JPH0335033B2 - - Google Patents

Info

Publication number
JPH0335033B2
JPH0335033B2 JP20111882A JP20111882A JPH0335033B2 JP H0335033 B2 JPH0335033 B2 JP H0335033B2 JP 20111882 A JP20111882 A JP 20111882A JP 20111882 A JP20111882 A JP 20111882A JP H0335033 B2 JPH0335033 B2 JP H0335033B2
Authority
JP
Japan
Prior art keywords
less
total
core wire
welding
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20111882A
Other languages
Japanese (ja)
Other versions
JPS5992195A (en
Inventor
Rokuro Fujimoto
Satoyuki Myake
Takahiro Ichimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20111882A priority Critical patent/JPS5992195A/en
Publication of JPS5992195A publication Critical patent/JPS5992195A/en
Publication of JPH0335033B2 publication Critical patent/JPH0335033B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/365Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、低炭素Ni−Cr基被覆アーク溶接棒、
特に全姿勢での溶接作業性が優れ、心線材に比べ
て溶接金属の炭素増加量の少ない低炭素Ni−Cr
基被覆アーク溶接棒の改良に関するものである。 近年における化学工業及び原子力工業等の技術
的な発展は目覚しいものがあり、技術革新に伴な
い諸設備は高温化、高圧化、環境の激化等の条件
のもとで大型化してきている。それに伴ない、こ
れら設備用の材料として、耐食性、耐熱性が優れ
熱膨張係数が比較的小さい等の特長を持つNi−
Cr基のいわゆるインコネル合金板あるいはイン
コネル系溶接材料による肉盛材が多用される傾向
にある。インコネル合金同志の接合や肉盛に用い
られる溶接材料の中でも、被覆アーク溶接棒は現
地組立作業での全姿勢溶接やパイプの全姿勢容
接、補修容接等の増加に伴ない需要増の傾向にあ
り、その品質特性と溶接施工面の点で向上が強く
望まれている。 インコネル系の被覆アーク溶接棒においては、
TiO2、CaCO3を主成分とするいわゆるライムチ
タニヤ系被覆と、CaCO3、CaF2を主成分とする
いわゆるライム系被覆の二つが最も一般的であ
る。 ライム系被覆は一般に全姿勢での溶接作業性が
良好であるが、使用している心線材に対して溶接
金属中の炭素増加量が多く粒界腐食や応力腐食割
れ等の感受性が高いことが知られている。 一方ライムチタニヤ系被覆は下向姿勢でのビー
ド外観の美しさに特長があるものの立向や上向姿
勢での溶接作業性はやや劣るという問題点があ
る。また、心線材に対して溶接金属中の炭素増加
量はライム系被覆に比べ少ないものの、インコネ
ル系被覆アーク溶接棒では通常ブローホール等の
発生のない健全な溶接を可能とすることを目的と
して心線又は被覆剤中にTi、Al、Si等の強脱酸
元素が含有されているため、ステンレス鋼被覆ア
ーク溶接棒に比べると炭素増加量は多い。そのた
め溶接部の耐粒界腐食性や耐応力腐食割れ性が十
分ではないという問題点がある。 これらの問題を解決すべく種々検討した結果、
溶接部の粒界腐食や応力腐食割れの主な原因は粒
界に析出する炭化物であり、溶接金属中の炭素量
を低くすることにより、溶接部の耐粒界腐食、耐
応力腐食割れ性が著しく改善されるという知見を
得た。 本発明者らはこの知見をもとにして、心線材に
対して溶接金属中の炭素増加量が少く、全姿勢で
の溶接作業性が良好でかつ溶接欠陥のない健全な
溶接が可能となるインコネル系被覆アーク溶接棒
を得るため多大な研究実験を行つた結果、ライム
チタニヤ系被覆において微細なMn酸化物を配合
することにより満足できる効果が得られることが
明らかとなつた。 即ち、単にMn酸化物を配合しても前記Ti、
Al、Si等の強脱酸元素の存在により炭素増加の
抑制効果はほとんどないが、配合するMn酸化物
を微細なものにすることによりこれら強脱酸元素
の酸化が適度になされCaCO3の分解により発生
するシールドガスとしてのCO2の還元反応が抑制
され、さらに一部CO2の分解によつて生ずる炭素
の酸化が促進されるため、溶接金属中に入る炭素
量がきわめて少なくなるものである。また同時
に、微細なMn酸化物の配合により溶接時のスラ
グの流動性が一層良好となり、スパツタの発生が
きわめて少なくなるとともに保護筒の形成が安定
かつ強固になるため、全姿勢特に立向や上向姿勢
での溶接作業性が良好となり平らで健全な溶接ビ
ードが得られるものである。 本発明は以上の知見に基づいてなされたもので
ありその要旨とするところは、(1);心線が60%以
上のNi、10〜25%のCrを含有し、かつ心線およ
び/又はその被覆剤中にAl、Ti、Siの1種又は
2種以上の合計が心線重量比で0.3〜5.0%含有
し、被覆剤全重量に対して粒度を100ミクロン以
下に制御したマンガン酸化物をMnO2に換算して
4〜25%、TiO2に換算したチタン化合物7〜30
%、金属炭酸塩7〜25%、金属弗化物8〜25%、
SiO2に換算した硅砂及び硅酸塩化合物の1種又
は2種以上の合計5〜15%、金属粉末40%以下か
らなる被覆剤を被覆したことを特徴とするNi−
Cr基被覆アーク溶接棒および(2);前記(1)にさら
に酸化鉄、酸化クロム、酸化ニツケル及び酸化ジ
ルコンの1種又は2種以上の合計15%以下を配合
してなる被覆剤を被覆したことを特徴とするNi
−Cr基被覆アーク溶接棒にある。 以下、本発明を詳細に説明する。 まず、本発明におけるNi−Cr基心線について
述べる。 Niは耐食性及びオーステナイト組織の安定化
のための基本成分であり60%以上必要である。 Crは耐食性及び強度を維持するための基本成
分であり、10%未満では耐食性が劣化し、25%を
超えてもそれほど効果はないので10〜23%とす
る。 またその他の合金成分として心線又は被覆剤中
に心線重量比でMo10%以下、Mn10%以下、
Nb4%以下、W4%以下の1種又は2種以上を適
宜添加してもNi−Cr基の特性を損なわない。 次に、脱酸剤としてのAl、Ti、Siは心線へ添
加しても被覆剤へ添加しても大きな違いはなく、
心線及び/又は被覆剤中に1種又は2種以上の合
計が心線重量比で0.3%未満では脱酸の効果はな
く、5.0%を超えると高温割れ感受性が高くなる
ので0.3〜5.0%とする。 次に被覆剤成分について述べる。 粒度を100ミクロン以下に調整したマンガン酸
化物を配合する。このような粒度のマンガン酸化
物の配合は本発明の重要な構成要件である。即ち
微細なマンガン酸化物の存在により、溶接時に
Ti、Al、Si等の強脱酸元素の酸化が溶接金属の
健全性を損なわない程度になされ、このことによ
り金属炭酸塩の分解により発生するCO2の還元反
応が抑制されると同時に1部CO2の分解によつて
生ずる炭素の酸化も促進されるため、心線に対す
る溶接金属中の炭素増加量は極めて少なくなるも
のである。さらには、溶接作業性上、特にスラグ
の流動性を良くし、スパツタの発生を抑え保護筒
の形成を安定強固にする。しかしその粒度が100
ミクロンを超えると効果がほとんどなくなるので
100ミクロン以下とする。また被覆剤全重量に対
しMnO2に換算して4%未満では効果がなく、25
%を超えるとスラグの剥離性が劣化しスパツタが
増えるので、4〜25%とする。なお、ここで言う
マンガン酸化物とは、二酸化マンガン、マンガン
スラグ、硅酸マンガン等を指す。 チタン化合物はアーク安定剤およびスラグ剤と
して配合するがTiO2に換算して7%未満ではア
ークが不安定となり又スラグの被包性が悪くな
る。30%を超えるとスラグの流動性が悪くなり立
向溶接が困難となる。従つて7〜30%とする。な
お、ここで言うチタン化合物とはルチール、チタ
ン白、チタン酸カリ、イルミナイト、チタンスラ
グ等を指す。 金属炭酸塩の配合は分解生成するCO2ガスによ
つて溶融金属をシールドし、ピツト、ブローホー
ル等の溶接欠陥の発生を防止するガス発生剤とし
て7%以上配合する。しかし25%を超える配合は
炭素増加量が多くなりすぎる。従つて7〜25%と
する。なおここで言う金属炭酸塩とは石灰石、炭
酸バリウム、炭酸マグネシウム、炭酸リチウム等
を指す。 金属弗化物の配合はスラグの流動性を良くしビ
ード形状を平らにするが、8%未満では効果がな
く、25%を超えるとスラグの剥離性が悪くなりか
つスパツタの発生が多くなる。従つて8〜25%と
する。なおここで言う金属弗化物とは螢石、氷晶
石、弗化アルミニウム、弗化マグネシウム、弗化
バリウム、弗化ソーダ等を指す。 硅砂及び硅酸塩化合物は、保護筒の維持強化の
ため及びスラグ剤として配合するがSiO2に換算
して5%未満では効果がなく15%を超えるとスラ
グの剥離性が悪くなる。従つて5〜15%とする。
なお、ここで言う硅酸塩化合物とは硅灰石、カリ
長石、マイカ、タルク、カオリン、硅酸カリ、硅
酸ソーダ等を指す。 金属粉末は使用するNi−Cr基心線の化学成分
によつて目的とする溶着金属成分の組成を満足し
ない場合に、Mo、Fe−Mo、Nb、Fe−Nb、W、
Cr、Fe−Cr、Mn、Fe−Mnなどを合金剤として
配合し溶着金属の耐食性、機械的性質の向上を計
る。 Ni、Cr、Mo、Mn、Nb、Wの大部分を心線に
含有させた場合、溶接の際に酸化消耗する成分を
補なうための合金剤の量は各成分の被覆剤から溶
着金属へ移行する歩留を考慮すると40%以下で十
分であり、従つて前記金属粉末の1種以上の合計
を40%以下とする。 本発明の構成は以上のとおりであるが、さらに
溶接金属中の炭素増加抑制の安定化を目的とする
場合には酸化鉄、酸化クロム、酸化ニツケル及び
酸化ジルコンを配合する。 これらの成分な溶接金属中の炭素増加量を少な
くする効果があるが1種又は2種以上の合計が15
%を超すとスラグの剥離と流動性が劣化する。従
つて、酸化鉄、酸化クロム、酸化ニツケル及び酸
化ジルルコンの1種又は2種以上の合計を被覆剤
全重量に対して15%以下とする。 以上のように本発明は、Ni−Cr基心線に粘度
100ミクロン以下のマンガン酸化物とチタン化合
物、金属炭酸塩、金属弗化物、硅砂及び硅酸塩化
合物の1種又は2種以上及び金属粉末及び必要が
あるときはさらに酸化鉄、酸化クロム、酸化ニツ
ケル及び酸化ジルコンの1種又は2種以上からな
る被覆剤を被覆した溶接棒を用いることにより
Ni−Cr基合金の溶接において溶接金属の炭素増
加量が少なく、しかもアークの発生状態、スラグ
の流動性及び保護筒の形成が良好で、立向溶接を
含む全姿勢での溶接作業性のすぐれた溶接が可能
となつた。 ここで本発明の溶接棒の製造方法の一例につい
て言及すると、Ni−Cr基心線と被覆剤粉末を準
備し、被覆剤粉末と水ガラス(硅酸カリ水溶液+
硅酸ソーダ水溶液)などの適当なバインダーで混
和して心線に被覆して300〜450℃で1時間程度乾
燥焼成する。 以下本発明の実施例について述べる。 実施例 第1表にNi−Cr基心線の化学成分を示す。心
線寸法は直径4.0mm、長さ350mmである。 第2表は上記心線と被覆剤の組合せによる溶接
棒の組成を示す。 第3表はこれら溶接棒の溶着金属の化学成分を
示す。溶接方法はJIS Z3224「ニツケル合金被覆
アーク溶接棒」により、溶接電流は140A直流逆
極性である。 これら溶接棒の溶着金属の心線材の炭素含有量
に対する炭素増加量、外径250mm、肉厚20mmのイ
ンコネル600パイプを用いてパイプを鉛直に固定
(鉛直固定管)した横向姿勢での突合せ溶接とパ
イプを水平に固定(水平固定管)した全姿勢での
突合せ溶接を行つた場合の溶接作業性及び水平固
定管の突合せ溶接部のストライカー粒界腐食試験
の結果を表4に示す。開先は60°V開先、ルート
ギヤツプは6mm、ルートフエイスは1mm、裏当金
は板厚3mmのインコネル600を用いた。溶接条件
は、鉛直固定管では120〜140A(直流逆極性)−14
〜25cm/min、水平固定管では100〜140A(直流
逆極性)−6〜22cm/minである。 これにより、本発明の溶接棒記号No.1、2、
3、6、7、9、10、12、13、15、16、18、20、
21、22、25、26、28及び29は心線材に比べた溶着
金属の炭素量の増加が0.015%未満と少なく、下
向及び立向姿勢での溶接作業性が良好で、かつ耐
粒界腐食性能も優れている。 これに対し、比較例No.4はMnO2換算値が25%
を超えており、No.5はMnO2換算値が4%未満で
あり、No.8はマンガン酸化物の粒度が100ミクロ
ンを超えかつSiO2換算値が15%を超えており、
No.11はTiO2換算値が30%を超えかつ心線と被覆
剤中のAl、Ti、Siの合計が心線重量比で5.0%を
超えており、No.14は金属炭酸塩の合計が25%を超
えており、No.17は金属弗化物の合計が25%を超え
ており、No.19はマンガン酸化物の粒度が100ミク
ロンを超えておりかつ金属弗化物の合計が8%未
満であり、No.23はTiO2換算値が7%未満であり、
No.24はMnO2換算値が4%未満でかつ酸化鉄、酸
化クロム、酸化ニツケル、酸化ジルコンの合計が
15%を超えており、No.30はTiO2換算値が30%を
超えておりかつ金属炭酸塩の合計が25%を超えて
いるので、いずれも第4表に見られるように心線
の炭素量に対して溶着金属の炭素増加量が0.015
%以上増加して耐粒界腐食性能が劣化するか、あ
るいは溶接作業性が劣化する等の問題がある。 以上説明したように、本発明溶接棒は心線材に
比べて溶接金属の炭素増加量が少なくかつ立向溶
接を含めた全姿勢溶接での作業性を良好とするも
のである。
The present invention provides a low carbon Ni-Cr base coated arc welding rod,
Low-carbon Ni-Cr, which has excellent welding workability in all positions and has less carbon increase in the weld metal than core wire.
This invention relates to improvements in base-coated arc welding rods. Technological developments in the chemical industry, nuclear industry, etc. have been remarkable in recent years, and with technological innovation, various equipment has become larger under conditions such as higher temperatures, higher pressures, and harsher environments. Along with this, Ni--, which has features such as excellent corrosion resistance and heat resistance and a relatively small coefficient of thermal expansion, is being used as a material for these equipment.
There is a tendency to use Cr-based so-called Inconel alloy plates or overlay materials made of Inconel-based welding materials. Among welding materials used for joining and overlaying Inconel alloys, demand for coated arc welding rods is increasing due to the increase in all-position welding in on-site assembly work, all-position welding of pipes, repair welding, etc. There is a strong desire for improvement in terms of quality characteristics and welding work. For Inconel coated arc welding rods,
The two most common are a so-called lime-titania-based coating whose main components are TiO 2 and CaCO 3 , and a so-called lime-based coating whose main components are CaCO 3 and CaF 2 . Lime-based coatings generally have good welding workability in all positions, but the amount of carbon in the weld metal increases relative to the core wire used, making it highly susceptible to intergranular corrosion and stress corrosion cracking. Are known. On the other hand, lime titanium coating has the advantage of beautiful bead appearance in the downward position, but has the problem that welding workability in the vertical or upward position is somewhat inferior. In addition, although the amount of carbon increase in the weld metal relative to the core wire is smaller than that with lime-based coatings, inconel-based arc welding rods are usually made with care in order to enable sound welding without the occurrence of blowholes. Because the wire or coating contains strong deoxidizing elements such as Ti, Al, and Si, the amount of carbon increase is greater than that of stainless steel coated arc welding rods. Therefore, there is a problem that the intergranular corrosion resistance and stress corrosion cracking resistance of the welded part are insufficient. As a result of various studies to solve these problems,
The main cause of intergranular corrosion and stress corrosion cracking in welds is carbides that precipitate at grain boundaries, and by lowering the amount of carbon in the weld metal, the intergranular corrosion and stress corrosion cracking resistance of welds can be improved. We found that this was significantly improved. Based on this knowledge, the inventors of the present invention have found that the increase in carbon in the weld metal is small compared to the core wire, and it is possible to perform sound welding with good welding workability in all positions and without welding defects. As a result of extensive research and experimentation to obtain Inconel-based coated arc welding rods, it has become clear that satisfactory effects can be obtained by incorporating fine Mn oxides into lime-titania-based coatings. That is, even if Mn oxide is simply added, the Ti,
The presence of strong deoxidizing elements such as Al and Si has little effect on suppressing carbon increase, but by making the Mn oxide in the mixture fine, these strong deoxidizing elements can be moderately oxidized and decompose CaCO 3 . This suppresses the reduction reaction of CO 2 as a shielding gas generated by the process, and further promotes the oxidation of carbon generated by the decomposition of CO 2 , so the amount of carbon that enters the weld metal becomes extremely small. . At the same time, the fine Mn oxide blend improves the fluidity of the slag during welding, which greatly reduces the occurrence of spatter and makes the formation of the protective tube stable and strong. Welding workability in the facing position is good, and a flat and healthy weld bead can be obtained. The present invention has been made based on the above findings, and the gist thereof is (1); the core wire contains 60% or more Ni and 10 to 25% Cr, and the core wire and/or Manganese oxide containing one or more of Al, Ti, and Si in the total of 0.3 to 5.0% by core weight ratio in the coating material, and controlling the particle size to 100 microns or less based on the total weight of the coating material. 4-25% in terms of MnO2 , titanium compounds in terms of TiO2 7-30%
%, metal carbonates 7-25%, metal fluorides 8-25%,
Ni- characterized by being coated with a coating agent consisting of a total of 5 to 15% of one or more of silica sand and silicate compounds converted to SiO 2 and 40% or less of metal powder.
Cr-base coated arc welding rod and (2); Coated with a coating material comprising (1) and one or more of iron oxide, chromium oxide, nickel oxide, and zirconium oxide in a total of 15% or less. Ni characterized by
-In Cr-based coated arc welding rods. The present invention will be explained in detail below. First, the Ni-Cr base line in the present invention will be described. Ni is a basic component for corrosion resistance and stabilization of the austenite structure, and is required in an amount of 60% or more. Cr is a basic component for maintaining corrosion resistance and strength, and if it is less than 10%, the corrosion resistance will deteriorate, and if it exceeds 25%, it will not be very effective, so it is set at 10 to 23%. In addition, as other alloy components, Mo10% or less, Mn10% or less in the core wire weight ratio,
Even if one or more of Nb 4% or less and W 4% or less are appropriately added, the properties of the Ni-Cr group will not be impaired. Next, there is no big difference whether Al, Ti, or Si as deoxidizing agents are added to the core wire or to the coating material.
If the total content of one or more types in the core wire and/or coating material is less than 0.3% by weight of the core wire, there is no deoxidizing effect, and if it exceeds 5.0%, high temperature cracking susceptibility increases, so 0.3 to 5.0%. shall be. Next, the coating material components will be described. Contains manganese oxide whose particle size is adjusted to 100 microns or less. The incorporation of manganese oxides having such a particle size is an important component of the present invention. In other words, due to the presence of fine manganese oxides,
Strong deoxidizing elements such as Ti, Al, and Si are oxidized to an extent that does not impair the integrity of the weld metal, and this suppresses the reduction reaction of CO 2 generated by the decomposition of metal carbonates and at the same time removes some of the CO 2. Since the oxidation of carbon produced by the decomposition of CO 2 is also promoted, the amount of carbon increase in the weld metal relative to the core wire is extremely small. Furthermore, in terms of welding workability, the fluidity of the slag in particular is improved, the generation of spatter is suppressed, and the formation of the protective tube becomes stable and strong. But the grain size is 100
If it exceeds a micron, the effect will be almost gone.
Must be 100 microns or less. Furthermore, if it is less than 4% in terms of MnO 2 based on the total weight of the coating material, it is ineffective and 25
If it exceeds 4% to 25%, the slag releasability deteriorates and spatter increases. Note that the manganese oxide mentioned here refers to manganese dioxide, manganese slag, manganese silicate, and the like. The titanium compound is blended as an arc stabilizer and a slag agent, but if it is less than 7% in terms of TiO 2 , the arc becomes unstable and the slag encapsulation property deteriorates. If it exceeds 30%, the fluidity of the slag deteriorates, making vertical welding difficult. Therefore, it is set at 7 to 30%. Note that the titanium compound referred to herein refers to rutile, titanium white, potassium titanate, illuminite, titanium slag, and the like. The metal carbonate is mixed in an amount of 7% or more as a gas generating agent to shield the molten metal by CO 2 gas generated by decomposition and prevent welding defects such as pits and blowholes. However, if the content exceeds 25%, the amount of carbon increase will be too large. Therefore, it is set at 7 to 25%. Note that the metal carbonate mentioned here refers to limestone, barium carbonate, magnesium carbonate, lithium carbonate, and the like. Mixing metal fluoride improves the fluidity of the slag and flattens the bead shape, but if it is less than 8%, it is ineffective, and if it exceeds 25%, the slag peelability becomes poor and spatter occurs frequently. Therefore, it is set at 8 to 25%. Note that the metal fluoride mentioned here refers to fluorite, cryolite, aluminum fluoride, magnesium fluoride, barium fluoride, soda fluoride, and the like. Silica sand and silicate compounds are blended to maintain and strengthen the protective cylinder and as a slag agent, but if it is less than 5% in terms of SiO 2 it is ineffective, and if it exceeds 15%, the slag removability deteriorates. Therefore, it is set at 5 to 15%.
Note that the silicate compound referred to herein refers to wollastonite, potassium feldspar, mica, talc, kaolin, potassium silicate, sodium silicate, and the like. If the desired composition of the weld metal component is not satisfied due to the chemical composition of the Ni-Cr base line used, the metal powder may be Mo, Fe-Mo, Nb, Fe-Nb, W,
Cr, Fe-Cr, Mn, Fe-Mn, etc. are mixed as alloying agents to improve the corrosion resistance and mechanical properties of the weld metal. When most of Ni, Cr, Mo, Mn, Nb, and W are contained in the core wire, the amount of alloying agent to compensate for the components that are consumed by oxidation during welding is determined from the coating material of each component to the weld metal. Considering the yield of transition to 40% or less is sufficient, therefore, the total amount of one or more of the metal powders is set to 40% or less. The structure of the present invention is as described above, but iron oxide, chromium oxide, nickel oxide, and zirconium oxide are further added when the purpose is to stabilize the suppression of increase in carbon in the weld metal. These components have the effect of reducing the amount of carbon increase in the weld metal, but the total of one or more of them is 15
%, slag peeling and fluidity deteriorate. Therefore, the total amount of one or more of iron oxide, chromium oxide, nickel oxide, and zirconium oxide is 15% or less based on the total weight of the coating material. As described above, the present invention has a viscosity at the Ni-Cr base line.
One or more of manganese oxides and titanium compounds, metal carbonates, metal fluorides, silica sand, and silicate compounds of 100 microns or less, metal powders, and if necessary, iron oxides, chromium oxides, and nickel oxides. and by using a welding rod coated with a coating consisting of one or more types of zirconium oxide.
When welding Ni-Cr based alloys, the amount of carbon increase in the weld metal is small, and the arc generation conditions, slag fluidity, and protective tube formation are good, and welding workability is excellent in all positions including vertical welding. This made it possible to weld the parts. Here, referring to an example of the method for manufacturing the welding rod of the present invention, a Ni-Cr base line and coating powder are prepared, and the coating powder and water glass (potassium silicate aqueous solution +
The mixture is mixed with a suitable binder such as aqueous sodium silicate solution, coated on a core wire, and dried and fired at 300 to 450°C for about 1 hour. Examples of the present invention will be described below. Examples Table 1 shows the chemical components of the Ni-Cr base line. The core wire dimensions are 4.0 mm in diameter and 350 mm in length. Table 2 shows the composition of welding rods based on the above-mentioned combinations of core wire and coating material. Table 3 shows the chemical composition of the weld metal of these welding rods. The welding method is JIS Z3224 ``nickel alloy coated arc welding rod'', and the welding current is 140A DC reverse polarity. The amount of carbon increase relative to the carbon content of the core wire of the weld metal of these welding rods, butt welding in a horizontal position with the pipe fixed vertically (vertical fixed pipe) using Inconel 600 pipe with an outer diameter of 250 mm and a wall thickness of 20 mm. Table 4 shows the welding workability when butt welding is performed in all positions with the pipe fixed horizontally (horizontal fixed pipe) and the results of the striker intergranular corrosion test of the butt weld of the horizontal fixed pipe. The bevel was a 60° V bevel, the root gap was 6 mm, the root face was 1 mm, and the backing metal was Inconel 600 with a plate thickness of 3 mm. Welding conditions are 120 to 140A (DC reverse polarity) -14 for vertical fixed pipes.
~25cm/min, 100~140A (DC reverse polarity) for horizontal fixed pipes -6~22cm/min. As a result, welding rod symbols No. 1, 2, and
3, 6, 7, 9, 10, 12, 13, 15, 16, 18, 20,
21, 22, 25, 26, 28, and 29 have a small increase in carbon content in the weld metal compared to the core wire, less than 0.015%, and have good welding workability in downward and vertical positions, and have excellent grain boundary resistance. It also has excellent corrosion performance. On the other hand, Comparative Example No. 4 has an MnO 2 equivalent value of 25%.
In No. 5, the MnO 2 equivalent value is less than 4%, and in No. 8, the particle size of manganese oxide exceeds 100 microns and the SiO 2 equivalent value exceeds 15%,
No. 11 has a TiO 2 equivalent value exceeding 30% and the total of Al, Ti, and Si in the core wire and coating material exceeds 5.0% in terms of core weight ratio, and No. 14 has a total of metal carbonates. In No. 17, the total metal fluoride exceeds 25%, and in No. 19, the particle size of manganese oxide exceeds 100 microns and the total metal fluoride exceeds 8%. No. 23 has a TiO 2 equivalent value of less than 7%,
No. 24 has a MnO 2 equivalent value of less than 4% and a total of iron oxide, chromium oxide, nickel oxide, and zircon oxide.
In No. 30, the TiO 2 equivalent value exceeds 30% and the total metal carbonate exceeds 25%, so as shown in Table 4, the core wire is The amount of carbon increase in the weld metal is 0.015 relative to the amount of carbon.
% or more, there are problems such as deterioration of intergranular corrosion resistance or deterioration of welding workability. As explained above, the welding rod of the present invention has a smaller amount of carbon increase in the weld metal than a core wire rod, and has good workability in welding in all positions including vertical welding.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 心線が60%以上のNi、10〜25%のCrを含有
し、かつ心線および/またはその被覆剤中にAl、
Ti、Siの1種又は2種以上の合計が心線重量比
で0.3〜5.0%含有し、被覆剤全重量に対して粒度
100ミクロン以下のマンガン酸化物をMnO2に換
算して4〜25%、TiO2に換算したチタン化合物
7〜30%、金属炭酸塩7〜25%、金属弗化物8〜
25%、SiO2に換算した硅砂、硅酸塩化合物の1
種又は2種以上の合計5〜15%、金属粉末40%以
下からなる被覆剤を被覆したことを特徴とする
Ni−Cr基被覆アーク溶接棒。 2 心線が60%以上のNi、10〜25%のCrを含有
し、かつ心線および/またはその被覆剤中にAl、
Ti、Siの1種又は2種以上の合計が心線重量比
で0.3〜5.0%含有し、被覆剤全重量に対して粒度
100ミクロン以下のマンガン酸化物をMnO2に換
算して4〜25%、酸化鉄、酸化クロム、酸化ニツ
ケル及び酸化ジルコンの1種又は2種以上の合計
15%以下、TiO2に換算したチタン化合物7〜30
%、金属炭酸塩7〜25%、金属弗化物8〜25%、
SiO2に換算した硅砂、硅酸塩化合物の1種又は
2種以上の合計5〜15%、金属粉末40%以下から
なる被覆剤を被覆したことを特徴とするNi−Cr
基被覆アーク溶接棒。
[Scope of Claims] 1. The core wire contains 60% or more of Ni and 10 to 25% of Cr, and the core wire and/or its coating contains Al,
The total content of one or more of Ti and Si is 0.3 to 5.0% by core weight ratio, and the particle size is based on the total weight of the coating material.
Manganese oxides of 100 microns or less in terms of MnO2 4-25%, titanium compounds 7-30% in TiO2 , metal carbonates 7-25%, metal fluorides 8-25%
25%, 1 of silica sand, silicate compounds calculated as SiO 2
It is characterized by being coated with a coating material consisting of a total of 5 to 15% of one or more species and 40% or less of metal powder.
Ni-Cr based arc welding rod. 2 The core wire contains 60% or more Ni and 10 to 25% Cr, and the core wire and/or its coating contains Al,
The total content of one or more of Ti and Si is 0.3 to 5.0% by core weight ratio, and the particle size is based on the total weight of the coating material.
4-25% manganese oxide of 100 microns or less in terms of MnO 2 , the total of one or more of iron oxide, chromium oxide, nickel oxide, and zircon oxide
15% or less, titanium compounds calculated as TiO 2 7-30
%, metal carbonates 7-25%, metal fluorides 8-25%,
Ni-Cr coated with a coating agent consisting of a total of 5 to 15% of one or more types of silica sand and silicate compounds converted to SiO 2 and 40% or less of metal powder.
Base coated arc welding rod.
JP20111882A 1982-11-18 1982-11-18 Ni-cr base covered arc welding rod Granted JPS5992195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20111882A JPS5992195A (en) 1982-11-18 1982-11-18 Ni-cr base covered arc welding rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20111882A JPS5992195A (en) 1982-11-18 1982-11-18 Ni-cr base covered arc welding rod

Publications (2)

Publication Number Publication Date
JPS5992195A JPS5992195A (en) 1984-05-28
JPH0335033B2 true JPH0335033B2 (en) 1991-05-24

Family

ID=16435697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20111882A Granted JPS5992195A (en) 1982-11-18 1982-11-18 Ni-cr base covered arc welding rod

Country Status (1)

Country Link
JP (1) JPS5992195A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2590192B1 (en) * 1985-11-21 1991-08-02 Maybon Guy FLEXIBLE WELDING STICK WITH COATED METAL CORE, METHOD AND DEVICE FOR PRODUCING THE SAME
JP2565831B2 (en) * 1993-01-08 1996-12-18 新日本製鐵株式会社 Flux-cored wire with Ni-based alloy as outer skin
KR100419494B1 (en) * 2001-04-06 2004-02-19 고려용접봉 주식회사 A covered electrode for Ni alloy having high Cr content
KR100611787B1 (en) * 2001-12-28 2006-08-11 현대종합금속 주식회사 Covered electrode for welding fire resistance steel
CN102126095B (en) * 2011-03-22 2013-03-20 上海交通大学 Nickel-based electric welding rod coating for welding nuclear island device, welding rod and preparation method thereof
CN105149812B (en) * 2015-09-29 2017-08-25 山东聚力焊接材料有限公司 alloy welding wire and preparation method thereof

Also Published As

Publication number Publication date
JPS5992195A (en) 1984-05-28

Similar Documents

Publication Publication Date Title
JPS5915756B2 (en) Flux-cored wire for gas shield arc welding
JPS61286089A (en) Gas shielded arc welding method
JP3441821B2 (en) Covered arc welding rod for austenitic stainless steel
JPS5913955B2 (en) Composite wire for stainless steel welding
US3490942A (en) Coated electrode for the welding of alloys with very low carbon content
JPH0335033B2 (en)
JPH02205293A (en) Stainless steel coated electrode for cryogenic service
JPH11347790A (en) Coated electrode for ni group high cr alloy
JPS6268696A (en) Flux cored wire for welding stainless steel
JP2544611B2 (en) Coated arc welding rod for cryogenic steel
JPH06198488A (en) Flux cored wire consisting of ni-base alloy as its sheath
JPH11216593A (en) Low hydrogen system covered arc electrode
JPH03294092A (en) Flux cored wire electrode for gas shielded arc welding
JPH0381094A (en) Flux cored wire for welding stainless steel
JP2711061B2 (en) Stainless steel flux cored wire
JPH0378197B2 (en)
JPS63199093A (en) Arc welding electrode coated on stainless core wire
JPH01138098A (en) Coated electrode for stainless steel
JP3856650B2 (en) Stainless steel coated arc welding rod
JP3505429B2 (en) Flux-cored wire for gas shielded arc welding
JPH04356397A (en) Self-shielded arc welding composite wire
JPH0994694A (en) Flux cored wire for stainless steel
JPH0335034B2 (en)
JPS61182897A (en) Coated arc welding electrode
JPS5847953B2 (en) stainless steel coated arc welding rod