JPS6252679B2 - - Google Patents

Info

Publication number
JPS6252679B2
JPS6252679B2 JP933784A JP933784A JPS6252679B2 JP S6252679 B2 JPS6252679 B2 JP S6252679B2 JP 933784 A JP933784 A JP 933784A JP 933784 A JP933784 A JP 933784A JP S6252679 B2 JPS6252679 B2 JP S6252679B2
Authority
JP
Japan
Prior art keywords
wire
flux
metal
welding
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP933784A
Other languages
Japanese (ja)
Other versions
JPS60152393A (en
Inventor
Yosha Sakai
Isao Aida
Hidehiko Kanehira
Masashi Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP933784A priority Critical patent/JPS60152393A/en
Publication of JPS60152393A publication Critical patent/JPS60152393A/en
Publication of JPS6252679B2 publication Critical patent/JPS6252679B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高速度低入熱条件下においても耐高
温割れ性の優れた溶接金属を得ることのできるエ
レクトロガスアーク溶接(以下EGWという)用
複合ワイヤ並びに該ワイヤを用いて行なうEGW
方法に関するものである。 EGWは溶接能率が高いという理由によつて造
船や石油タンク等の大型構造物の建造に多用さ
れ、コスト低減に役立つている。しかるにコスト
低減を一層押し進めるべくかつ溶接部特にボンド
部からHAZ部における靭性を向上させるべく溶
接速度を更に高めようとすると梨型割れが発生す
るという問題があり、高速化にも自ずと限界があ
つた。 ところで梨型割れは柱状晶会合部への低融点不
純物の偏析が原因となつて発生するもので、その
発生領域は第1図に示す様に溶接速度とビード断
面形状係数(H/W第2図参照)の相関々係によ
つて決定される。即ち梨型割れの発生を防止する
為には(1)溶接速度を低下させるか又は(2)(H/
W)を低下させる必要がある。尚(H/W)を低
下させることは開先角度を鈍角にして開先間口を
広く採ることを意味する。しかるに上記の解決方
法はいずれも入熱量の増加が不可避のものである
からボンド部からHAZ部ばかりでなく溶接金属
の靭性値が低下し、又溶接能率が低下する為
EGWの長所が失なわれてしまう。 本発明はこうした事情に着目してなされたもの
であつて、梨型高温割れを発生させることなく高
速度低入熱溶接を行ない得る様な条件殊にこれを
可能にするEGW用複合ワイヤを提供することを
第1の目的とし、又該ワイヤを用いて高速度低入
熱条件下にEGWを行なうに当たり良好な特性の
溶接金属を得ることができる様な溶接方法を提供
することを第2の目的とするものである。 しかして上記目的を達成した本発明のEGW用
複合ワイヤとは、軟鋼製管状外皮で囲まれる腔部
にフラツクスを充填したものにおいて、 (イ) 軟鋼製外皮中のC:0.06%(重量%の意味、
以下同じ)以下 (ロ) 全ワイヤ中のMn:1.5〜3.5% とすると共に、充填フラツクス中にはワイヤ全重
量に対して (ハ) 希土類元素金属:0.02〜0.2% (ニ) 金属Mg:0.09〜0.4% を夫々含有させ、且つ (ホ) (フラツクス中の希土類元素金属/全ワイヤ
中のC量):1以上 に調整したものである点に要旨があり、更に上記
EGWワイヤを用いて行なう本発明の溶接方法と
は、(溶接電流/金属外皮断面積)で表わされる
電流密度を290〜500A/mm2、〔(ワイヤエクステン
シヨン)/(ワイヤ直径)〕(以下L/D2と表
わす)を12〜25に夫々設定して溶接を行なう点に
要旨が存在する。 まず本発明ワイヤの成分構成について説明す
る。 (イ) 軟鋼製外皮中のC:0.06%以下 軟鋼製外皮中に含有されるC量が多すぎると溶
滴の爆発をひき起こしてアークが不安定となり、
作業性の悪化やスパツタ発生並びに表面ビードに
おけるスラグホールド発生の原因となると共に、
ヒユーム発生量を増大させて作業環境を悪化させ
るので、含有量は0.06%以下とする必要がある。 (ロ) 全ワイヤ中のMn:1.5〜3.5% 梨型割れの原因となる低融点不純物のうち特に
代表的なものとしてはFeS(融点988℃)が挙げ
られるが、Mnを適量添加しておくとFeSが還元
されてMnSが生成し、これが結晶粒界あるいは
結晶粒内に分散する。その結果FeS等の低融点不
純物の偏析が解消されて梨型高温割れの発生が防
止される。又Mnの添加により結晶粒が微細化す
るので溶接金属の靭性及び強度が向上する。この
様な効果を有効に発揮させるにはMnを1.5%以上
含有させる必要がある。しかしながら3.5%を超
えて含有させると、凝固時の初晶であるγ相が安
定化すると共に、元々EGWにおいては溶接部に
大入熱(少ない場合でも25KJ/cm)が加わつて
いるので、MnS等の硫化物結晶が逆に成長しす
ぎて梨型高温割れが発生し易くなる。尚Mnを添
加する為に配合されるフラツクス原料としては、
Fe−Mn、Fe−Si−Mn、金属Mn等が例示され
る。フープ中のMnはワイヤ伸線性を考慮する
と、0.6%以下が望ましい。 (ハ) 希土類元素金属:充填フラツクス中にワイヤ
全重量に対して0.02〜0.2% 希土類元素は脱硫作用及び脱燐作用を有し、溶
接金属中のSやPと反応して硫化物や燐化物を生
成し、スラグ中へ移行する。その結果FeS等の低
融点不純物の生成を減少させ、粒界への低融点不
純物の偏析を減少することができる。さらに、溶
接金属中に残つたP,Sも高融点のLa2S3,CeS
等を形成するため、低融点液相が凝固の最終段階
で粒界に偏析することを防止する効果がある。 上記効果を有効に発揮させる為にはフラツクス
中に希土類元素金属をワイヤ全重量に対して0.02
%以上添加する必要がある。しかしながら添加量
が多すぎるとアークの集中性がなくなつて、溶込
み不良が発生すると共に作業性が悪化するので
0.2%以下に抑えなければならない。 希土類元素金属添加原料としてはミツシユメタ
ルやREM含有Ca−Si等が例示され、中でもLaや
Ca等の軽希土類元素を主成分とするものが望ま
しい。 (ニ) 金属Mg:充填フラツクス中にワイヤ全重量
に対して0.09〜0.4% Mgは強力な脱酸元素であつて添加量を調整す
ることにより溶接金属の酸素量を制御することが
できる。この作用によつて溶接金属の酸素量を
700ppm程度まで低下させることができると溶接
金属のデンドライト粒界における結晶粒を微細化
することができ、梨型高温割れの発生を効果的に
抑制することができると共に靭性も向上する。し
かしながら上記酸素量が低下しすぎるとS及びP
を酸化物として捕捉し分散化する効果が失なわ
れ、膜状の硫化物が発生して耐割れ性が低下する
ので300ppm以上に保持する必要がある。尚酸素
量低減の為に多量のMgを添加すると添加量に応
じて高融点物質であるMgOが生成しスラグ中に
占めるMgOの割合が大きくなる。その結果Cu当
金の摺動抵抗が増加してビード外観が悪化するの
でこの面からもMgの添加量は制限される。 以上の理由から充填フラツクス中に占める金属
Mgの含有量は、ワイヤ全重量に対して0.09〜0.4
%と定めた。 Mg添加原料としては、金属Mg、Si−Mg合
金、Ni−Mg合金、Al−Mg合金、Fe−Si−Mg合
金等が例示され、中でもAl−Mg合金は、ワイヤ
エクステンシヨンを長大化しても安定なアークが
得られるので望ましい。 (ホ) (フラツクス中の希土類元素金属/全ワイヤ
中のC量):1以上 溶接金属の凝固初晶であるγ相に対するS及び
Pの溶解度はδ相に対する溶解度の1/3〜1/4であ
る。しかるにCはγ相安定化元素であるのでC含
有量が多いとγ相が多くなつてS及びPの溶解度
が減少しこれが液相に残留し凝固の最終段階にお
いて粒界に析出し耐割れ性を低下させる。従つて
C量は少ないことが望ましいが若干のCはどうし
ても存在するので希土類元素の添加効果によつて
これを相殺する必要がある。即ち(フラツクス中
の希土類元素金属/全ワイヤ中のC量)で示され
る比を1.0以上とすることによつてS及びPが粒
界に析出するのを防止することができる。 本発明複合ワイヤの基本構成は上記の通りであ
り、該複合ワイヤを用いてEGWを行なつた場合
の梨型割れ発生領域は第3図に示す様になりH/
W値並びに溶接速度の許容範囲が拡大される。 尚上記以外の複合ワイヤ構成成分としては以下
のものが挙げられる。 V:ワイヤ全重量に対し0.07〜0.6% Vは結晶粒を微細化すると共にδ相を安定化す
る効果があり、これらによつて耐割れ性をより完
壁にする。従つて梨型高温割れをより完壁に防止
する上で全ワイヤ重量に対して0.07%以上添加す
ることが望ましい。一方添加量が多すぎると、V
が不純物として作用し、溶接金属の靭性を低下す
るので0.6%以下に制限することが推奨される。
(SiO2+2TiO2)/Mg:1.6以上 SiO2及びTiO2はスラグをガラス質に保ちCu当
金との滑性を良好にする効果があるので、前記
MgO生成によるCu当金の摺動抵抗の増加を抑制
することができ、ひいてはビード外観の悪化を防
止することができる。上記効果を得る為には
〔(SiO2+2TiO2)/Mg〕で示される比が1.6以上
となるようにSiO2及び/又はTiO2をフラツクス
中に添加することが望まれる。 又フラツクス中に脱硫作用の大きいCaF2等を
添加したり、スラグが塩基性となる様なスラグ生
成剤を添加することも推奨される。 その他、本発明複合ワイヤの製造条件について
は特段に製限はないものの下記条件を満足する様
に製造することが望まれる。 即ちワイヤの断面構造については特に制限はな
く、円筒型(オーブンシーム及びクローズドシー
ムを含む)、アツプル型、OW型等のいずれでも
良いが、ワイヤの蛇行防止や細径ワイヤへの適用
等を考慮すると円筒型が好ましい。 上記の構成からなる複合ワイヤを用いることに
よつて、高温の梨型割れ発生の危険をみることな
くより低入熱・高速度化することが容易になつ
た。尚この効果を発揮するに当つて、高速度・低
入熱施工に適したワイヤ及びそのワイヤを用いる
施工条件を検討した結果、ワイヤの溶融速度を飛
躍的に上昇することによりその目的を達成した。 又ワイヤの断面形状については、ワイヤエクス
テンシヨン部でのジユール熱効果を発揮させてワ
イヤ溶融速度を向上させる為に、 (軟鋼製外皮断面積)/(ワイヤ全断面積)で
示される比を0.55〜0.69とすることが望まれる。
即ち該比が0.69を超えると良導電体である軟鋼製
外皮の割合が非導電体であるフラツクス部の割合
に比べて大きくなりすぎて電気抵抗が低下すると
共に実質的な電流密度も低下する。その結果発生
ジユール熱量が減少してワイヤの溶融速度も低下
する。一方上記の比が0.55未満であると金属外皮
の肉厚が薄すぎる為に細径まで伸線すると断線や
ワイヤの折れ曲がり等の製造上の困難が発生す
る。 尚上記ワイヤを用いるに当つてはワイヤ径を
0.9〜1.6mmφとすることが望ましい。即ち前記
(軟鋼製外皮断面積/ワイヤ全断面積)で示され
る比が適正であつてもワイヤ径が1.6mmφを超え
ると良導電性部である金属外皮の絶対量が増大し
電流密度が低下する。その結果ジユール熱効果が
十分に発揮されず溶融速度の低下をまねく、一方
ワイヤ径が0.9mmφ未満の場合には複合ワイヤの
製造が困難になる。 一方溶融速度を高めてもワイヤの単位当たり重
量あるいは金属分の割合が少なければ結果として
溶接速度の向上は望めない。そこで充填フラツク
ス中の溶接金属形成々分量即ち(鉄粉+合金元
素)量をできる限り多くすることが望まれるが、
一方フラツクス中にはスラグ形成剤等として非金
属物質を含有させる必要があるので溶接金属形
成々分量を確保する為には、非金属物質総量がワ
イヤ全重量に対して0.4〜3.9%となる様に調整す
ることが望まれる。非金属物質総量が3.9%を超
えると溶着効率が低下するので溶接速度の向上が
望めなくなる。一方0.4%未満になるとビード表
面をスラグによつて均一に被包することができ
ず、ビードの外観が悪化する。尚上記非金属物質
としてはSiO2,TiO2,CaO,CaF2等が例示され
る。 更にワイヤ仕上り状態における充填フラツクス
の嵩比重は4.6〜6.6とすることが望ましい。嵩比
重が6.6を超えると充填フラツクス中の金属成分
にも溶接電流が流れ、金属外皮の電流密度が小さ
くなつてジユール熱発生量が低下する。又充填フ
ラツクスが圧密状態となる為に伸線中に断線する
等の製造上の困難に遭遇する。一方嵩比量が4.6
未満の場合には溶接金属形成々分の充填率が低下
し溶着効率が悪化する。尚嵩比量の調整は軟鋼製
金属外皮の肉厚、フラツクス粒度、フラツクス率
等を調整することにより行なう。更にフラツクス
中の鉄粉量はワイヤ全重量に対して15%以上とす
ることが望ましい。又充填フラツクスは水ガラス
等のバインダーにより予め造粒しておくと該フラ
ツクスに溶接電流が流れることがないので電流密
度(後に詳述)を高くする効果が発揮されて好ま
しい。 上記構成の複合ワイヤを用いることによつて梨
型高温割れを発生させることなく高速度低入熱の
EGWを行なうことが可能となつた。 次に上記複合ワイヤの特性を十分に引出す為の
溶接方法殊に施工条件について説明する。 (溶接電流/金属外皮断面積)で示される電流
密度:290〜500A/mm2 溶融速度を高めるに当つては電流密度を高める
必要があるが、500A/mm2を超えるほどに高める
とアークが不安定になると共にビード外観が悪く
なり溶込みも浅くなる。一方290A/mm2未満にな
るとワイヤの溶融速度が遅くなり高速度溶接が達
成できなくなる。 L/D2:12〜25 ワイヤエクステンシヨンはワイヤ溶融速度を圧
右する因子であつて十分なジユール熱効果を得る
為にはL/D2を12以上にする必要がある。しか
しながらL/D2が大きくなりすぎるワイヤのエ
クステンシヨンが長大化しすぎてワイヤが蛇行す
ると共にアークが不安定となり、且つ溶接電圧が
低下して外観不良や溶込み不良が発生するので
L/D2は25以下に抑える必要がある。 その他、電流極性を正極性にすることによつて
ワイヤ溶融速度を20〜25%向上させる手法を、必
要により採用することが推奨される。尚正極性と
するに当たつてシールドガスとしてAr−CO2
るいはAr−O2を用いるとアークが安定するので
好ましい。 本発明は以上の様に構成されており、軟鋼製外
皮並びに充填フラツクスを夫々前記の通り規定し
たので、該複合ワイヤを用いて行なうEGWにお
いて梨型高温割れの発生領域を第3図に示す如く
H/W値が大きく且つ溶接速度が大きい側(図中
の右上側)へ後退させることができた。そして該
複合ワイヤを用いてEGWを行なうに当たり、溶
接施工条件を前記の通り規定したので梨型高温割
れを発生することなく、EGWの高速度低入熱化
を達成することができ、その結果溶接コストを低
減することができた。又高速度低入熱化の達成に
よりボンド部からHAZ部における靭性を高める
ことができた。 尚本発明は主として立向EGWに適用されるも
のであるが、横向EGWやエレクトロスラグ溶接
においても割れ防止の効果を発揮する。 次に本発明の実施例について説明する。 第1表イ,ロに示す成分・組成の複合ワイヤを
用いて、CO2流量:30/minの下にサイリシタ
式直流定電圧特性(逆極性)の電源で、板厚25mm
のHT50材のEGWを行なつた。尚ワイヤA〜I及
びP〜Tは比較例、ワイヤJ〜Nは参考例、ワイ
ヤU〜Zはの実施例を夫々示す。
The present invention relates to a composite wire for electrogas arc welding (hereinafter referred to as EGW) that can obtain weld metal with excellent hot cracking resistance even under high-speed, low-heat-input conditions, and an EGW performed using the wire.
It is about the method. Due to its high welding efficiency, EGW is often used in shipbuilding and the construction of large structures such as oil tanks, helping to reduce costs. However, when trying to further increase the welding speed in order to further reduce costs and improve the toughness of the welded part, especially from the bond part to the HAZ part, there was a problem that pear-shaped cracking occurred, and there was a limit to increasing the speed. . By the way, pear-shaped cracks occur due to the segregation of low-melting point impurities in columnar crystal aggregates, and the area where they occur is determined by the welding speed and the bead cross-sectional shape factor (H/W 2), as shown in Figure 1. (see figure). In other words, in order to prevent the occurrence of pear-shaped cracks, (1) reduce the welding speed or (2) (H/
W) needs to be lowered. Note that reducing (H/W) means making the groove angle obtuse and widening the groove width. However, in all of the above solutions, an increase in heat input is unavoidable, so the toughness value of not only the bond area and the HAZ area but also the weld metal decreases, and the welding efficiency decreases.
The advantages of EGW will be lost. The present invention has been made in view of these circumstances, and provides a composite wire for EGW that makes it possible to perform high-speed, low-heat-input welding without causing pear-shaped hot cracking. The first purpose is to provide a welding method that can obtain weld metal with good properties when performing EGW using the wire under high speed and low heat input conditions. This is the purpose. The composite wire for EGW of the present invention that has achieved the above object is one in which the cavity surrounded by the mild steel tubular sheath is filled with flux. meaning,
The same applies hereafter) Below (b) Mn in the whole wire: 1.5 to 3.5%, and in the filling flux, based on the total weight of the wire (c) Rare earth element metal: 0.02 to 0.2% (d) Metal Mg: 0.09 ~0.4%, respectively, and (e) (Rare earth element metal in flux/C amount in total wire): The gist is that it is adjusted to 1 or more, and furthermore, the above
The welding method of the present invention using EGW wire has a current density of 290 to 500 A/ mm2 , expressed as (welding current/metal skin cross-sectional area), [(wire extension)/(wire diameter) 2 ]( The gist lies in that welding is performed with L/D 2 (hereinafter referred to as L/D 2) set at 12 to 25, respectively. First, the composition of the wire of the present invention will be explained. (b) C in the mild steel outer shell: 0.06% or less If the amount of C contained in the mild steel outer shell is too large, it will cause the droplets to explode and the arc to become unstable.
It causes deterioration of workability, spatter generation, and slag hold on the surface bead.
Since it increases the amount of fume generated and worsens the working environment, the content needs to be 0.06% or less. (b) Mn in all wires: 1.5 to 3.5% FeS (melting point 988°C) is a particularly typical low melting point impurity that causes pear-shaped cracks, but an appropriate amount of Mn should be added. and FeS are reduced to generate MnS, which is dispersed at grain boundaries or within grains. As a result, the segregation of low melting point impurities such as FeS is eliminated and the occurrence of pear-shaped hot cracks is prevented. Also, the addition of Mn makes the crystal grains finer, thereby improving the toughness and strength of the weld metal. In order to effectively exhibit such an effect, it is necessary to contain Mn in an amount of 1.5% or more. However, if the MnS content exceeds 3.5%, the γ phase, which is the primary crystal during solidification, is stabilized, and in EGW, a large heat input (25 KJ/cm at the least) is added to the weld zone. On the other hand, sulfide crystals such as sulfide crystals grow too much and pear-shaped hot cracks are likely to occur. The flux raw materials used to add Mn are as follows:
Examples include Fe-Mn, Fe-Si-Mn, and metal Mn. Considering wire drawability, the Mn content in the hoop is preferably 0.6% or less. (c) Rare earth metal: 0.02 to 0.2% of the total wire weight in the filling flux Rare earth elements have desulfurization and dephosphorization effects, and react with S and P in the weld metal to form sulfides and phosphides. is generated and transferred into the slag. As a result, the generation of low melting point impurities such as FeS can be reduced, and the segregation of low melting point impurities to grain boundaries can be reduced. Furthermore, the P and S remaining in the weld metal are also replaced by high melting point La 2 S 3 and CeS.
This has the effect of preventing the low melting point liquid phase from segregating at grain boundaries in the final stage of solidification. In order to effectively exhibit the above effect, it is necessary to add 0.02 of the rare earth metal in the flux to the total weight of the wire.
It is necessary to add more than %. However, if the amount added is too large, the arc will not be concentrated, resulting in poor penetration and poor workability.
Must be kept below 0.2%. Examples of raw materials to which rare earth metals are added include Mitsushi Metal and REM-containing Ca-Si, among which La and
It is desirable that the main component is a light rare earth element such as Ca. (d) Mg metal: 0.09 to 0.4% based on the total weight of the wire in the filling flux Mg is a strong deoxidizing element, and the amount of oxygen in the weld metal can be controlled by adjusting the amount added. This action reduces the amount of oxygen in the weld metal.
If it can be lowered to about 700 ppm, the crystal grains at the dendrite grain boundaries of the weld metal can be made finer, the occurrence of pear-shaped hot cracking can be effectively suppressed, and the toughness can also be improved. However, if the above oxygen amount decreases too much, S and P
It is necessary to keep the content above 300 ppm because the effect of trapping and dispersing oxides as oxides is lost and film-like sulfides are generated, reducing cracking resistance. If a large amount of Mg is added to reduce the amount of oxygen, MgO, which is a high melting point substance, will be generated depending on the amount added, and the proportion of MgO in the slag will increase. As a result, the sliding resistance of the Cu metal increases and the appearance of the bead deteriorates, so the amount of Mg added is also limited from this point of view. For the above reasons, metals in the filling flux
Mg content is 0.09 to 0.4 relative to the total weight of the wire
%. Examples of Mg-added raw materials include metal Mg, Si-Mg alloy, Ni-Mg alloy, Al-Mg alloy, Fe-Si-Mg alloy, etc. Among them, Al-Mg alloy is suitable for long wire extensions. This is desirable because a stable arc can be obtained. (e) (Rare earth metal in flux/C amount in total wire): 1 or more The solubility of S and P in the γ phase, which is the solidified primary crystal of the weld metal, is 1/3 to 1/4 of the solubility in the δ phase. It is. However, since C is a γ-phase stabilizing element, when the C content is high, the γ phase increases, reducing the solubility of S and P, which remains in the liquid phase and precipitates at grain boundaries in the final stage of solidification, reducing cracking resistance. decrease. Therefore, it is desirable that the amount of C be small, but since some amount of C is inevitably present, it is necessary to offset this by the effect of adding the rare earth element. That is, by setting the ratio (rare earth metal in flux/C amount in total wire) to 1.0 or more, it is possible to prevent S and P from precipitating at grain boundaries. The basic structure of the composite wire of the present invention is as described above, and when EGW is performed using the composite wire, the pear-shaped crack occurrence area is as shown in FIG.
The permissible range of W value and welding speed is expanded. In addition, the following may be mentioned as composite wire constituents other than those mentioned above. V: 0.07 to 0.6% based on the total weight of the wire V has the effect of refining crystal grains and stabilizing the δ phase, thereby making the cracking resistance more perfect. Therefore, in order to more completely prevent pear-shaped hot cracking, it is desirable to add 0.07% or more to the total weight of the wire. On the other hand, if the amount added is too large, V
acts as an impurity and reduces the toughness of the weld metal, so it is recommended to limit it to 0.6% or less.
(SiO 2 + 2TiO 2 )/Mg: 1.6 or more SiO 2 and TiO 2 have the effect of keeping the slag glassy and improving the slipperiness with the Cu metal.
It is possible to suppress the increase in the sliding resistance of the Cu metal due to the generation of MgO, and in turn, it is possible to prevent the bead appearance from deteriorating. In order to obtain the above effect, it is desirable to add SiO 2 and/or TiO 2 to the flux so that the ratio [(SiO 2 +2TiO 2 )/Mg] is 1.6 or more. It is also recommended to add CaF2, etc., which has a strong desulfurization effect, to the flux, or to add a slag forming agent that makes the slag basic. In addition, although there are no particular limitations regarding the manufacturing conditions for the composite wire of the present invention, it is desirable to manufacture the composite wire so as to satisfy the following conditions. In other words, there are no particular restrictions on the cross-sectional structure of the wire, and it may be cylindrical (including oven seam and closed seam), apple shape, OW type, etc., but consideration should be given to preventing wire meandering and application to small diameter wires. In this case, a cylindrical shape is preferable. By using a composite wire having the above configuration, it has become easier to achieve lower heat input and higher speed without risking the occurrence of high-temperature pear-shaped cracks. In order to achieve this effect, we investigated the wire suitable for high-speed, low-heat-input construction and the construction conditions for using the wire, and as a result, we achieved the purpose by dramatically increasing the melting speed of the wire. . Regarding the cross-sectional shape of the wire, in order to increase the wire melting rate by exerting the Joule heat effect at the wire extension part, the ratio expressed by (mild steel outer cross-sectional area) / (total wire cross-sectional area) is set to 0.55. It is desirable to set it to ~0.69.
That is, if the ratio exceeds 0.69, the proportion of the mild steel outer skin, which is a good conductor, becomes too large compared to the proportion of the flux portion, which is a non-conductor, resulting in a decrease in electrical resistance and a decrease in substantial current density. As a result, the amount of generated Joule heat is reduced, and the melting rate of the wire is also reduced. On the other hand, if the above-mentioned ratio is less than 0.55, the thickness of the metal sheath is too thin, and manufacturing difficulties such as wire breakage and bending of the wire occur when the wire is drawn to a small diameter. When using the above wire, please check the wire diameter.
It is desirable to set it as 0.9-1.6mmφ. In other words, even if the ratio shown above (cross-sectional area of mild steel skin/total cross-sectional area of wire) is appropriate, if the wire diameter exceeds 1.6 mmφ, the absolute amount of the metal skin, which is a highly conductive part, increases and the current density decreases. do. As a result, the Joule heat effect is not sufficiently exerted, leading to a decrease in the melting rate, and on the other hand, when the wire diameter is less than 0.9 mmφ, it becomes difficult to manufacture a composite wire. On the other hand, even if the melting speed is increased, if the weight per unit of wire or the proportion of metal is small, no improvement in the welding speed can be expected as a result. Therefore, it is desirable to increase the amount of weld metal forming components (iron powder + alloying elements) in the filling flux as much as possible.
On the other hand, it is necessary to include nonmetallic substances in the flux as slag forming agents, etc., so in order to secure the amount of weld metal forming agent, the total amount of nonmetallic substances should be 0.4 to 3.9% of the total weight of the wire. It is desirable to adjust the If the total amount of nonmetallic substances exceeds 3.9%, the welding efficiency decreases, making it impossible to expect an increase in welding speed. On the other hand, if it is less than 0.4%, the bead surface cannot be uniformly covered with slag, and the appearance of the bead deteriorates. Incidentally, examples of the non-metallic substance include SiO 2 , TiO 2 , CaO, CaF 2 and the like. Furthermore, it is desirable that the bulk specific gravity of the filling flux in the finished state of the wire is 4.6 to 6.6. When the bulk specific gravity exceeds 6.6, the welding current also flows through the metal components in the filling flux, the current density in the metal sheath becomes smaller, and the amount of heat generated by the unit decreases. Furthermore, since the filling flux is in a compacted state, manufacturing difficulties such as wire breakage during wire drawing occur. On the other hand, the bulk ratio is 4.6
If it is less than 20%, the filling rate of the weld metal parts will decrease and the welding efficiency will deteriorate. The bulk ratio is adjusted by adjusting the thickness of the mild steel metal shell, flux particle size, flux rate, etc. Further, it is desirable that the amount of iron powder in the flux be 15% or more based on the total weight of the wire. Preferably, the filling flux is granulated in advance with a binder such as water glass, since this prevents the welding current from flowing through the flux, thereby increasing the current density (described in detail later). By using the composite wire with the above configuration, high speed and low heat input can be achieved without causing pear-shaped hot cracking.
It became possible to perform EGW. Next, welding methods, particularly construction conditions, for fully bringing out the characteristics of the composite wire will be described. Current density expressed as (welding current/metal skin cross-sectional area): 290 to 500 A/mm 2 To increase the melting rate, it is necessary to increase the current density, but if you increase it beyond 500 A/mm 2 , the arc will It becomes unstable, the bead appearance deteriorates, and penetration becomes shallow. On the other hand, if it is less than 290 A/mm 2 , the melting speed of the wire becomes slow and high-speed welding cannot be achieved. L/D 2 :12-25 The wire extension is a factor that influences the wire melting rate, and in order to obtain a sufficient Joule heat effect, it is necessary to set L/D 2 to 12 or more. However, if L/D 2 becomes too large, the wire extension becomes too long, causing the wire to meander and the arc to become unstable, and the welding voltage to drop, resulting in poor appearance and poor penetration . must be kept below 25. In addition, it is recommended to adopt a method of increasing the wire melting rate by 20 to 25% by changing the current polarity to positive polarity, if necessary. It is preferable to use Ar--CO 2 or Ar--O 2 as the shielding gas in order to achieve positive polarity, since this stabilizes the arc. The present invention is constructed as described above, and since the mild steel outer shell and the filling flux are specified as described above, the area where pear-shaped hot cracking occurs in EGW using the composite wire is as shown in FIG. It was possible to retreat to the side where the H/W value was large and the welding speed was high (upper right side in the figure). When performing EGW using the composite wire, welding conditions were specified as described above, so we were able to achieve high speed and low heat input in EGW without generating pear-shaped hot cracking, and as a result, welding We were able to reduce costs. Furthermore, by achieving high speed and low heat input, we were able to improve the toughness from the bond area to the HAZ area. Although the present invention is mainly applied to vertical EGW, it also exhibits the effect of preventing cracking in horizontal EGW and electroslag welding. Next, examples of the present invention will be described. Using a composite wire with the components and compositions shown in Table 1 A and B, a plate thickness of 25 mm was used at a CO 2 flow rate of 30/min with a thyristor type DC constant voltage characteristic (reverse polarity) power source.
EGW of HT50 material was carried out. Note that wires A to I and P to T are comparative examples, wires J to N are reference examples, and wires U to Z are examples, respectively.

【表】【table】

【表】 ワイヤAは、軟鋼製外皮中のC量が0.09%と高
い為にスパツタが多発して作業性が悪化し溶着効
率が低下すると共にスラグホールドが発生してビ
ード外観が悪化した。ワイヤBは、全ワイヤ中の
Mn量が1.38と低い為硫化物の分散化が阻害され
且つ結晶粒が粗大化して梨型割れが発生した。ワ
イヤCは、全ワイヤ中のMn量が3.87%と高い為
初晶のγ相が安定化し、γ相に溶けきれずに柱状
晶会合部に残留した硫化物が大きく成長し過ぎて
梨型割れが発生した。ワイヤDは、希土類元素が
0.005%と低い為に梨型割れ発生防止効果が発揮
されなかつた。ワイヤEは、希土類元素が0.24%
と多い為アークの集中性が無くなり溶込み不良が
発生すると共に作業性が劣化した。ワイヤFは、
希土類元素/全C量で示される比が0.58と低い為
に炭素の割れに対する影響を相殺することができ
ず梨型割れが発生した。ワイヤGは、金属Mg量
が0.06と低い為に脱酸効果が発揮されず酸素量低
下による結晶粒微細化効果が薄れて梨型割れが発
生した。尚このときの酸素量は900ppmであつ
た。ワイヤHは、金属Mg量が0.51%と高すぎる
為スラグ中に占めるMgO(高融点物質)の割合
が高くなりCu当金の摺動抵抗が増大してビード
の外観が悪化した。ワイヤIは、希土類元素を添
加しなかつたので梨型割れの発生を防止できなか
つた。 これらに対しワイヤJ〜Nは本発明の参考例で
あつて、ワイヤJは、(軟鋼製外皮断面積/ワイ
ヤ全断面積)で示される比が大きすぎる為にワイ
ヤとしての電気抵抗が低下し且つ電流密度も低下
してジユール熱効果が十分に発揮されない。その
結果ワイヤの溶融速度が低くなり溶接速度がやや
低下した。ワイヤKは非金属物質総量が0.29%と
少なすぎる為にスラグ量が不足してビード表面を
十分均一に被包することができずビードの外観が
悪化した。ワイヤLは、フラツクス中の非金属物
質総量が4.35%と多すぎる為に相対的に金属成分
が不足して溶着効率が低下して十分な溶接速度が
得られなかつた。ワイヤMは、充填フラツクスの
嵩比重が低すぎる為に溶着効率が低下して溶接速
度がやや低下した。ワイヤNは、充填フラツクス
の嵩比重が高すぎる為に溶接電流がフラツクスに
も流れて電流密度が低下しジユール熱効果が希釈
されると共に、ワイヤが折れ易くなつた。 一方ワイヤP〜Sは溶接施工条件が本発明を満
足しない比較例であつて、ワイヤPは、電流密度
が550A/mm2と高すぎる為にアークが不安定にな
ると共にビード外観が悪化し、且つ溶込み不良が
発生した。ワイヤQは電流密度が270A/mm2と低
い為ワイヤ溶融速度が低下した。ワイヤRはL/
D2で示される比が29と過大である為ワイヤの蛇
行、アーク不安定、電圧低下等が発生し、ビード
外観不良や溶込み不良が発生した。ワイヤSは
L/D2が9と少ない為即ちワイヤエクステンシ
ヨンが短小である為に十分なジユール熱効果を得
ることができず溶接速度が低下した。 又ワイヤTはワイヤ径が2.0mmφと大径であつ
て且つ(軟鋼製外皮断面積/ワイヤ全断面積)で
示される比が正常である為に軟鋼製外皮部分の絶
対量が大きくなり、電流密度が低下して十分なジ
ユール熱効果を得ることができなかつた。その結
果溶接速度が低下した。 これらに対しワイヤU〜Zは複合ワイヤの成分
組成並びに溶接施工条件が共に本発明を満足して
おり、梨型割れが発生しないだけでなく溶接作業
性やビード外観も良好で健全な溶接金属を得るこ
とができた。
[Table] Wire A had a high C content of 0.09% in the mild steel outer sheath, which caused frequent spatter, poor workability, reduced welding efficiency, and caused slag hold, which worsened the bead appearance. Wire B is one of all wires.
Since the Mn content was as low as 1.38, dispersion of sulfides was inhibited and the crystal grains became coarse, resulting in pear-shaped cracks. Wire C has a high Mn content of 3.87% in the total wire, so the primary γ phase is stabilized, and the sulfide that remains in the columnar crystal association grows too large without being completely dissolved in the γ phase, resulting in pear-shaped cracking. There has occurred. Wire D contains rare earth elements.
Since the content was as low as 0.005%, the effect of preventing pear-shaped cracking was not exhibited. Wire E contains 0.24% rare earth elements.
As a result, the concentration of the arc was lost, poor penetration occurred, and workability deteriorated. Wire F is
Because the ratio of rare earth elements/total C content was as low as 0.58, the effect of carbon on cracking could not be offset, and pear-shaped cracking occurred. Wire G had a low metal Mg content of 0.06, so the deoxidizing effect was not exhibited, and the crystal grain refinement effect due to the decrease in oxygen content was weakened, resulting in pear-shaped cracking. The amount of oxygen at this time was 900 ppm. In wire H, the metal Mg content was too high at 0.51%, so the proportion of MgO (high melting point substance) in the slag increased, the sliding resistance of the Cu metal increased, and the appearance of the bead deteriorated. Since Wire I did not contain any rare earth elements, the occurrence of pear-shaped cracks could not be prevented. On the other hand, wires J to N are reference examples of the present invention, and wire J has a too large ratio (cross-sectional area of mild steel outer skin/total cross-sectional area of the wire), so the electrical resistance as a wire decreases. Moreover, the current density also decreases, and the Joule heat effect is not fully exhibited. As a result, the melting rate of the wire became low and the welding speed decreased slightly. Since the total amount of non-metallic substances in wire K was too small at 0.29%, the amount of slag was insufficient and the bead surface could not be coated sufficiently uniformly, resulting in poor bead appearance. For wire L, the total amount of nonmetallic substances in the flux was too high at 4.35%, so the metal component was relatively insufficient, resulting in a decrease in welding efficiency and a sufficient welding speed. For wire M, the bulk specific gravity of the filling flux was too low, so the welding efficiency decreased and the welding speed decreased slightly. In Wire N, since the bulk specific gravity of the filling flux was too high, the welding current also flowed through the flux, reducing the current density, diluting the Joule heat effect, and making the wire more likely to break. On the other hand, wires P to S are comparative examples whose welding conditions do not satisfy the present invention, and wire P has a current density as high as 550 A/mm 2 , which makes the arc unstable and the bead appearance deteriorates. In addition, poor penetration occurred. Wire Q had a low current density of 270 A/mm 2 , so the wire melting rate was low. Wire R is L/
Since the ratio indicated by D2 was 29, which was too high, wire meandering, arc instability, voltage drop, etc. occurred, resulting in poor bead appearance and poor penetration. Since the wire S had a low L/D 2 of 9, that is, the wire extension was short and small, a sufficient Joule heat effect could not be obtained and the welding speed was reduced. In addition, the wire T has a large wire diameter of 2.0 mmφ, and the ratio shown by (cross-sectional area of mild steel outer skin/total cross-sectional area of wire) is normal, so the absolute amount of the outer skin of mild steel is large, and the current The density decreased and it was not possible to obtain a sufficient Joule heat effect. As a result, the welding speed decreased. On the other hand, wires U to Z satisfy the present invention in terms of both the composition of the composite wire and the welding conditions, and not only do pear-shaped cracks not occur, but welding workability and bead appearance are also good, resulting in sound weld metal. I was able to get it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の複合ワイヤを用いてEGWを行
なつた場合の割れ発生領域を示すグラフ、第2図
H/W値説明断面図、第3図は本発明に係る複合
ワイヤを用いてEGWを行なつた場合の割れ発生
領域を示すグラフである。
Fig. 1 is a graph showing the crack occurrence area when EGW is performed using a conventional composite wire, Fig. 2 is a cross-sectional view explaining the H/W value, and Fig. 3 is a graph showing the crack occurrence area when EGW is performed using the composite wire according to the present invention. It is a graph showing the crack occurrence area when performing.

Claims (1)

【特許請求の範囲】 1 軟鋼製管状外皮で囲まれる腔部にフラツクス
を充填してなるエレクトロガスアーク溶接用複合
ワイヤにおいて、 (イ) 軟鋼製外皮中のC:0.06%(重量%の意味、
以下同じ)以下 (ロ) 全ワイヤ中のMn:1.5〜3.5% とすると共に、充填フラツクス中にはワイヤ全重
量に対して (ハ) 希土類元素金属:0.02〜0.2% (ニ) 金属Mg:0.09〜0.4% を夫々含有させ、且つ (ホ) フラツクス中の希土類元素金属/全ワイヤ中
のC量:1以上 に調整することを特徴とするエレクトロガスアー
ク溶接用複合ワイヤ。 2 軟鋼製管状外皮で囲まれる腔部にフラツクス
を充填してなるエレクトロガスアーク溶接用複合
ワイヤを用いて行なうエレクトロガスアーク溶接
方法であつて、 (イ) 軟鋼製外皮中のC:0.06%以下 (ロ) 全ワイヤ中のMn:1.5〜3.5% とすると共に、充填フラツクス中にはワイヤ全重
量に対して (ハ) 希土類元素金属:0.02〜0.2% (ニ) 金属Mg:0.09〜0.4% を夫々含有させ、且つ (ホ) (フラツクス中の希土類元素金属/全ワイヤ
中のC量):1以上 に調整してなるエレクトロガスアーク溶接用複合
ワイヤを用いて、(溶接電流/軟鋼製外皮断面
積)で表わされる電流密度を290〜500A/mm2
〔(ワイヤエクステンシヨン)/(ワイヤ直径)
〕を12〜25に夫々設定して溶接を行なうことを
特徴とするエレクトロガスアーク溶接方法。
[Scope of Claims] 1. A composite wire for electrogas arc welding in which a cavity surrounded by a tubular outer shell made of mild steel is filled with flux, (a) C: 0.06% (meaning % by weight) in the outer shell made of mild steel;
The same applies hereafter) Below (b) Mn in the whole wire: 1.5 to 3.5%, and in the filling flux, based on the total weight of the wire (c) Rare earth element metal: 0.02 to 0.2% (d) Metal Mg: 0.09 A composite wire for electrogas arc welding, characterized in that the amount of C is adjusted to 1 or more, and (e) the amount of rare earth metal in the flux/the amount of C in the total wire is adjusted to 1 or more. 2. An electrogas arc welding method using a composite wire for electrogas arc welding in which a cavity surrounded by a tubular shell made of mild steel is filled with flux, which method comprises: (a) C: 0.06% or less in the outer shell made of mild steel; ) Mn in the total wire: 1.5 to 3.5%, and the filling flux contains (c) rare earth metal: 0.02 to 0.2%, and (d) metal Mg: 0.09 to 0.4%, respectively, based on the total weight of the wire. (e) (Rare earth metal in flux/C content in total wire): Using a composite wire for electrogas arc welding adjusted to 1 or more, (welding current/mild steel outer skin cross-sectional area) The current density expressed is 290~500A/ mm2 ,
[(Wire extension)/(Wire diameter)
2 ) An electrogas arc welding method characterized in that welding is carried out by setting 12 to 25.
JP933784A 1984-01-20 1984-01-20 Composite wire for electrogas arc welding and electrogas arc welding method Granted JPS60152393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP933784A JPS60152393A (en) 1984-01-20 1984-01-20 Composite wire for electrogas arc welding and electrogas arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP933784A JPS60152393A (en) 1984-01-20 1984-01-20 Composite wire for electrogas arc welding and electrogas arc welding method

Publications (2)

Publication Number Publication Date
JPS60152393A JPS60152393A (en) 1985-08-10
JPS6252679B2 true JPS6252679B2 (en) 1987-11-06

Family

ID=11717655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP933784A Granted JPS60152393A (en) 1984-01-20 1984-01-20 Composite wire for electrogas arc welding and electrogas arc welding method

Country Status (1)

Country Link
JP (1) JPS60152393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268658U (en) * 1988-11-10 1990-05-24

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252694A (en) * 1986-04-23 1987-11-04 Nippon Steel Corp Flux cored wire for gas shielded arc welding
US10421160B2 (en) * 2013-03-11 2019-09-24 The Esab Group, Inc. Alloying composition for self-shielded FCAW wires with low diffusible hydrogen and high Charpy V-notch impact toughness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268658U (en) * 1988-11-10 1990-05-24

Also Published As

Publication number Publication date
JPS60152393A (en) 1985-08-10

Similar Documents

Publication Publication Date Title
KR880002508B1 (en) Flux cored wire for gas shielded arc welding
JP3476125B2 (en) Flux-cored wire for duplex stainless steel welding
JPH0741435B2 (en) Consumable welding rod
JP4209913B2 (en) Flux-cored wire for gas shielded arc welding
JP2017148821A (en) Flux-cored wire for arc welding developed for duplex stainless steel and welding metal
JP3934399B2 (en) Flux-cored wire for austenitic stainless steel welding that refines solidified crystal grains
CN109128573B (en) Large-heat-input electro-gas welding gas-shielded flux-cored wire based on grain refinement mechanism
KR100265097B1 (en) Flux-cored wire for arc welding
JPH09277087A (en) Flux cored wire for arc welding
KR20220002564A (en) Flux Cored Wire and Welding Method
JPS6252679B2 (en)
JP2009018337A (en) Flux cored wire for gas-shielded arc welding
JP2524774B2 (en) Submerged arc welding method for stainless steel
US4719330A (en) Welding electrode
EP0067494A1 (en) Welding electrode
CN104339100B (en) One side solder flux used for submerged arc welding
JP7252051B2 (en) Solid wire and weld joints for electroslag welding
JPH09262693A (en) Flux cored wire for arc welding
CN109128585B (en) Large-heat-input electro-gas welding gas-shielded flux-cored wire based on organization homogenization mechanism
JPH10272594A (en) Low hydrogen type coated electrode
JPH01210195A (en) Flux cored wire for self-shielded arc welding
JP3203527B2 (en) Flux-cored wire for gas shielded arc welding
JPH01271098A (en) Flux cored wire for gas shielded arc welding
JP2892575B2 (en) Non-consumable nozzle type electroslag welding wire and welding method
KR100502570B1 (en) Flux Cored Wire for stabilized stainless steel