MiG welding method using solid wire is superior in terms of efficiency, when applied to stainless steel, blowholes are likely to occur, and the spread of weld metal cannot be obtained in multilayer welding, resulting in poor fusion. There are problems in that the range of appropriate conditions is very narrow. Due to these factors, it has excellent efficiency and welding workability, making it easy to use! It is necessary to establish a welding method that is less likely to cause welding defects such as low holes and poor fusion.

ソリッドワイヤによるMIG溶接における短所を解決す
る手段として、フラックスを内包した細径ワイヤ1.6
 wφ、12■φを用い、さらにシールドゴスを流して
溶接を行う手段が注目されてきている。
As a means to solve the disadvantages of MIG welding using solid wire, a small diameter wire 1.6 containing flux is used.
A method of welding using wφ, 12■φ and flowing shield goss has been attracting attention.

このようなフラックス入シワイヤの細径化によるがスン
ールt“アーク溶接は“内包フラックスによるスラグシ
ールドとガス7−ルドの両者にょシ溶接金属を保穫する
ので、溶接金属の広がりが得られ、ビード形状が良好で
、!ローホール、融合不良などの溶寮欠陥が発生しにり
く、且つ高能率溶接が可能であり、近年ますますその需
要が高まってきている。
Although the diameter of the flux-cored shear wire is reduced, arc welding protects the weld metal by both the slag shield by the embedded flux and the gas shield, so the weld metal spreads out and the bead Good shape! It is less likely to cause weld metal defects such as low holes and poor fusion, and enables highly efficient welding, and its demand has been increasing in recent years.

一方、ステンレス鋼溶接剤スラックス人クワイヤの外皮
にはCr −Nl’ステンレス鋼、Crステンレス鋼、
および軟鋼が用いられているが、これらの内、Cr −
Niステンレス鋼は加工硬化性がいちぢるし−く大であ
るため、伸線加工がむずがしい。
On the other hand, the outer skin of the stainless steel welding slacks choir is made of Cr-Nl' stainless steel, Cr stainless steel,
and mild steel are used; among these, Cr −
Since Ni stainless steel has very high work hardening properties, it is difficult to wire-draw it.

これに対し、Crステンレス鋼および軟鋼はCr−Ni
ステンレス鋼はど加工硬化性がいちちるしくないが、必
要とするCr + Niなどの合金元素は、充填フラッ
クスから供給してやる必要があり、そのためおのずから
充填率の高いものとなる。しかし乍ら充填率が高くなる
にしたがい、当然の結果として伸線加工性が劣ってくる
のは止むを得ない。
On the other hand, Cr stainless steel and mild steel have Cr-Ni
Stainless steel does not have particularly good work hardening properties, but the necessary alloying elements such as Cr + Ni must be supplied from the filling flux, which naturally results in a high filling rate. However, as the filling rate increases, it is unavoidable that wire drawability deteriorates as a natural result.

した刀)って現在のフラックス人9ワイヤの製造法にあ
ってはいす几の外皮を用いようとも伸線加工がむずかし
いので、2.5■φ以下の細径成形がら伸線加工により
161φ、12−φのフラックス入うワイヤを生産して
おり、生産性が非常に低く、かかるワイヤの需要が高い
にもがかわらず大量安定供給できないのが実情である。
With the current method of manufacturing Flux Jin 9 wire, it is difficult to draw the wire even if you use the outer shell of the chair, so by drawing the wire from a small diameter of 2.5 φ or less, 161 φ, The current situation is that 12-φ flux-containing wires are produced, and the productivity is very low, and despite the high demand for such wires, it is not possible to stably supply them in large quantities.

これを解決すべく3■以上の太径ワイヤがら伸線加工に
よシ1.6謂φ、1.2m+φの細径フラックス入りワ
イヤを侍るべく種々検討した結果、中間に少なくとも1
回以上の外皮を軟化すべく熱処理が必要であることが判
明し、生産性V高いワイヤの製造法が可能となった。
In order to solve this problem, we conducted various studies in order to use thin flux-cored wires of 1.6 mm and 1.2 m + φ for wire drawing processing from large diameter wires of 3 mm or more.
It was found that heat treatment was necessary to soften the outer skin more than once, and a method for manufacturing wire with high productivity became possible.

しかし乍ら、既存のスラブ剤では熱処理回吸が増えるほ
ど、浴接作業性、特にスラグのばく離性が省ってくるこ
とが判明した。而してスラグのはく離性に関しては、従
来より酸化ビスマスなどを添加すると効果があることが
、例えば特開昭56−4393号公報に開示されている
が、この酸化ビスマスを前述の中間熱処理を適用したワ
イヤに添加するとスラグのはく離性はたしかに改善され
る。しかし乍ら、その効果が顕著になる範囲においては
溶接金属の高温割れ感受性が増し、ビード形状も均一に
なりにくいことが判明した。
However, it has been found that with existing slab agents, as the heat treatment resorption increases, the bath welding workability, especially the slag release performance, deteriorates. Regarding the releasability of slag, it has been disclosed in Japanese Unexamined Patent Publication No. 56-4393 that addition of bismuth oxide or the like is conventionally effective. When added to the wire, the slag releasability is certainly improved. However, it has been found that in the range where this effect becomes significant, the susceptibility to hot cracking of the weld metal increases and the bead shape becomes difficult to become uniform.

本発明者らは、上述の問題点に鑑み、これを改善すべく
数多くの研究を行った結果、既存のスラグ剤中に微量の
Sに加えて微量のBiを添加[7、これら元素の添加量
の数値限定により、これらの相乗効果が顕著に現われ、
溶融金属および溶融スラグの界面張力が低下しスラグの
はく離性が著るしく良好となり、さらには外観のより美
しいビードが得られ、且つ他の溶接作業性の劣化、高温
割れ感受性、機械的性能の劣化はないというまったく新
しい知見が得られた。
In view of the above-mentioned problems, the present inventors conducted numerous studies to improve this problem, and as a result, added a trace amount of Bi in addition to a trace amount of S to the existing slag agent [7, Addition of these elements] By numerically limiting the amount, these synergistic effects become noticeable,
The interfacial tension between the molten metal and the molten slag is reduced, and the slag releasability is significantly improved. Furthermore, a bead with a more beautiful appearance can be obtained, and other deterioration of welding workability, hot cracking susceptibility, and mechanical performance are reduced. A completely new finding that there is no deterioration was obtained.

本発明は以上の如き知見によりなされたものであり、シ
ールドがスAr −02、Ar−CO2混合、およヒC
O2のみによるガスシールドアーク溶接において溶接作
業性、特にスラグのはく離性がすぐれ、しかも溶接部に
すぐれた耐割れ性および機械的性質が得られる新規なス
テンレス鋼フラックス入りワイヤを提供することにある
The present invention was made based on the above knowledge, and the shield is made of Ar-02, Ar-CO2 mixture, and Carbon
To provide a novel stainless steel flux-cored wire which has excellent welding workability, especially slag peelability, in gas-shielded arc welding using only O2, and which provides excellent cracking resistance and mechanical properties in the welded part.

即ち、本発明の要旨は、ステンレス鋼または軟鋼を管状
に成形した外皮の内部にワイヤ重量に対してSの単体あ
るいは化合物の1種または2種以上の合計が単体に換算
して0.001〜0,1%、Biの単体あるいは化合物
の1種または2種以上の合計が単体に換算してo、oo
t〜0.04%、TiO2に換算したチタン酸化物の1
種または2種以上の合計が1〜10俤、さらに5IO2
に換算した砕砂あるいは硅酸塩化合物の1種または2種
以上の合計が1〜10係を含有するスラグ形成物とワイ
ヤ重量に対して45チ以下の金属粉末からなる充填物粉
末を充填したことを特徴とするガスシールドアーク溶接
用ステンレス鋼フラックス入りワイヤにある。
That is, the gist of the present invention is that the sum of one or more types of S as a single substance or compound is 0.001 to 0.001 or more in terms of the weight of the wire inside the outer sheath formed into a tubular shape of stainless steel or mild steel. 0.1%, the sum of one or more types of Bi alone or compounds is o, oo when converted to a single substance
t ~ 0.04%, 1 of titanium oxide calculated as TiO2
The total amount of seeds or two or more types is 1 to 10 yen, plus 5IO2
filled with a slag-forming material containing a total of 1 to 10 parts of one or more crushed sand or silicate compounds, and a filler powder consisting of a metal powder of 45 cm or less based on the weight of the wire. Stainless steel flux-cored wire for gas-shielded arc welding.

以下に本発明について詳細に説明する。The present invention will be explained in detail below.

まず、本発明にいうフラックススジワイヤとは、第1図
にその一例を示すような態様のワイヤ断面をもつワイヤ
をさすものであ夛、ステンレス鋼または軟鋼を管状に成
形した外皮1の内部に充填物粉末2を充填したものであ
る。なお、外皮の形状は第1図に示す態様以外の穐々の
形状とすることは本発明の趣旨を損うものではない。
First of all, the flux wire wire as used in the present invention refers to a wire having a wire cross section as shown in FIG. It is filled with filler powder 2. It should be noted that the purpose of the present invention will not be impaired if the shape of the outer skin is a cylindrical shape other than that shown in FIG.

次にワイヤに充填されるスラグ形成物の成分範囲につい
て述べると、Sはスラグのはく離性およびビード形状と
外観を極めて良くする。即ち表面活性度が非常に大きく
、溶融金属および溶融スラグの界面張力を低下させ、こ
のことによシピード形状をフラットにし、ビード止端部
のなじみを良くする。さらにビード表面とそれに接触す
るスラグ表面をなめらかにするためビード外観も美しい
ものとなる。Jまたビード表面に接触するスラグ面近傍
のスラグ間の結合力を大きくすると同時に溶接金属とス
ラグ間の結合力を小さくすることによシ前記ビード表面
および止端部がなめらかになることと相まってスラグの
はく離が良好になる。しかし0.001%未満では上記
効果は認められず、0.1チを超えると溶接金属の高温
割れ感受性が大きくなるので、本発明ではSの単体ある
いは化合物の1種または2種以上の合計を単体に換算し
て0.001〜0.1優に規定した。特にBiと同時に
添加すると両方の相乗効果によりスラグのはく離性が顕
著に良くなる。
Next, regarding the range of ingredients in the slag formed into the wire, S improves the releasability of the slag and the bead shape and appearance. That is, it has a very high surface activity and lowers the interfacial tension between the molten metal and molten slag, thereby making the sipeed shape flat and improving the conformability of the bead toe. Furthermore, since the bead surface and the slag surface in contact with it are made smooth, the bead appearance becomes beautiful. In addition, by increasing the bonding force between the slags near the slag surface that contacts the bead surface and at the same time reducing the bonding force between the weld metal and the slag, the bead surface and toe become smooth, and the slag The peeling becomes better. However, if it is less than 0.001%, the above effect will not be observed, and if it exceeds 0.1%, the hot cracking susceptibility of the weld metal will increase. It was defined as 0.001 to well 0.1 in terms of a single substance. In particular, when Bi is added at the same time, the synergistic effect of both improves the slag releasability significantly.

ここでSの化合物とは、硫化亜鉛、硫化鉛、硫化鉄、硫
化鋼、硫化バリウム、硫化カルシウム、硫化マンガン等
の硫化物、硫化アルミニウム、硫酸カルシウム、硫酸バ
リウム、硫酸鉄、硫酸鉛等の硫酸塩を指す。
Here, the compound S refers to sulfides such as zinc sulfide, lead sulfide, iron sulfide, sulfide steel, barium sulfide, calcium sulfide, manganese sulfide, etc., sulfuric acid such as aluminum sulfide, calcium sulfate, barium sulfate, iron sulfate, lead sulfate, etc. Refers to salt.

次にBiは、これを添加すると溶融スラグの融点が低下
し、流動性も良くなり界面張力が低下し、スラグのはく
離性が著るしく良好となるが、0.001チ未満では上
記効果は認められず、0.04%を超えると溶接金属の
高温割れ感受性が増大するとともにビードがなめらかに
形成されない。
Next, when Bi is added, the melting point of the molten slag is lowered, the fluidity is improved, the interfacial tension is lowered, and the releasability of the slag is significantly improved, but if it is less than 0.001 inch, the above effects are not If it exceeds 0.04%, the hot cracking susceptibility of the weld metal increases and beads are not formed smoothly.

なお、ココでBiミノ合物とはB I 205 、B 
l (0H)3、B i F 5、BiCl3、B 1
B r 5、B115 ’7にどを指す。
In addition, the Bi mino compound here is B I 205 , B
l (0H)3, B i F 5, BiCl3, B 1
B r 5, B115 '7.

チタン酸化物は溶接金属を均一に被包し、しがも追従性
の良好なスラグ形成し、ビード形状全良好にするが、1
チ未満ではその効果が発揮されず、10チを超えるとス
ラグ蓋が多くなりすきて開先内でスラグが先行し、スラ
グ巻込みなどの欠陥を生じやすく、またスラグが固くな
り、開先内でのはく離性をかえって損うので1〜10%
に制限する。なお、本究明でいうチタン酸化物とはルチ
ール、イルミナイト、チタン白、チタンスラグ、チタン
酸カリ、等を指し、単独または複合で中いる。
Titanium oxide uniformly covers the weld metal, forms a slag with good followability, and improves the overall bead shape, but 1
If the diameter is less than 10mm, the effect will not be exhibited, and if the diameter exceeds 10mm, the slag cover will increase and the slag will lead in the groove, causing defects such as slag entrainment. 1 to 10% because it will actually impair the releasability of
limited to. Incidentally, the titanium oxide in the present study refers to rutile, illuminite, titanium white, titanium slag, potassium titanate, etc., and may be used singly or in combination.

珪砂あるいは硅酸塩化合物は被包性のよいスラグを形成
するとともに、集中性が良好で、ス・ぐ。
Silica sand or silicate compounds form a slag with good encapsulation properties, and have good concentration and slag.

夕の発生が少なく、アーク状態が安定して得られる。し
かし佳砂、珪酸塩化合物およびチタン酸化物のみにより
形成されるスラグでは、はく離の点で問題があり、前述
のSおよびBi’z適量添加することにより、スラグ被
包性、追従性、スノクツタ。
There is little occurrence of dark spots, and a stable arc condition can be obtained. However, a slag formed only from fine sand, silicate compounds, and titanium oxide has problems in terms of flaking, and by adding appropriate amounts of the aforementioned S and Bi'z, the slag can improve its encapsulation, followability, and slag.

了−り状態を損わずにスラグのはく離性を格段に向上さ
せることができるものである。
This makes it possible to significantly improve the slag releasability without impairing the finish.

珪砂あるいは硅酸塩化合物の添加前が1%未満ではその
効果が不十分であり、10チを超えるとスラグか固くな
るとと本に、焼付きを生じ、かえってはく離性を損うの
で、1〜10%に制限する。
If the amount before addition of silica sand or silicate compound is less than 1%, the effect will be insufficient, and if it exceeds 10%, the slag will become hard and will cause sticking to the book, which will actually impair the releasability. Limit to 10%.

なお、ここでいう硅酸塩化合物とは、カリ長石。The silicate compound referred to here is potassium feldspar.

マイカ、タルク、カオリン、硅酸カリ、uyソーダ、珪
酸リチウム等の硅酸塩化合物をS+024算したものを
指し、単独または複合で用いる。スラグ形成物以外に、
溶接金属の成分調整のため、Cr・Nt + Mn +
 Nb r Mo l Cuなど、さらに脱酸剤1とし
て、Sl、At、Tiなどの金属粉末を充填する。
It refers to silicate compounds such as mica, talc, kaolin, potassium silicate, uy soda, and lithium silicate calculated by S+024, and is used alone or in combination. In addition to slag formations,
To adjust the composition of weld metal, Cr・Nt + Mn +
Nbr Mo I Cu, etc., and metal powder such as Sl, At, Ti, etc. are filled as a deoxidizing agent 1.

本発明によるステンレス紳1フランクス入りワイヤの溶
着金属成分は、AVi/SA 5.22−80に規定さ
れるステンレス鋼フラックス入りワイヤの浴着金属と同
等の化学成分全含有するものであり、外皮に軟虜を用い
た場合でも成分調整に心安な金属粉末はワイヤ重量に対
し45チ以下充填すれば充分である。したがって本発明
で金属粉末を45%以下に規定した。
The welding metal component of the stainless steel flux-cored wire according to the present invention contains all the chemical components equivalent to the bath-depositing metal of the stainless steel flux-cored wire specified in AVi/SA 5.22-80, and is Even when a soft prisoner is used, it is sufficient to fill the metal powder in an amount of 45 inches or less relative to the weight of the wire, which is safe for component adjustment. Therefore, in the present invention, the metal powder content is specified to be 45% or less.

一外皮は、ステンレスjまたは軟鋼であるが、ステンレ
ス鋼の場合、オーステナイト系、万一ステナイト・フェ
ライト糸、またはフェライト系ステンレス鋼を用いるが
その成分例を示すと、オーステナイト系ステンレス@u
、Cr16〜26チ、Ni3.5〜22チを主要成分と
し、さらにMo 1.2〜6チ、Cu 1〜2.5%、
NO,30%以下、NbO,15%以下または10xC
係以上、’rt5xcチ以上をそnぞれ単独に含有1且
っC0,15%以下、Si5%以下、Mn 10%以下
、Po、040%以下、So、030%以下を含有する
ものである。
The outer skin is made of stainless steel or mild steel, but in the case of stainless steel, austenitic, stenite-ferrite thread, or ferritic stainless steel is used.
, 16-26% Cr, 3.5-22% Ni, furthermore 1.2-6% Mo, 1-2.5% Cu,
NO, 30% or less, NbO, 15% or less or 10xC
Contains 0.1% or less, 5% or less of Si, 10% or less of Mn, 0.040% or less of Po, and 0.30% or less of So. .

オーステナイト・フェライト系ステンレス鋼は、N13
〜6%、Cr23〜28%、Mo 1〜3 %を主要成
分とし、且っC0,08%以下、St 1%以下、Mn
1、5%以下、Po、04i以下、so、030%以下
を含有するものである。
Austenitic ferritic stainless steel is N13
-6%, Cr23-28%, Mo 1-3% as main components, CO 0.08% or less, St 1% or less, Mn
It contains 1.5% or less, Po, 04i or less, and SO, 030% or less.

フェライト系は、Cr11.5〜27.5 %を主要成
分とし、さらにMo 0.75〜2.5%、Ato、1
0〜0、30 %、T i+ Nb + Z r又はそ
れらの組合せで8×(C係×N%)〜O,SO係を単独
または複数を含有し、且つC0,12%以下、Si 1
 %以下、Mn 1%以下、Po、040%以下、S 
O,0”30%以下、NO,025%以下を含有するも
のである。
The ferrite type has 11.5 to 27.5% of Cr as a main component, and further contains 0.75 to 2.5% of Mo, Ato, 1
0 to 0,30%, Ti+Nb+Zr or a combination thereof, containing 8×(C factor×N%) to O, SO factor alone or in combination, and C0,12% or less, Si 1
% or less, Mn 1% or less, Po, 040% or less, S
It contains 30% or less of O,0'' and 25% or less of NO,0.

15+m、肉厚0.3〜2 Nn、帯−を用いて外皮を
形成する場合は、成形寸法3〜4甜、肉厚0.5〜08
m+、幅9.5〜12.5閣のものを用いるのが望まし
い。
15+m, wall thickness 0.3-2 Nn, when forming the outer skin using a band, the molding size is 3-4 m, wall thickness 0.5-08
It is desirable to use one with a width of 9.5 to 12.5 mm.

ここで本発明のステンレス鋼フラ、クス入りワイヤの製
造手段の一例について言及すると、たとえばステンレス
鋼または軟鋼の外皮と充填物粉末を準備し、外皮の内部
に充填物粉末を元填し、外皮がCr−Ni系ステンレス
鋼の場合、8oo〜1150℃、Cr系ステンレス鋼の
場合は780〜85+1℃、そして軟鋼の場合は600
〜7oo℃で中間熱処理を1回以上施して所定のワイヤ
径に伸線したのち、必要にょシ1oo〜450℃で30
分以上乾燥するものである。
Here, referring to an example of the means for manufacturing the stainless steel wire or wire-cored wire of the present invention, for example, a stainless steel or mild steel outer shell and a filler powder are prepared, the filler powder is initially filled inside the outer shell, and the outer shell is 8oo~1150℃ for Cr-Ni stainless steel, 780~85+1℃ for Cr stainless steel, and 600℃ for mild steel.
After performing intermediate heat treatment at ~70°C one or more times and drawing the wire to a predetermined diameter,
It should dry for more than a minute.

以下に本発明の効果を実施し11にょシさらに具体的に
述べる。
The effects of the present invention will be described in more detail below.

実施例 1111111 第1表に外皮とするステンレス鋼および軟鋼の化学成分
を示す。なお、外皮の形状および寸法は、フラックス入
りワイヤ記号扁1〜20ば、肉厚07哩、幅11咽の帯
゛−を用い、フラックス入りワイヤ肥号應21 !4、
外径13+l1llφ、肉厚1.42mmの・ぐイブを
用い、フラックス入りワイヤ記号扁22は外径14咽φ
、肉厚1喘のノやイブを用いた。
Example 1111111 Table 1 shows the chemical components of the stainless steel and mild steel used as the outer skin. The shape and dimensions of the outer skin are as follows: The flux-cored wire symbol is 1 to 20 mm, the wall thickness is 07 mm, and the width is 11 mm. 4,
Using a wire with an outer diameter of 13+l1llφ and a wall thickness of 1.42 mm, the flux-cored wire symbol 22 has an outer diameter of 14 mm.
, Noya Eve with a thickness of 1 mm was used.

第2表7こ外皮と充填物粉末の組合せによるフラックス
入りワイヤの組成を示す。
Table 2 shows the composition of the flux-cored wire based on the combination of the outer skin and the filler powder.

第3表に母材の化学成分を示す。板厚はそれぞれ12x
と30IIW+である。
Table 3 shows the chemical composition of the base material. Each plate thickness is 12x
and 30IIW+.

第4表に第2表のフラックス入りワイヤと第3表の母材
を用いて行った水平すみ肉溶接作業性試験結果、3”0
9It厚板を使った狭開先内溶接作業注試験結果、落着
金執の化学成分および高温割れ感受性試験結果を示す。
Table 4 shows the results of the horizontal fillet welding workability test conducted using the flux-cored wire shown in Table 2 and the base material shown in Table 3.
The results of a welding test in a narrow gap using a 9It thick plate, the chemical composition of Natsuki Kintsugi, and the results of a hot cracking susceptibility test are shown.

なお、溶接条件は水平隅肉溶接作業性試験、厚叛狭開先
内溶接作業性試験とも同一で、フラックス入りワイヤ記
号A1〜12はワイヤ径1.6 maφを用い、溶接電
流260A、溶接電圧28v、溶接速度30 Crn/
min、フラックス入シワイヤ記号屋13〜22はワイ
ヤ径1.2喘φを用い、溶接電流24 OA、溶接電圧
26V、溶接速+ 30 、yn/’min、電源は直
流定電圧、極性は逆極性、/−ルドが゛ズC02、がス
流量20 #/minとし、厚板狭開先内溶接作業性試
験は、第2図に示す開先を溶接して、試験した。
The welding conditions were the same for the horizontal fillet welding workability test and the thick and narrow groove welding workability test, with flux-cored wire symbols A1 to 12 using a wire diameter of 1.6 maφ, a welding current of 260A, and a welding voltage. 28v, welding speed 30 Crn/
min, flux-cored shear wires 13 to 22 use wire diameter 1.2mm, welding current 24 OA, welding voltage 26V, welding speed +30, yn/'min, power source is DC constant voltage, polarity is reverse polarity The welding workability test in a narrow gap in a thick plate was conducted by welding the groove shown in FIG. 2 with a gas flow rate of 20 #/min and a gas flow rate of 20 #/min.

第2図に2いて開先角度θ=20・W、開先底部の形状
Rは半径2噺で、ルートフェースfば2萌、この時のル
ートギャッゾは密着と1.た。bは銅当金で初層の裏ピ
ードを良好に形成させるために用いた。
In Fig. 2, the groove angle θ=20·W, the shape R of the groove bottom is a radius of 2 degrees, the root face is f=2 degrees, and the root groove at this time is in close contact and 1 degrees. Ta. b is a copper dopant and was used to form a good back peak of the first layer.

溶着金属の化学成分は、第2図の開先を溶接(7たのち
、母材を混入しない位置の溶接部より試料を採取して分
析を行った。
The chemical composition of the deposited metal was analyzed by taking a sample from the welded part at a position where the base metal was not mixed after welding the groove shown in Figure 2 (7).

高温割れ感受性試験は、第2図の開先の初層を溶接後、
染色浸透探傷試験を実施して割れの有無を調査した。
The hot cracking susceptibility test was conducted after welding the first layer of the groove shown in Figure 2.
A dye penetrant test was conducted to investigate the presence or absence of cracks.

脚注 1)硫化鉄(836%)を7ラツクス入りワイヤ記号屋
1,2.3.4,6,7,9,10,17゜18および
22に用いた。
Footnote 1) Iron sulfide (836%) was used in 7 lux wire symbols 1, 2, 3, 4, 6, 7, 9, 10, 17° 18 and 22.

硫化カルシウム(844m)をフラックス入りワイヤ記
号A5.8および19に用いた。
Calcium sulfide (844m) was used in flux-cored wire numbers A5.8 and 19.

硫化亜鉛(832%)をフラックス入りワイヤ記号A 
11 、13および15に用いた。
Zinc sulfide (832%) flux-cored wire symbol A
11, 13 and 15.

硫化バリウム(819%)をフラックス入りワイヤ記号
A12および14に用いた。
Barium sulfide (819%) was used for flux-cored wire symbols A12 and 14.

硫酸カルシウム(823%)をフラックス入りワイヤ記
号A 20に用いた。
Calcium sulfate (823%) was used in flux-cored wire code A 20.

硫酸バリウム(814%)を7ラツクス入りワイヤ記号
A21に用いた・ 2)  BizOs (Bt 90%)をフラックス入
りワイヤ記号AI、2.3,4,5,6,11.13゜
14.15,16.17および22に用いた。
Barium sulfate (814%) was used for 7 lux-cored wire symbol A21. 2) BizOs (Bt 90%) was used for flux-cored wire symbol AI, 2.3, 4, 5, 6, 11.13° 14.15, 16.17 and 22.

Bi2(OH)3 (Bi 89チ)をフラックス入り
ワイヤ記号A 7 、8.9110 、12.18 、
19 。
Bi2(OH)3 (Bi 89chi) with flux-cored wire symbol A 7 , 8.9110 , 12.18 ,
19.

20および21に用いた。20 and 21.

3)ルチールCTlO296’4 ) ’にフラックス
入りワイヤ記号1,2.3.4,11.12.13゜1
9.20.21および22に用いた。
3) Rutile CTlO296'4) 'Flux-cored wire symbol 1, 2.3.4, 11.12.13゜1
Used on 9.20.21 and 22.

チタン白(TiO□98%)をフラックス入りワイヤ記
号A5,6およびl0VC用いた。
Titanium white (TiO□98%) was used with flux-cored wires symbols A5, 6 and 10VC.

チタン酸カリ(TlO271%)をフラックス人9ワイ
ヤ記号A8,9.14および15に用いた。
Potassium titanate (TlO2 71%) was used in Fluxman 9 wire symbols A8, 9.14 and 15.

イルばナイト(TlO271%)tl−7ラツクス入り
ワイヤ記号47.16.17および18に用いた。
Ilbanite (TlO2 71%) tl-7 lux-cored wires were used for wires code 47, 16, 17 and 18.

4)珪砂(510297チ)をフラックス入りワイヤ記
号A1.2,3.6,7.11.13,16゜18.2
0および22に用いた。
4) Silica sand (510297chi) with flux-cored wire symbol A1.2, 3.6, 7.11.13, 16°18.2
0 and 22.

カリ長石(5iO264To ) kフラックス入シワ
イヤ記号A4,8.Bよび10に用いた。
Potassium feldspar (5iO264To) k flux-cored shewire symbol A4,8. It was used for B and 10.

マイカ(S 10247 ’4 )をフラックス入シワ
イヤ記号A5 、14および15に用いた。
Mica (S 10247'4) was used in flux-cored shear symbols A5, 14 and 15.

タルク(510225fp )をフラックス人シワイヤ
記号A9,17および19に用いた。
Talc (510,225 fp) was used in flux man shewire symbols A9, 17 and 19.

カオリン(SiO□81チ)を7ラツクス入りワイヤ記
号A 12および21に用いた。
Kaolin (SiO□81ch) was used for 7 lux cored wires symbols A 12 and 21.

硅酸カリ(510265%)を7ラノクス入りワイヤ記
号逼21に用いた。
Potassium silicate (510265%) was used for 7 lanox-filled wire symbol 〼21.

硅酸ソーダ(810270% ) kフラックス人りワ
イヤ記号屋22に用いた。
Sodium silicate (810270%) Used for k-flux wire symbol shop 22.

なお、フラックス人シワイヤ記号A21については、ワ
イヤ重量に対し5IO2換鼻値8%のうち、5%をカオ
リン、3%を硅酸カリにて添加した。
In addition, regarding the flux human shear wire symbol A21, 5% of the 5IO2 nasal exchange value of 8% relative to the wire weight was added as kaolin and 3% as potassium silicate.

また、フラックス入クワイヤ記号A22については、5
IO2換:jL値8tIIのうち、5%を珪砂、3%を
硅酸ソーダにて添加した。
In addition, for flux-cored choir symbol A22, 5
IO2 conversion: Of the jL value of 8tII, 5% was added as silica sand and 3% as sodium silicate.

本発明のフラックス入りワイヤ記号A1,2゜3.8.
lO,13,14,17,18,19゜20.21およ
び22は水平すみ肉溶接作業性試隙、厚板狭開先的溶接
作業性試験、高温割れ感受性試験のすべての試験結果に
おいて良好な結果が得られた。その中でA18はステン
レス鋼ト軟鋼の異材継手溶接の例であるが、割れもみら
れず良好であった。
Flux-cored wire symbol A1,2°3.8 of the present invention.
1O, 13, 14, 17, 18, 19°20.21 and 22 had good results in all test results of horizontal fillet welding workability test, thick plate narrow gap welding workability test, and hot cracking susceptibility test. The results were obtained. Among them, A18 is an example of dissimilar metal joint welding of stainless steel and mild steel, and it was in good condition with no cracks observed.

比較例として示したA4はS換算1@合計が0゜1チを
超え、A7はBi換算値合計が0,00セ超え、屋5ば
8i換算値合計で0.0014未満、煮6はS換算値合
計で0.001チ未満であり、A9はTiO2換算値合
計が10係を超え、AllはSiO2換算値合計で10
%を超え、篇12はT iO2換算値合計が1チ未満、
A15は810□換算値合計が1%未満であシ、いずれ
も第4表に示すように、溶接作業性が不良であった。A
16は充填物粉末中にSを添加しない例で、ビード形状
か劣るとともに高温割れがみられた。
A4 shown as a comparative example has an S conversion value of 1@total exceeding 0°1, A7 has a Bi conversion value total of over 0.00cm, a 5 and 8i conversion value total of less than 0.0014, and Boiled 6 has an S conversion value of over 0.00cm. The total converted value is less than 0.001 cm, A9 has a total TiO2 converted value of more than 10, and All has a total SiO2 converted value of 10.
%, Section 12 has a total TiO2 conversion value of less than 1 Ti,
For A15, the total 810□ conversion value was less than 1%, and as shown in Table 4, welding workability was poor in both cases. A
No. 16 is an example in which S was not added to the filler powder, and the bead shape was poor and hot cracking was observed.

以上説明したように本発明におけるフラックス入9ワイ
ヤは充填物粉末中に適量のSに加えて適量のBiを添加
し、これらの元素の添加量の数値限定により両方の相乗
効果により鋼穐、板厚、開先形状の如何にかかわらず溶
接作業性、特にスラグのはく離性がすぐれ、しかも健全
な溶接部が得られるものでるる。
As explained above, the flux-cored 9 wire of the present invention is made by adding an appropriate amount of Bi in addition to an appropriate amount of S to the filler powder, and by limiting the amount of these elements added, the synergistic effect of both can be used to form steel eaves and plates. Regardless of the thickness or groove shape, welding workability, especially slag removability, is excellent, and a sound welded part can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、フラックス入りワイヤの断面を示す図、第2
図は、厚板挾開先内溶接作業性試験用開先形状を示す図
である。 ■・・・外皮、2・・・充填物、θ・・・開先角5度、
R・・・開先底部の半径、f・・・ルート−フェース、
b・・・銅裏当金。 特許出願人 新日本製鐵株式1社 ・、−IS− 代 理 人 大 関 和 夫・−、=2.21・  τ
Figure 1 is a cross-sectional view of a flux-cored wire, Figure 2 is a diagram showing a cross section of a flux-cored wire;
The figure is a diagram showing a groove shape for a welding workability test in a thick plate groove. ■...Outer skin, 2...Filling, θ...Bevel angle 5 degrees,
R...radius of groove bottom, f...root-face,
b...Copper backing money. Patent applicant Nippon Steel Corporation 1 company, -IS- Agent Kazuo Ozeki, -, = 2.21, τ
Bu

Claims (1)

【特許請求の範囲】[Claims] ステンレス鋼またけ軟鋼を管状に成形した外皮の内部に
ワイヤ重量に対して、Sの単体あるいは化合物の1種ま
たは2種以上の合計が単体に換算して0001〜0.1
%、Biの単体あるいは化合物の1種または2種以上の
合計が単体に換算して0001〜0.04%、T i 
O2に換算したチタン酸化物の1種または2種以上の合
計が1〜10チ、さらに5i02に換算した硼砂あるい
は硅酸塩化合物の1種または2種以上の合計が1〜1o
 * %を含有するスラグ形成物とワイヤ重量に対して
45チ以下の金属粉末からなる充填物粉末を充填したこ
とを特徴とするガスシールドアーク液接用ステンレス鋼
フラックス入りワイヤ。
Inside the outer shell made of stainless steel and mild steel molded into a tubular shape, the sum of one or more types of S alone or compounds is 0001 to 0.1 in terms of the weight of the wire.
%, the total of one or more types of Bi or compounds is 0001 to 0.04% in terms of Bi, Ti
The total of one or more titanium oxides converted to O2 is 1 to 10 Ti, and the total of one or more borax or silicate compounds converted to 5i02 is 1 to 10.
A stainless steel flux-cored wire for use in gas-shielded arc liquid contact, characterized in that it is filled with a filler powder consisting of a slag forming material containing 1% and a metal powder of 45 cm or less based on the weight of the wire.
JP8727582A 1982-05-25 1982-05-25 Stainless steel flux cored wire for gas shielded arc welding Granted JPS58205696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8727582A JPS58205696A (en) 1982-05-25 1982-05-25 Stainless steel flux cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8727582A JPS58205696A (en) 1982-05-25 1982-05-25 Stainless steel flux cored wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JPS58205696A true JPS58205696A (en) 1983-11-30
JPS6249160B2 JPS6249160B2 (en) 1987-10-17

Family

ID=13910214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8727582A Granted JPS58205696A (en) 1982-05-25 1982-05-25 Stainless steel flux cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JPS58205696A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212192A (en) * 1983-05-16 1984-12-01 Nippon Steel Corp Flux cored stainless steel wire
JPS60191693A (en) * 1984-03-12 1985-09-30 Nippon Steel Corp Flux cored stainless steel wire
EP0508439A2 (en) * 1991-04-12 1992-10-14 The Lincoln Electric Company Electrode and flux for arc welding stainless steel
US8710405B2 (en) 2005-04-15 2014-04-29 Nippon Steel & Sumikin Stainless Steel Corporation Austenitic stainless steel welding wire and welding structure
EP2825348A2 (en) * 2012-03-12 2015-01-21 Hobart Brothers Company Systems and methods for welding electrodes
KR20180018822A (en) * 2015-10-20 2018-02-21 선양 포춘 프리시전 이큅먼트 컴퍼니., 리미티드. Welding temperature field control system and method
CN111408719A (en) * 2020-04-07 2020-07-14 江苏大学 Material preparation method for preparing ternary alloy powder core wire material with specific filling rate by circular tube method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564393A (en) * 1979-06-22 1981-01-17 Kobe Steel Ltd Composite wire for stainless steel welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564393A (en) * 1979-06-22 1981-01-17 Kobe Steel Ltd Composite wire for stainless steel welding

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212192A (en) * 1983-05-16 1984-12-01 Nippon Steel Corp Flux cored stainless steel wire
JPS60191693A (en) * 1984-03-12 1985-09-30 Nippon Steel Corp Flux cored stainless steel wire
EP0508439A2 (en) * 1991-04-12 1992-10-14 The Lincoln Electric Company Electrode and flux for arc welding stainless steel
AU643886B2 (en) * 1991-04-12 1993-11-25 Lincoln Electric Company, The Electrode and flux for ARC welding stainless steel
EP0508439A3 (en) * 1991-04-12 1995-09-27 Lincoln Electric Co Electrode and flux for arc welding stainless steel
US8710405B2 (en) 2005-04-15 2014-04-29 Nippon Steel & Sumikin Stainless Steel Corporation Austenitic stainless steel welding wire and welding structure
EP2825348A2 (en) * 2012-03-12 2015-01-21 Hobart Brothers Company Systems and methods for welding electrodes
US9950394B2 (en) 2012-03-12 2018-04-24 Hobart Brothers Company Systems and methods for welding electrodes
KR20180018822A (en) * 2015-10-20 2018-02-21 선양 포춘 프리시전 이큅먼트 컴퍼니., 리미티드. Welding temperature field control system and method
CN111408719A (en) * 2020-04-07 2020-07-14 江苏大学 Material preparation method for preparing ternary alloy powder core wire material with specific filling rate by circular tube method
CN111408719B (en) * 2020-04-07 2021-12-21 江苏大学 Material preparation method for preparing ternary alloy powder core wire material with specific filling rate by circular tube method

Also Published As

Publication number Publication date
JPS6249160B2 (en) 1987-10-17

Similar Documents

Publication Publication Date Title
CN108480875B (en) Welding wire powder, flux-cored wire, preparation and application
JPS58205696A (en) Stainless steel flux cored wire for gas shielded arc welding
JP3787104B2 (en) Flux-cored wire for gas shielded arc welding
JPS5913955B2 (en) Composite wire for stainless steel welding
JPS60191693A (en) Flux cored stainless steel wire
JPS59212192A (en) Flux cored stainless steel wire
JP2675894B2 (en) Flux-cored wire for welding high strength austenitic stainless steel
JP2592637B2 (en) Flux-cored wire for austenitic stainless steel welding
JP3589917B2 (en) Flux-cored wire for duplex stainless steel welding
JPS59127995A (en) Composite wire for gas shielded arc welding
JPH0159079B2 (en)
JPS6234697A (en) Flux cored wide for welding
JPH0518679B2 (en)
JPS63220996A (en) Filler metal for tig welding
JPH0545360B2 (en)
JPS5992195A (en) Ni-cr base covered arc welding rod
JP2021115596A (en) Flux cored wire for welding galvanized steel sheet
JPH03264194A (en) Flux cored wire for welding high corrosion resistance stainless steel
JPH0122080B2 (en)
JPH01150497A (en) Low hydrogen covered electrode for fillet welding
JPH03285793A (en) Low hydrogen type coated arc welding electrode
JPS63199093A (en) Arc welding electrode coated on stainless core wire
JPH09150295A (en) Wire containing flux for welding stainless steel
JP4040765B2 (en) Flux-cored wire for gas shielded arc welding
JP3162611B2 (en) Stainless steel flux cored wire