JPS6253235B2 - - Google Patents

Info

Publication number
JPS6253235B2
JPS6253235B2 JP53129930A JP12993078A JPS6253235B2 JP S6253235 B2 JPS6253235 B2 JP S6253235B2 JP 53129930 A JP53129930 A JP 53129930A JP 12993078 A JP12993078 A JP 12993078A JP S6253235 B2 JPS6253235 B2 JP S6253235B2
Authority
JP
Japan
Prior art keywords
waste liquid
pulp
cod
slaked lime
pulp waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53129930A
Other languages
Japanese (ja)
Other versions
JPS5557092A (en
Inventor
Junji Yamada
Mutsumi Takenaka
Kenichiro Yano
Yukiaki Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanzaki Paper Manufacturing Co Ltd
Original Assignee
Kanzaki Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanzaki Paper Manufacturing Co Ltd filed Critical Kanzaki Paper Manufacturing Co Ltd
Priority to JP12993078A priority Critical patent/JPS5557092A/en
Publication of JPS5557092A publication Critical patent/JPS5557092A/en
Publication of JPS6253235B2 publication Critical patent/JPS6253235B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、パルプ排液の処理法に関し、特に消
石灰とアニオン性高分子凝集剤を用いる凝集沈殿
処理法のより改良法を提供するものである。 近年、環境行政の強化に伴い、各種工場から排
出される廃棄物に対する規制は一段と厳しいもの
となつており、紙パルプ工場から排出される排液
についてもCOD、SS値等に新たな規準が設けら
れ厳しく規制されている。 従来、クラフトパルプ、亜硫酸パルプ等の蒸解
工程や塩素、苛性ソーダ、次亜塩素酸塩、二酸化
塩素等によるパルプの漂白工程などパルプ製造の
諸工程で排出される所謂パルプ排液の処理方法と
しては、鉄あるいはアルミニウム塩による凝集沈
殿法、レジン吸着法、活性炭吸着法、活性汚泥法
などが知られている。 しかしこれらの処理方法では、十分な処理効果
を得るために高価な処理剤を比較的多量に使用す
る必要があつたり、処理効果自体が不十分であつ
たりする欠点が付随し必ずしも満足な結果が得ら
れていない。 かゝる欠点を改良する1つの方法として石灰投
入凝集沈殿法(以下、石灰法と称す)が提案され
ている。この石灰法は、パルプ排液にまず消石灰
を凝集剤として添加して凝集反応を起し、次にア
ニオン性高分子凝集剤(例えば、ポリアクリルア
ミド、変性ポリアクリルアミド、ポリアクリル酸
ソーダ、変性ポリアクリル酸ソーダ等)を添加し
て、より大きなフロツクにし沈殿除去することに
よつて排液中のCOD及び色度の低下をはかる方
法である。かゝる石灰法は安価な消石灰と比較的
少量のアニオン性高分子凝集剤によつて処理する
方法であり、経済的には有利な処理法である。し
かし排液の温度とかCODの条件等によつてフロ
ツクの形成が著しく低下するトラブルが発生する
ことがあり、その改良が望まれていた。 本願出願人は、先にパルプ排液を消石灰とアニ
オン性高分子凝集剤で凝集沈殿処理する方法にお
いて、消石灰を2回以上に分けてパルプ排液に添
加する消石灰の多段添加によつてフロツクを巨大
化させる方法について特許出願した(特開昭55−
35965)。本発明者等は消石灰の多段添加法による
フロツクの巨大化以外の方法乃至この方法と相俟
つてパルプ排液の処理効率を更に高める方法につ
いて検討を行つてきたところ、フロツクの沈降速
度をより促進させることができれば、それだけ処
理効率を高めることができることに着目し、沈降
速度の促進法について種々の試験検討を行つた。
その結果、パルプ排液に消石灰を添加する前に予
めパルプ排液を希釈しておけば、石灰法によつて
生じるCODフロツクの沈降速度がより速まる現
象を確認した。而してパルプ排液の希釈液として
は、水道水、工業用水でも効果あるが、石灰法で
凝集沈殿処理した際に生じる上澄液の一部を再使
用することがより効果的である。 前記処理済液は本来海洋等へ放出されるもので
あるが、この一部を以つて処理前のパルプ排液を
希釈する方が工業用水等を以つて希釈するよりも
CODフロツクをより速く沈降させることが出来
る理由は、例えば工業用水等は単にパルプ排液を
希釈させることによつて生じる効果の付与だけに
とゞまるのに対し、前記上澄液を使用する場合
は、希釈効果に加えて先に添加していた消石灰及
びアニオン性高分子凝集剤の溶解物が幾分残存し
ていて、これがCODフロツクの巨大化に更にプ
ラスに作用し結果として沈降を促進させることに
なるものと考えられる。尚、工業用水等は希釈効
果を付与することができる反面、希釈用に新たに
添加する量分だけ処理(放出)量を増加させて了
うという問題が附随している。 排液の処理(放出)量が増加することは環境上
好ましくないことは勿論である。この点前記上澄
液は放出されるべき処理済液であつて、その一部
を再使用することから処理(放出)量を増加させ
るという問題は起らない。この面からも現実的に
は工業用水等よりも前記上澄液で希釈する方がよ
り好ましい。 而してパルプ排液の希釈濃度は、CODフロツ
クの沈降速度効率が希釈させておく程度良いとい
う現象から特に限界はないが、パルプ排液の発生
量、処理設備の規模、その他の諸条件を考慮した
上で決定することになる。 本発明は、従来公知の反応法(消石灰の1段添
加法)にそのまゝ適用して沈降速度を速め排液処
理の効率を高めることも可能であると共に、先に
出願した消石灰の多段添加法に適用すれば、より
一層の処理効果をあげることができる。 以下に実施例を挙げて本発明を更に具体的に説
明する。 実施例 1 パルプ排液(COD 593ppm、PH10.5、水温30
℃)を、石灰法で処理して生じた上澄液(COD
250ppm、PH12.5、水温30℃)でCODが
558ppm、523ppm、488ppmの3種に希釈した。
パルプ排液及び前記希釈排液を2容ビーカーに
各々2採取し、それぞれに消石灰を表−1に示
すように添加(CODに対する割は全て同率)
し、回転数を100rpmのプロペラミキサーで7分
間撹拌したのち、回転数を60rpmに落し、第1表
に示すような割合でアニオン性高分子凝集剤(商
品名「サンポリマー305」三共化成社製)を添加
し、3分間撹拌した。これらの処理液を容量2
、高さ1mの沈降管に移し、沈降速度(m/
h)、15分後の沈降汚泥の容量(汚泥量c.c.)及び
COD減少率(上澄液のCOD値から換算)を測定
した。その結果は第1表の如くであつた。
The present invention relates to a method for treating pulp wastewater, and in particular provides an improved method for coagulation-sedimentation treatment using slaked lime and an anionic polymer flocculant. In recent years, with the strengthening of environmental administration, regulations on waste discharged from various factories have become even more stringent, and new standards have been set for COD, SS values, etc. for wastewater discharged from pulp and paper factories. It is strictly regulated. Conventionally, methods for treating the so-called pulp waste liquid discharged from various processes of pulp manufacturing, such as the cooking process of kraft pulp, sulfite pulp, etc., and the pulp bleaching process with chlorine, caustic soda, hypochlorite, chlorine dioxide, etc., include: Coagulation precipitation methods using iron or aluminum salts, resin adsorption methods, activated carbon adsorption methods, activated sludge methods, etc. are known. However, these treatment methods have drawbacks such as the need to use relatively large amounts of expensive treatment agents in order to obtain sufficient treatment effects, and the treatment effects themselves are insufficient, so the results are not always satisfactory. Not obtained. A lime-adding coagulation-sedimentation method (hereinafter referred to as the "lime method") has been proposed as one method for improving these drawbacks. In this lime method, slaked lime is first added as a flocculant to pulp wastewater to cause a flocculation reaction, and then an anionic polymer flocculant (e.g., polyacrylamide, modified polyacrylamide, sodium polyacrylate, modified polyacrylic This method aims to reduce the COD and chromaticity in the wastewater by adding acid soda, etc.) to form a larger floc and removing the precipitate. The lime method uses inexpensive slaked lime and a relatively small amount of anionic polymer flocculant, and is an economically advantageous treatment method. However, problems such as a significant decrease in floc formation may occur depending on the temperature of the waste liquid, COD conditions, etc., and improvements have been desired. The applicant of this application has developed a method in which pulp wastewater is subjected to coagulation and precipitation treatment using slaked lime and an anionic polymer flocculant, in which slaked lime is added to the pulp wastewater in multiple stages, in which the slaked lime is added to the pulp wastewater in two or more times. A patent application was filed for a method for making it huge (Japanese Patent Application Laid-Open No. 1983-
35965). The present inventors have investigated methods other than increasing the size of flocs by multi-stage addition of slaked lime, or a method in combination with this method to further increase the processing efficiency of pulp wastewater, and found that the sedimentation rate of flocs can be further promoted. We focused on the fact that the treatment efficiency could be increased accordingly, and conducted various tests on methods for accelerating the sedimentation rate.
As a result, it was confirmed that if the pulp wastewater was diluted before adding slaked lime to the pulp wastewater, the sedimentation rate of COD flocs produced by the lime method would be faster. Although tap water and industrial water are effective as a diluent for the pulp waste liquid, it is more effective to reuse a portion of the supernatant liquid produced during coagulation and precipitation treatment using the lime method. The treated liquid is originally discharged into the ocean, etc., but it is better to use a part of it to dilute the pulp waste liquid before treatment than to dilute it with industrial water, etc.
The reason why COD flocs can be settled more quickly is that, for example, industrial water only has the effect of diluting the pulp wastewater, whereas when using the supernatant liquid, In addition to the dilution effect, some dissolved matter from the previously added slaked lime and anionic polymer flocculant remains, which has an even more positive effect on the enlargement of COD flocs and, as a result, promotes sedimentation. It is thought that this will happen. Although industrial water and the like can provide a diluting effect, there is a problem in that the amount of treatment (release) increases by the amount newly added for dilution. It goes without saying that an increase in the amount of treated (discharged) liquid is not environmentally friendly. In this respect, the supernatant is a treated liquid that should be discharged, and since a portion of it is reused, there is no problem of increasing the amount of treatment (discharge). From this point of view as well, it is actually more preferable to dilute with the supernatant liquid than with industrial water or the like. There is no particular limit to the dilution concentration of the pulp wastewater, as the sedimentation velocity efficiency of the COD flocs is good enough to keep it diluted. The decision will be made after consideration. The present invention can be applied directly to the conventionally known reaction method (one-stage addition method of slaked lime) to speed up the sedimentation rate and improve the efficiency of wastewater treatment, and can also be applied to the previously applied multi-stage addition method of slaked lime. If applied to the law, even greater treatment effects can be achieved. The present invention will be explained in more detail with reference to Examples below. Example 1 Pulp effluent (COD 593ppm, PH10.5, water temperature 30
The supernatant liquid (COD
COD at 250ppm, PH12.5, water temperature 30℃)
It was diluted into three types: 558ppm, 523ppm, and 488ppm.
Take two samples each of the pulp waste liquid and the diluted waste liquid into two volume beakers, and add slaked lime to each as shown in Table 1 (all proportions to COD are the same).
After stirring for 7 minutes with a propeller mixer at a rotation speed of 100 rpm, the rotation speed was reduced to 60 rpm, and an anionic polymer flocculant (trade name "Sunpolymer 305" manufactured by Sankyo Kasei Co., Ltd.) was added in the proportions shown in Table 1. ) and stirred for 3 minutes. Add these processing solutions to a volume of 2
, transferred to a sedimentation tube with a height of 1 m, and the sedimentation velocity (m/
h), Volume of settled sludge after 15 minutes (sludge volume cc) and
The COD reduction rate (converted from the COD value of the supernatant) was measured. The results were as shown in Table 1.

【表】 実施例 2 パルプ排液(COD850ppm、PH10.6、水温30
℃)を石灰法で生じた上澄液(COD250ppm、PH
12.5、水温30℃)でCODが800ppm、750ppm、
700ppmの3種に希釈した以外は実施例1と同様
にして沈降テストを行つた。その結果は第2表の
如くであつた。
[Table] Example 2 Pulp effluent (COD850ppm, PH10.6, water temperature 30
The supernatant liquid (COD250ppm, PH
12.5, water temperature 30℃) COD is 800ppm, 750ppm,
A sedimentation test was conducted in the same manner as in Example 1, except that the dilution was performed in three different amounts at 700 ppm. The results were as shown in Table 2.

【表】 実施例 3 パルプ排液(COD980ppm、PH10.6、水温30
℃)を石灰法で生じた上澄液(COD250ppm、PH
12.6、水温30℃)でCODが931ppm、882ppm、
780ppmの3種に希釈した以外は実施例1と同様
にして沈降テストを行つた。その結果は第3表の
如くであつた。
[Table] Example 3 Pulp wastewater (COD980ppm, PH10.6, water temperature 30
The supernatant liquid (COD250ppm, PH
12.6, water temperature 30℃) COD is 931ppm, 882ppm,
A sedimentation test was conducted in the same manner as in Example 1, except that the dilution was performed in three different amounts at 780 ppm. The results were as shown in Table 3.

【表】 実施例 4 パルプ排液(COD684ppm、PH10.5、水温30
℃)を石灰法で生じた上澄液(COD250ppm、PH
12.5、水温30℃)でCODが630ppm、580ppm、
530ppmに希釈し、それぞれに消石灰を表−4に
示すように1段添加法(実施例1〜3と同様、消
石灰−アニオン性高分子凝集剤の順で添加する)
及び2段添加法(消石灰を2回に分け、消石灰−
アニオン性高分子凝集剤−消石灰の順で添加す
る)によつて添加(CODに対する消石灰の添加
量は全て同率)し、実施例1と同じ方法で処理液
の沈降速度、沈降汚泥の容量及びCOD減少率を
測定した。その結果は第4表の如くであつた。
[Table] Example 4 Pulp effluent (COD684ppm, PH10.5, water temperature 30
The supernatant liquid (COD250ppm, PH
12.5, water temperature 30℃) COD is 630ppm, 580ppm,
Dilute to 530 ppm, and add slaked lime to each in one step as shown in Table 4 (Same as Examples 1 to 3, add slaked lime in the order of anionic polymer flocculant)
and two-stage addition method (divide slaked lime into two times, add slaked lime to
Anionic polymer flocculant - slaked lime (added in the order of slaked lime) (the amount of slaked lime added in the same ratio to COD), and the sedimentation rate of the treated liquid, volume of settled sludge and COD were added in the same manner as in Example 1. The rate of decrease was measured. The results were as shown in Table 4.

【表】【table】

Claims (1)

【特許請求の範囲】 1 パルプ排液に消石灰を添加して懸濁物質をフ
ロツク化させ、更にアニオン性高分子凝集剤を添
加してフロツクを巨大化する凝集沈澱処理方法に
おいて、前記パルプ排液を予め希釈させることに
よつてCODフロツクの沈降速度を促進させるこ
とを特徴とするパルプ排液の処理法。 2 前記パルプ排液の希釈液がパルプ排液を消石
灰とアニオン性高分子凝集剤で凝集沈澱処理した
際に生じる上澄液である特許請求の範囲第1項記
載のパルプ排液の処理法。 3 前記パルプ排液の希釈液がバージン水である
特許請求の範囲第1項記載のパルプ排液の処理
法。
[Scope of Claims] 1. A coagulation-sedimentation treatment method in which slaked lime is added to a pulp waste liquid to flocculate suspended matter, and an anionic polymer flocculant is further added to make the floc large. A method for treating pulp wastewater, characterized by accelerating the sedimentation rate of COD flocs by pre-diluting COD. 2. The method for treating pulp waste liquid according to claim 1, wherein the diluted pulp waste liquid is a supernatant liquid produced when the pulp waste liquid is coagulated and precipitated with slaked lime and an anionic polymer flocculant. 3. The method for treating pulp waste liquid according to claim 1, wherein the diluent of the pulp waste liquid is virgin water.
JP12993078A 1978-10-20 1978-10-20 Treating of waste pulp liquor Granted JPS5557092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12993078A JPS5557092A (en) 1978-10-20 1978-10-20 Treating of waste pulp liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12993078A JPS5557092A (en) 1978-10-20 1978-10-20 Treating of waste pulp liquor

Publications (2)

Publication Number Publication Date
JPS5557092A JPS5557092A (en) 1980-04-26
JPS6253235B2 true JPS6253235B2 (en) 1987-11-09

Family

ID=15021928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12993078A Granted JPS5557092A (en) 1978-10-20 1978-10-20 Treating of waste pulp liquor

Country Status (1)

Country Link
JP (1) JPS5557092A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974662A (en) * 1972-11-13 1974-07-18
JPS5329286A (en) * 1976-08-31 1978-03-18 Mitsubishi Heavy Ind Ltd Recovering method for flocculant from sludge precipitated by flocculation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974662A (en) * 1972-11-13 1974-07-18
JPS5329286A (en) * 1976-08-31 1978-03-18 Mitsubishi Heavy Ind Ltd Recovering method for flocculant from sludge precipitated by flocculation

Also Published As

Publication number Publication date
JPS5557092A (en) 1980-04-26

Similar Documents

Publication Publication Date Title
US2217466A (en) Composition of matter for water treatment
JP2683991B2 (en) Dyeing wastewater treatment method
US3677940A (en) Method of treating scouring and dyeing waste water
JPH02251294A (en) Treatment of muddy water
JP3595826B2 (en) Heavy metal sludge reduction method and chemicals used for it
JPS6253235B2 (en)
JP3642516B2 (en) Method and apparatus for removing COD components in water
CN109650697B (en) Pretreatment method for plate-frame filter pressing of bloom-forming cyanobacteria
KR20030084413A (en) agglutinating composition for wastewater treating and manufacturing method thereof
JPS6247431B2 (en)
JPS59203692A (en) Treatment of pulp mill waste liquor
JPS62277200A (en) Treatment for flocculating sludge
JPS6317511B2 (en)
JP2938270B2 (en) Waste paper pulp wastewater treatment method
JPH02159326A (en) Method for recovering silver component
JPS5834098A (en) Treatment of organic sludge
JP7448129B2 (en) How to treat wastewater
JPS6071083A (en) Removal of heavy metal in waste water
JP2549944B2 (en) Method for removing all organohalogen compounds in wastewater from kraft pulping process
JP2937665B2 (en) Sludge flocculation method
JPH0852477A (en) Treatment of paper industry waste
JP3815593B2 (en) Method for dewatering sludge mainly composed of inorganic particles and refining agent for dewatering
JPH0130560B2 (en)
JPH0487685A (en) Treatment of used galvanizing solution
JP2834082B2 (en) Treatment method for antimony-containing water