JPS60152393A - Composite wire for electrogas arc welding and electrogas arc welding method - Google Patents

Composite wire for electrogas arc welding and electrogas arc welding method

Info

Publication number
JPS60152393A
JPS60152393A JP933784A JP933784A JPS60152393A JP S60152393 A JPS60152393 A JP S60152393A JP 933784 A JP933784 A JP 933784A JP 933784 A JP933784 A JP 933784A JP S60152393 A JPS60152393 A JP S60152393A
Authority
JP
Japan
Prior art keywords
wire
flux
arc welding
metal
electrogas arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP933784A
Other languages
Japanese (ja)
Other versions
JPS6252679B2 (en
Inventor
Yoshiya Sakai
酒井 芳也
Isao Aida
藍田 勲
Hidehiko Kanehira
兼平 秀彦
Masashi Okada
雅志 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP933784A priority Critical patent/JPS60152393A/en
Publication of JPS60152393A publication Critical patent/JPS60152393A/en
Publication of JPS6252679B2 publication Critical patent/JPS6252679B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent

Abstract

PURPOSE:To perform high-speed welding without generating pearshap high-temp. cracks with a wire formed by packing a flux in the cavity part enclosed of a tubular sheath made of a mild steel by regulating the content of C in the tubular sheath, the content of Mn in the entire wire and the content of the rare earth and Mg in the flux. CONSTITUTION:A composite wire for electrogas arc welding is formed by packing a flux into the cavity part enclosed of a tubular sheath made of a mild steel. C is incorporated at <=0.06wt% in said sheath and Mn at 1.5-3.5wt% in the entire wire. A rare earth is incorporated into the flux at 0.02-0.2wt% by the entire weight of the wire and Mg at 0.09-0.4wt% therein and the rare earth element in the flux/C content in the entire wire is adjusted to >=1.

Description

【発明の詳細な説明】 本発明は、高速度低入熱条件下においても耐高温割れ性
の優れた溶接金属を得ることのできるエレクトロガスア
ーク溶接(以下EGWという)用複合ワイヤ並びに該ワ
イヤを用いて行なうEGW方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a composite wire for electrogas arc welding (hereinafter referred to as EGW) that can obtain a weld metal with excellent hot cracking resistance even under high speed and low heat input conditions, and a method using the wire. The present invention relates to the EGW method.

EGWi−を溶接能率が高いという理由によって造船や
石油タンク等の大型構造物の建造に多用され、コスト低
減に役立っている。しかるにコスト低減を一層押し進め
るべくかつ溶接部特にボンド部からIIA Z部におけ
る靭性を向上させるべく溶接速度を更に高めようとする
と梨型割れが発生するという問題があり、高速化にも自
ずと限界があった。
Due to its high welding efficiency, EGWi is often used in shipbuilding and the construction of large structures such as oil tanks, helping to reduce costs. However, when trying to further increase the welding speed in order to further reduce costs and improve the toughness of the welded part, especially from the bond part to the IIA Z part, there is a problem that pear-shaped cracks occur, and there is a limit to increasing the speed. Ta.

ところで梨型割れは柱状晶会合部への低融点不純物の偏
析が原因となって発生するもので、その発生領域は第1
図に示す様に溶接速度とビード断面形状係数(H/W第
2図参照)の相関々係によって決定される。即ち梨型割
れの発生を防止する為には(1)溶接速度を低下させる
か又は(21(H/W)を低下させる必要がある。尚C
H/W)を低下させることは開先角度を鈍角にして開先
間口を広く採ることを意味する。しかるに上記の解決方
法はいずれも入熱量の増加が不可避のものであるからボ
ンド部からHAZ部ばかりでなく溶接金属の靭性値が低
下し、又溶接能率が低下する為EGWの長所が失なわれ
てしまう。
By the way, pear-shaped cracks occur due to the segregation of low-melting point impurities in the columnar crystal association area, and the occurrence area is the first
As shown in the figure, it is determined by the correlation between the welding speed and the bead cross-sectional shape factor (see H/W Figure 2). That is, in order to prevent the occurrence of pear-shaped cracks, it is necessary to (1) reduce the welding speed or reduce (21 (H/W).
Reducing the H/W) means making the groove angle obtuse and widening the groove width. However, in all of the above solutions, an increase in heat input is inevitable, so the toughness value of not only the bond area and the HAZ area but also the weld metal decreases, and the welding efficiency decreases, so the advantages of EGW are lost. I end up.

本発明はこうした事情に着目してなされたものであって
、梨型高温割れを発生させることなく高速度低入熱溶接
を行ない得る様な条件殊にこれを可能にするEGW用複
合ワイヤを提供することを第1の目的とし、又該ワイヤ
を用いて高速度低入熱条件下にEGWを行なうに当たシ
良好な特性の溶接金属を得ることができる様な溶接方法
を提供することを第2の目的とするものである。
The present invention has been made in view of these circumstances, and provides a composite wire for EGW that makes it possible to perform high-speed, low-heat-input welding without causing pear-shaped hot cracking. The first objective is to provide a welding method that can obtain weld metal with good properties when performing EGW using the wire under high speed and low heat input conditions. This is the second purpose.

しかして上記目的を達成した本発明のEGW用複合ワイ
ヤとは、軟鋼製管状外皮で囲まれる腔部にフラックスを
充填したものにおいて、(イ)軟鋼製外皮中のC:0.
06チ(重量−の意味、以下同じ)以下 (0)全ワイヤ中のMn : 1.5〜3.5 %とす
ると共に、充填フラックス中にはワイヤ全重量に対して (ハ)希土類元素金属:0.02〜0.2価に)金属M
g:0.09〜0.4襲 を夫々含有させ、且つ (ホ)(フラックス中の希土類元素金属/全ワイヤ中の
C最):1以上 に調整したものである点に要旨があ)、更に上記EGW
ワイヤを用いて行なう本発明の溶接方法とは、(溶接電
流/金属外皮断面flt)で表わされる電流密度を29
0〜500A/mf、〔(ワイヤエクステンション)/
(ワイヤ直径)2〕(以下L/1)”と表わす)を12
〜25に夫々設定して溶接を行なう点に要旨が存在する
The composite wire for EGW of the present invention that achieves the above object is one in which a cavity surrounded by a tubular outer shell made of mild steel is filled with flux, and (a) C: 0 in the outer shell made of mild steel.
(0) Mn in the total wire: 1.5 to 3.5%, and (c) Rare earth metal in the filling flux based on the total weight of the wire. :0.02 to 0.2 valence) Metal M
g: 0.09 to 0.4, respectively, and (e) (rare earth element metal in flux / C maximum in all wires): adjusted to 1 or more), Furthermore, the above EGW
The welding method of the present invention using a wire is such that the current density expressed as (welding current/metal skin cross section flt) is 29
0~500A/mf, [(wire extension)/
(Wire diameter) 2] (hereinafter referred to as L/1)" is 12
The gist lies in that welding is performed with the respective settings set to 25 to 25.

まず本発明ワイヤの成分構成について説明する。First, the composition of the wire of the present invention will be explained.

(イ)軟鋼製外皮中のC:0.06%以下軟鋼製外皮中
に含有されるC量が多すぎると溶滴の爆発をひき起こし
てアークが不安定となり、作条性の悪化やスパッタ発生
並びに表面ピードにおけるスラグホールド発生の原因と
なると共に、ヒユーム発生量を増大させて作業環境を悪
化させるので、含有量は0.06%以下とする必要があ
る。
(a) C in the mild steel outer skin: 0.06% or less If the amount of C contained in the mild steel outer skin is too large, it will cause explosion of droplets, making the arc unstable, causing deterioration of the workability and spatter. The content needs to be 0.06% or less because it causes slag hold in the surface peed and increases the amount of fume generated, deteriorating the working environment.

(ロ)全ワイヤ中のMn : 1.5〜3.5 %梨型
割れの原因となる低融点不純物のうち特に代表的なもの
としてはFe5(融点988℃)が挙げられるが、Mn
を適量添加しておくとFeSが還元されてMnSが生成
し、これが結晶粒界あるいは結晶粒内に分散する。その
結果FeS等の低融点不純物の偏析が解消されて梨型高
温割れの発生が防止される。又Mnの添加によシ結晶粒
が微細化するので溶接金属の靭性及び強度が向上する。
(b) Mn in all wires: 1.5 to 3.5% Among the low melting point impurities that cause pear-shaped cracks, Fe5 (melting point 988°C) is particularly representative, but Mn
When an appropriate amount of is added, FeS is reduced to generate MnS, which is dispersed at the grain boundaries or within the grains. As a result, the segregation of low melting point impurities such as FeS is eliminated, and the occurrence of pear-shaped hot cracks is prevented. Furthermore, the addition of Mn makes the crystal grains finer, thereby improving the toughness and strength of the weld metal.

この様な効果を有効に発揮させるにはMnを1.5価以
上含有させる必要がある。しかしながら3.5俤を超え
て含有させると、凝固時の初晶であるγ相が安定化する
と共に、元々EGWにおいては溶接部に大入熱(少ない
場合でも25 KJ/cm )が加わっているので、M
nS等の硫化物結晶が逆に成長しすぎて梨型高温割れが
発生し易くなる。
In order to effectively exhibit such an effect, it is necessary to contain Mn with a valence of 1.5 or more. However, if the content exceeds 3.5 yen, the γ phase, which is the primary crystal during solidification, is stabilized, and a large heat input (25 KJ/cm2 even in the case of a small amount) is originally added to the weld zone in EGW. Therefore, M
Conversely, sulfide crystals such as nS grow too much and pear-shaped hot cracks are likely to occur.

尚Mnを添加する為に配合されるフラックス原料として
は、F e−Mn%F e−5i−Mn、金属Mn等が
例示される。フープ中のMnはワイヤ伸練性な考慮する
と、0.6係2以下が望ましい。
Incidentally, examples of the flux raw material blended to add Mn include Fe-Mn%Fe-5i-Mn, metal Mn, and the like. Considering the wire extensibility, Mn in the hoop is desirably 0.6 coefficient 2 or less.

(ハ)希土類元素金属:充填フラックス中にワイヤ全重
量に対して0,02〜 0.2係 希土類元素は脱備作用及び脱燐作用を有し、溶接金属中
のS+Pと反応して硫化物や燐化物を生成し、スラグ中
へ移行する。その結果FeS等の低融点不純物の生成を
減少させ、粒界への低融点不純物の偏析を減少すること
ができる。さらに、溶接金属中に残ったP、Sも高融点
のLal!5stcesζ)を形成するため、低融点液
相が凝固の最終段階で粒界に偏析することを防止する効
果がある。
(c) Rare earth metal: Rare earth elements with a ratio of 0.02 to 0.2 relative to the total weight of the wire in the filling flux have a depletion effect and a dephosphorization effect, and react with S+P in the weld metal to form sulfides. and phosphides, which migrate into the slag. As a result, the formation of low melting point impurities such as FeS can be reduced, and segregation of low melting point impurities to grain boundaries can be reduced. Furthermore, the P and S remaining in the weld metal also have a high melting point, Lal! 5stcesζ), this has the effect of preventing the low melting point liquid phase from segregating at the grain boundaries in the final stage of solidification.

上記効果を有効に発揮させる為にはフラックス中に希土
類元素金属をワイヤ全重量に対して0.02φ以上添加
する必要がある。しかしながら添加量が多すぎるとアー
クの県中性がなくなって、溶込み不良が発生すると共に
作条性が悪化するので、2チ以下に抑えなければならな
い。
In order to effectively exhibit the above effect, it is necessary to add 0.02φ or more of rare earth element metal to the total weight of the wire. However, if the amount added is too large, arc neutrality will be lost, poor penetration will occur, and the rowability will deteriorate, so it must be kept at 2 or less.

希土類元素金屑添加原料としてはミツシュメタルやRE
M含有Ca−51等が例示され、中でもLaやCa等の
軽希土類元素を主成分とするものが望ましい。
Mitshu metal and RE are used as rare earth element gold scrap additive raw materials.
Examples include M-containing Ca-51, among which those containing light rare earth elements such as La and Ca as a main component are desirable.

に)金属Mg二充填フシックス中にワイヤ全重量に対し
て0.09〜0.4チ Mgは強力な脱酸元素であって添加量を調整することに
よ)溶接金属の酸素量を制御することができる。どの作
用によって溶接金属の酸素量を700兜程度まで低下さ
せることができると溶接金属のデンドライト粒界におけ
る結晶粒を微細化することができ、梨型高温割れの発生
を効果的に抑制することができると共に靭性も向上する
。しかしながら上記酸素量が低下しすぎるとS及びPを
酸化物として捕捉し分散化する効果が失なわれ、膜状の
硫化物が発生して耐割れ性が低下するので3、oopp
m以上に保持する必要がある。尚酸素量低減の為に多量
のMgを添加すると添加量に応じて高融点物質であるM
gOが生成しスラグ中に占めるMgOの割合が大きくな
る。その結果Cu当金の摺動抵抗が増加してピード外観
が悪化するのでこの面からもMgの添加量は制限される
2) 0.09 to 0.4% Mg is a strong deoxidizing element based on the total weight of the wire in the metal Mg double-filled fusix, and by adjusting the amount added, the amount of oxygen in the weld metal can be controlled. be able to. If the amount of oxygen in the weld metal can be reduced to about 700 ml by which action, the crystal grains at the dendrite grain boundaries of the weld metal can be refined, and the occurrence of pear-shaped hot cracks can be effectively suppressed. It also improves toughness. However, if the above oxygen content decreases too much, the effect of capturing and dispersing S and P as oxides will be lost, a film-like sulfide will be generated, and the cracking resistance will decrease.
m or more. Furthermore, if a large amount of Mg is added to reduce the amount of oxygen, M, which is a high melting point substance, will increase depending on the amount added.
gO is generated and the proportion of MgO in the slag increases. As a result, the sliding resistance of the Cu metal increases and the appearance of the pead deteriorates, so the amount of Mg added is limited from this point of view as well.

以上の理由から充填フラックス中に占める金属Mgの含
有量は、ワイヤ全重量に対して0.09/−0,4%と
定めた。
For the above reasons, the content of metallic Mg in the filling flux was determined to be 0.09/-0.4% based on the total weight of the wire.

Mg添加原料としては、金属Mg%S1−Mg合金、N
i−Mg合金、Al−Mg合金、Fe−81−Mg合金
等が例示され、中でもAI’−Mg合金は、ワイヤエク
ステンションを長大化しても安定なアークが得られるの
で望ましい。
Mg additive raw materials include metal Mg%S1-Mg alloy, N
Examples include i-Mg alloy, Al-Mg alloy, Fe-81-Mg alloy, etc. Among them, AI'-Mg alloy is preferable because a stable arc can be obtained even if the wire extension is made long.

19(フラックス中の希土類元素金属/全ワイヤ中のC
量)=1以上 溶接金属の凝固初晶であるγ相に対するS及び1 Pの溶解度はδ相に対する溶解度のi−7である。
19 (Rare earth metal in flux/C in total wire
amount)=1 or more The solubility of S and 1P in the γ phase, which is the solidified primary crystal of the weld metal, is i-7 of the solubility in the δ phase.

しかるにCはr相安定化元素であるのでC含有量が多い
とγ相が多くなってS及びPの溶解度が減少しこれが液
相に残留し凝固の最終段階において粒界に析出し耐割れ
性を低下させる。従ってC量は少ないことが望ましいが
若干のCはどうしても存在するので希土類元素の添加効
果によってこれを相殺する必要がある。即ち(フラック
ス中の希土類元素金属/全ワイヤ中のC量)で示される
比を1.0以上とすることによってS及びPが粒界に析
出するのを防止することができる。
However, since C is an r-phase stabilizing element, when the C content is high, the γ phase increases and the solubility of S and P decreases, which remains in the liquid phase and precipitates at grain boundaries in the final stage of solidification, reducing cracking resistance. decrease. Therefore, it is desirable that the amount of C be small, but since some amount of C is inevitably present, it is necessary to offset this by the effect of adding the rare earth element. That is, by setting the ratio (rare earth metal in flux/C amount in total wire) to 1.0 or more, it is possible to prevent S and P from precipitating at grain boundaries.

本発明複合ワイヤの基本榴成は上記の通シであシ、該複
合ワイヤを用いてEGWを行なった場合の梨型割れ発生
領域は第3図に示す様にな)ル賀値並びに溶接速度の許
容範囲が拡大される。
The basic formation of the composite wire of the present invention is the above-mentioned throughput, and when EGW is performed using the composite wire, the pear-shaped crack occurrence area is as shown in Figure 3). The permissible range will be expanded.

尚上記以外の複合ワイヤ構成成分としては以下のものが
挙げられる。
In addition, the following may be mentioned as composite wire constituents other than those mentioned above.

V:ワイヤ全重量に対し0.07〜0.6チ■は結晶粒
を微細化すると共にδ相を安定化する効果かあ)、これ
らによって耐割れ性をよシ完壁にする。従って梨型高温
割れをよシ完壁に防止する上で全ワイヤ重量に対して0
.07%以上添加することが望ましい。一方添加量が多
すぎると、■が不純物として作用し、溶接金8の靭性を
低下するので0.6チ以下に制限することが推奨される
V: 0.07 to 0.6 inches based on the total weight of the wire has the effect of making the crystal grains finer and stabilizing the δ phase.These factors make the cracking resistance perfect. Therefore, in order to completely prevent pear-shaped hot cracking, it is necessary to
.. It is desirable to add 0.7% or more. On the other hand, if the amount added is too large, (2) acts as an impurity and reduces the toughness of the weld metal 8, so it is recommended to limit it to 0.6 inches or less.

(S i 02 +2T i Ot )/Mg : 1
.6以上Sin、及びTie、はスラグをガラス質に保
ちCu当金との滑性を良好にする効果があるので、前記
MgO生成によるCu当金の摺動抵抗の増加を抑制する
ことができ、ひいてはビード外観の悪化を防止すること
ができる。上記効果を得る為にラックス中に添加するこ
とが望まれる。
(S i 02 +2T i Ot )/Mg : 1
.. 6 or more Sin and Tie have the effect of keeping the slag glassy and improving the slipperiness with the Cu metal, so it is possible to suppress the increase in the sliding resistance of the Cu metal due to the MgO generation, As a result, deterioration of the bead appearance can be prevented. In order to obtain the above effects, it is desirable to add it to the lux.

又フラックス中に脱硫作用の大きいCaF2等を添加し
たシ、スラグが塩基性となる様なスラグに制限はないも
のの下記条件を満足する様に製造することが望まれる。
Although there is no limit to the slag in which CaF2, etc., which have a large desulfurization effect are added to the flux, and the slag becomes basic, it is desirable to manufacture the slag so as to satisfy the following conditions.

即ちワイヤの断面構造については特に制限はなく、円筒
型(オープンシーム及びクローズドシームを含む)、ア
ップル型、OW型等のいずれでも良いが、ワイヤの蛇行
防止や細径ワイヤへの適用等を考慮すると円筒型が好ま
しい。
In other words, there is no particular restriction on the cross-sectional structure of the wire, and it may be cylindrical (including open seam and closed seam), apple shape, OW shape, etc., but consideration should be given to preventing wire meandering and application to small diameter wires. In this case, a cylindrical shape is preferable.

上記の構成からなる複合ワイヤを用いることによって、
高温の梨型割れ発生の危険をみることなくより低入熱・
高速度化することが容易になった。
By using a composite wire with the above configuration,
Lower heat input without the risk of high-temperature pear-shaped cracking
It is now easier to increase speed.

尚この効果を発揮するに当って、高速度・低入熱施工に
適したワイヤ及びそのワイヤを用いる施工条件を検討し
た結果、ワイヤの溶融速度を飛躍的に上昇することによ
りその目的を達成した。
In order to achieve this effect, we investigated the wire suitable for high-speed, low-heat-input construction and the construction conditions using that wire, and as a result, we achieved the goal by dramatically increasing the melting speed of the wire. .

又ワイヤの断面形状については、ワイヤエクステンショ
ン部でのジュール熱効果を発揮させてワイヤ溶融速度を
向上させる為に、 (軟鋼製外皮断面積)/(ワイヤ全断面積)で示される
比を0.55〜0.69とすることが望まれる。即ち該
比が0.69を超えると良導電体でちる軟鋼製外皮の割
合が非導電体であるフ2ツクス部の割合に比べて犬きく
な)すぎて電気抵抗が低下すると共に実質的な電流密度
も低下する。その結果発生ジュール熱量が減少してワイ
ヤの溶融速度も低下する。一方上記の比が0.55未満
であると金属外皮の肉厚が薄すぎる為に細径まで伸線す
ると断線やワイヤの折れ曲がシ等の製造上の困難が発生
する。
Regarding the cross-sectional shape of the wire, in order to increase the wire melting rate by exerting the Joule heating effect at the wire extension part, the ratio expressed by (mild steel outer cross-sectional area) / (total wire cross-sectional area) is set to 0. It is desirable to set it as 55-0.69. In other words, if the ratio exceeds 0.69, the proportion of the mild steel outer skin made of a good conductor becomes too small compared to the proportion of the fuselage part, which is a non-conductor, and the electrical resistance decreases and the substantial Current density also decreases. As a result, the amount of Joule heat generated decreases, and the melting rate of the wire also decreases. On the other hand, if the above-mentioned ratio is less than 0.55, the thickness of the metal jacket is too thin, and when the wire is drawn to a small diameter, manufacturing difficulties such as wire breakage and bending of the wire occur.

尚上記ワイヤを用いるに当たってはワイヤ径を0.9〜
1.6 +n+nφとすることが望ましい。即ち前記(
軟鋼製外皮断面積/ワイヤ全断面積)で示される比が適
正であってもワイヤ径が1.6o+mφを超えると良導
電性部である金属外皮の絶対量が増大し電流密度が低下
する。その結果ジュール熱効果が十分に発揮されず溶融
速度の低下をまねく、一方ワイヤ径が0.9 mmφ未
満の場合には複合ワイヤの製造が困難になる。
In addition, when using the above wire, the wire diameter should be 0.9~
It is desirable to set it to 1.6 +n+nφ. That is, the above (
Even if the ratio (cross-sectional area of mild steel sheath/total cross-sectional area of wire) is appropriate, if the wire diameter exceeds 1.6o+mφ, the absolute amount of the metal sheath, which is a highly conductive portion, increases and the current density decreases. As a result, the Joule heating effect is not sufficiently exerted, leading to a decrease in the melting rate, and on the other hand, when the wire diameter is less than 0.9 mmφ, it becomes difficult to manufacture a composite wire.

一方溶融速度を高めてもワイヤの単位当たり重量あるい
は金属分の割合が少なければ結果として溶接速度の向上
は望めない。そこで充填フラックス中の溶接金属形成々
分量即ち(鉄粉十合金元素)量をできる限り多くすると
とが望まれるが、一方フラックス中にはスラグ形成剤等
として非金属物質を含有させる必要があるので溶接金属
形成4分量を確保する為には、非金属物質総lit、が
ワイヤ全重量に対して0.4〜3.9%となる様に調整
することが望まれる。非金属物質総量が3.9係を超え
ると溶着効率が低下するので溶接速度の向上が望めなく
なる。一方0.4%未満になるとビード表面をスラグに
よって均一に被包することができず、ピ° −ドの外観
が悪化する。尚上記非金属物質とじてはS i02 +
 T + 02 r Ca Or Ca F2等が例示
される。
On the other hand, even if the melting speed is increased, if the weight per unit of wire or the proportion of metal is small, no improvement in the welding speed can be expected as a result. Therefore, it is desirable to increase the amount of weld metal forming elements (10 iron powders and 10 alloy elements) in the filling flux, but on the other hand, it is necessary to include nonmetallic substances as slag forming agents in the flux. In order to secure 4 parts of weld metal formation, it is desirable to adjust the total amount of nonmetallic substances to 0.4 to 3.9% with respect to the total weight of the wire. If the total amount of nonmetallic substances exceeds 3.9, the welding efficiency decreases, making it impossible to expect an increase in welding speed. On the other hand, if it is less than 0.4%, the bead surface cannot be uniformly covered with slag, and the appearance of the bead deteriorates. In addition, the above-mentioned nonmetallic substance is S i02 +
Examples include T + 02 r Ca Or Ca F2.

更にワイヤ仕上シ状態における充填フラックスの嵩比重
は4,6〜6.6とすることが望ましい。高比重が6.
6を超えると充填フラックス中の金属成分にも溶接電流
が流れ、金属外皮の電流密度が小さくなってジュール熱
発生量が低下する。又充填フラックスが圧密状態となる
為に伸線中に断線する等の製造上の困難に遭遇する。一
方高比量が4.6未満の場合には溶接金属形成4分の充
填率が低下し溶着効率が悪化する。尚嵩比重の調整は軟
鋼製金属外皮の肉厚、フラックス粒度、フラックス率等
を調整することによシ行なう。更にフラックス中の鉄粉
量はワイヤ全重量に対して15裂以上とすることが望ま
しい。又充填フラックスは水ガラス等のバインダーによ
シ予め造粒しておくと該7シツクスに溶接電流が流れる
ことがないので71z流密度(後に詳述)を高くする効
果が発揮されて好ましい。
Furthermore, it is desirable that the bulk specific gravity of the filling flux in the wire finishing state is 4.6 to 6.6. High specific gravity is 6.
When it exceeds 6, the welding current also flows through the metal components in the filling flux, the current density in the metal sheath becomes small, and the Joule heat generation amount decreases. Furthermore, since the filling flux becomes compacted, manufacturing difficulties such as wire breakage occur during wire drawing. On the other hand, if the high ratio is less than 4.6, the filling rate of the four weld metal forming portions decreases and the welding efficiency deteriorates. The bulk specific gravity is adjusted by adjusting the thickness of the mild steel metal shell, flux particle size, flux rate, etc. Furthermore, it is desirable that the amount of iron powder in the flux be 15 or more pieces based on the total weight of the wire. Preferably, the filling flux is granulated in advance with a binder such as water glass, since this prevents the welding current from flowing through the seven sixes, thereby increasing the 71z flow density (described in detail later).

上記構成の複合ワイヤを用いることによって梨型高温割
れを発生さぜることなく高速度低入熱のEGWを行々う
と占が可能となった。
By using a composite wire with the above configuration, it has become possible to perform high-speed, low-heat-input EGW without causing pear-shaped hot cracking.

次に上記複合ワイヤの特性を十分に引出す為の溶接方法
殊に施工条件について説明する。
Next, welding methods, particularly construction conditions, for fully bringing out the characteristics of the composite wire will be described.

(溶接電流/金属外皮断面積)で示される電流密度: 
290〜500A/mnF 溶融速度を高めるに当たっては電流密度を高める必要が
あるが、500A/m♂を超えるitどに高めるとアー
クが不安定になると共にピード外観が恐くなり溶込みも
浅くなる。一方290 A/mm2未満になるとワイヤ
の溶融速度が遅くなシ高速度溶接が達成できなくなる。
Current density expressed as (welding current/metal skin cross-sectional area):
290-500 A/mnF In order to increase the melting rate, it is necessary to increase the current density, but if it is increased to more than 500 A/m♂, the arc becomes unstable, the pead appearance becomes scary, and the penetration becomes shallow. On the other hand, if it is less than 290 A/mm2, the melting rate of the wire is slow and high speed welding cannot be achieved.

L/D2:12〜25 ワイヤエクステンションはワイヤ溶融速度を圧右する因
子であって十分なジュール熱効果を得る為にはL/D2
を12収上にする必要がある。しかしながらL/D2が
犬きくなシすぎるワイヤのエクステンションが長大化し
すぎてワイヤが蛇行すると共にアークが不安定となり、
且つ溶接電圧が低下して外観不良や溶込み不良が発生す
るのでしΦ2は25以下に抑える必要がある。
L/D2: 12-25 The wire extension is a factor that influences the wire melting rate, and in order to obtain a sufficient Joule heating effect, L/D2
It is necessary to increase the amount by 12 points. However, if L/D2 is too tight, the wire extension becomes too long, causing the wire to meander and the arc to become unstable.
In addition, the welding voltage decreases, resulting in poor appearance and poor penetration, so it is necessary to suppress Φ2 to 25 or less.

その他、電流極性を正極性にすることによってワイヤ溶
融速度を20〜25チ向上させる手法を、必要により採
用することが推奨される。尚正極性とするに当たってシ
ールドガスとしてAr−Co2あるいはAr−02を用
いるとアークが安定するので好ましい。
In addition, it is recommended to adopt a method of increasing the wire melting rate by 20 to 25 degrees by changing the current polarity to positive polarity, if necessary. It is preferable to use Ar-Co2 or Ar-02 as the shielding gas in order to achieve positive polarity because the arc will be stabilized.

本発明は以上の様に措成されており、軟鍛製外皮並びに
充填フラックスを夫々前記のyITiり規定したので、
該複合ワイヤを用いて行なうEGWにおいて梨型高温割
れの発生領域を第3図に示す如くH/W値が大きく且つ
溶接速度が大きい側(図中の右上側)へ後退させること
ができた。そして該複合ワイヤを用いてEGWを行なう
に当/こり、溶接施工条件を前記の通り規定したので梨
型高温割れを発生することなく、EGWの高速度低入熱
化を達成することができ、その結果溶接コストを低減す
ることができた。又高速度低入熱化の達成によりボンド
部からHAZ部における靭性を高めることができた。
The present invention is constructed as described above, and the soft forged outer skin and the filling flux are specified as yITi, respectively.
In EGW performed using the composite wire, the region where pear-shaped hot cracks occur could be moved back to the side where the H/W value is large and the welding speed is high (upper right side in the figure) as shown in FIG. When performing EGW using the composite wire, welding conditions were specified as described above, so high speed and low heat input of EGW could be achieved without generating pear-shaped hot cracking. As a result, welding costs could be reduced. Furthermore, by achieving high speed and low heat input, it was possible to improve the toughness from the bond part to the HAZ part.

尚本発明は主として立向EGWに適用されるものである
が、横向EGWやエレクトロスラグ溶接においても割れ
防止の結果を発揮する。
Although the present invention is mainly applied to vertical EGW, it also exhibits crack prevention results in horizontal EGW and electroslag welding.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

第1表(イ)、(ロ)に示す成分・組成の複合ワイヤを
用いて、CO2流量: 30 /j /sinの下にサ
イリシタ式直流定電圧特性(逆極性)の電源で、板厚2
5mmのHT50材のEGWを行なった。尚ワイヤA〜
I及びP−Tは比較例、ワイヤJ −Nは参考例、ワイ
ヤU−Zは実施例を夫々示す。
Using a composite wire with the components and compositions shown in Table 1 (a) and (b), a CO2 flow rate of 30 /j /sin was used, and a power supply with thyristor type DC constant voltage characteristics (reverse polarity) was used, and the plate thickness was 2.
EGW of 5mm HT50 material was performed. Furthermore, wire A~
Wires I and PT represent comparative examples, wires J-N represent reference examples, and wires U-Z represent examples, respectively.

ワイヤAは、軟鋼製外皮中のC量が0.01%と高い為
にスパッタが多発して作業性が悪化し溶着効率が低下す
ると共にスラグホールドが発生してビード外観が悪化し
た。ワイヤBは、全ワイヤ中のM n ff(が1.3
8と低い為硫化物の分散化が阻害され且つ結晶粒が粗大
化して梨型割れが発生した。
Wire A had a high carbon content of 0.01% in the mild steel outer sheath, which caused frequent spatter, poor workability, reduced welding efficiency, and caused slag hold, which worsened the bead appearance. Wire B has M n ff (1.3
8, which inhibited the dispersion of sulfides and coarsened the crystal grains, resulting in pear-shaped cracks.

ワイヤCは、全ワイヤ中のMn量が3.87%と高い為
初晶のγ相が安定化し、γ相に溶けきれずに柱状晶会合
部に残留した硫化物が大きく成長し過ぎて梨型割れが発
生した。ワイヤDは、希土類元素が0.005%ど低い
為に梨型割れ発生防止効果1が発揮されなかった。ワイ
ヤEは、希土類元素が0.24チと多い為アークの集中
性が無くなり溶込み不良が発生すると共に作業性が劣化
した。ワイヤFは、希土類元素/全C量で示される比が
0.58と低い為に炭素の割れに対する影響を相殺する
ことができず梨型割れが発生した。ワイヤGは、金属M
g量が0.06と低い為に脱酸効果が発揮されず酸素1
よ低下による結晶粒微細化効果が薄れて梨型割れが発生
した。尚このときの酸素量は900pIll11であっ
た。ワイヤHは、金屑Mg債が0.51チと高すぎる為
スラグ中に占めるMg0(高融点物質)の割合が高くな
りCu当金の摺動抵抗が増大してビードの外観が悪化し
た。ワイヤIは、希土類元素を添加しなかったので梨型
割れの発生を防止できなかった。
Wire C has a high Mn content of 3.87% in the entire wire, so the primary γ phase is stabilized, and the sulfide that cannot be completely dissolved in the γ phase and remains in the columnar crystal association grows too large and becomes pear. A mold crack occurred. Wire D did not exhibit pear-shaped cracking prevention effect 1 because the rare earth element content was as low as 0.005%. Wire E had a high rare earth element content of 0.24%, so the arc concentration was lost, poor penetration occurred, and workability deteriorated. Wire F had a low ratio of rare earth element/total C content of 0.58, so the influence of carbon on cracking could not be offset, and pear-shaped cracking occurred. Wire G is metal M
Since the g amount is as low as 0.06, the deoxidizing effect is not exhibited and oxygen 1
The effect of grain refinement due to lowering the grain size was weakened, and pear-shaped cracks occurred. The amount of oxygen at this time was 900 pIll11. In wire H, the gold scrap Mg bond was too high at 0.51 mm, so the proportion of Mg0 (high melting point substance) in the slag increased, the sliding resistance of the Cu metal increased, and the appearance of the bead deteriorated. Since Wire I did not contain any rare earth elements, the occurrence of pear-shaped cracks could not be prevented.

これらに対しワイヤJ −Nは本発明の参考例であって
、ワイヤJは、(軟鋼製外皮断面積/ワイヤ全断面積)
で示される比が太きすぎる為にワイヤとしての電気抵抗
が低下し且つ電流密度も低下してジュール熱効果が十分
に発揮されない。その結果ワイヤの溶融速度が低くなり
溶接速度がやや低下した。ワイヤには非金属物質総量が
0.29係と少なすぎる為にスラグ量が不足してビード
表面を十分均一に被包することができずど一ドの外観が
悪化した。ワイヤLは、スラックス中の非金に4物質総
量が4.35q6と多すぎる為に相対的に金属成分が不
足して溶着効率が低下して十分な溶接速度が得られなか
った。ワイヤMは、充填フラックスの嵩比重が低すぎる
為に溶着効率が低下して溶接速度がやや低下した。ワイ
ヤNは、充填フラックスの嵩比重が高すぎる為に溶接電
流がフシックスにも流れて電流密度が低下しジュール熱
効果が希釈されると共に、ワイヤが折れ易くなった。
On the other hand, wire J-N is a reference example of the present invention, and wire J is (cross-sectional area of mild steel outer skin/total cross-sectional area of wire)
Since the ratio shown by is too thick, the electrical resistance as a wire decreases, and the current density also decreases, so that the Joule heating effect is not fully exhibited. As a result, the melting rate of the wire became low and the welding speed decreased slightly. Since the total amount of non-metallic substances in the wire was too small at 0.29%, the amount of slag was insufficient and the bead surface could not be coated sufficiently uniformly, resulting in poor appearance of the bead. In wire L, the total amount of the four non-gold substances in the slack was 4.35q6, which was too large, so the metal components were relatively insufficient, the welding efficiency decreased, and a sufficient welding speed could not be obtained. In wire M, the bulk specific gravity of the filling flux was too low, so the welding efficiency decreased and the welding speed decreased slightly. In Wire N, since the bulk specific gravity of the filling flux was too high, the welding current also flowed through the flux, reducing the current density, diluting the Joule heating effect, and making the wire more likely to break.

一方ワイヤI゛〜Sは溶接施工条件が本発明を満足しな
い比較例であって、ワイヤPは、電流密度が550 A
/mm2と高すぎる為にアークが不安定になると共にビ
ード外観が悪化し、且つ溶込み不良が発生した。ワイヤ
Qは電流密度が270 A/mm2と低い為ワイヤ溶融
速度が低下した。ワイヤRはL/D2で示される比が2
9と過大である為ワイヤの蛇行、アーク不安定、電圧低
下等が発生し、ビード外観不良や溶込み不良が発生した
。ワイヤSはL/D2が9と少ない為即ちワイヤエクス
テンションが短小である為に十分なジュール熱効果を得
ることができず溶接速度が低下した。
On the other hand, wires I~S are comparative examples whose welding conditions do not satisfy the present invention, and wire P has a current density of 550 A.
/mm2, which was too high, made the arc unstable, deteriorated the bead appearance, and caused poor penetration. Wire Q had a low current density of 270 A/mm2, so the wire melting rate was low. The wire R has a ratio L/D2 of 2.
9, which was too large, caused wire meandering, arc instability, voltage drop, etc., resulting in poor bead appearance and poor penetration. Since the wire S had a low L/D2 of 9, that is, the wire extension was short and small, a sufficient Joule heating effect could not be obtained and the welding speed was reduced.

又ワイヤTはワイヤ径が2.0 mmφと大径であって
且つ(軟j(1製外皮断面積/ワイヤ全所面積)で示さ
れる比が正常である為に軟銅H外皮部分の絶対(1tが
大きくなり、′、IL流密度が低下して十分なジュール
熱効果を得ることができなかった。その結果溶接速度が
低下した。
In addition, the wire T has a large wire diameter of 2.0 mmφ, and the ratio shown by (soft j (cross-sectional area of the outer skin made of 1/total area of the wire)) is normal, so the absolute ( 1t increased, the IL flow density decreased, and a sufficient Joule heating effect could not be obtained.As a result, the welding speed decreased.

これらに対しワイヤU−Zは複合ワイヤの成分組成並び
に溶接施工条件が共に本発明を満足しており、梨型割れ
が発生しないだけでなく溶接作業性やビード外観も良好
で健全な溶接金属を得ることができた。
On the other hand, Wire U-Z satisfies the present invention in both the component composition of the composite wire and the welding conditions, and it not only does not cause pear-shaped cracks, but also has good welding workability and bead appearance, and produces a sound weld metal. I was able to get it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の複合ワイヤを用いてE G Wを行なっ
た場合の割れ発生領域を示すグラフ、第2図H/ w仏
説明断面図、第3図は本発明に係る複合ワイヤを用いて
E G ”vVを行なった場合の割れ発生領域を示すグ
ラフである。 く ; 一′ −一一≦1目齢≦憔ミ
Fig. 1 is a graph showing the crack occurrence area when EGW is performed using a conventional composite wire, Fig. 2 is a cross-sectional view explaining H/W, and Fig. 3 is a graph showing the crack occurrence area when EGW is performed using the composite wire according to the present invention. EG is a graph showing the crack occurrence area when vV is performed.

Claims (2)

【特許請求の範囲】[Claims] (1)軟鋼製管状外皮で囲まれる腔部にフラックスを充
填してなるエレクトロガスアーク溶接用複合ワイヤにお
いて、 げ)軟鋼製外皮中のC:0.06裂(重量襲の意味、以
下同じ)以下 (ロ)全ワイヤ中のMn : 1.5〜3.5 %とす
ると共に、充填フラックス中にはワイヤ全重量に対して (ハ)希土類元素金属:0.02〜0.2襲に)金属M
g:0.09〜0.4係 を夫々含有させ、且つ (ホ)フラックス中の希土類元素金属/全ワイヤ中のC
量:1以上 に調感することを特徴とするエレクトロガスアーク溶接
用複合ワイヤ。
(1) In a composite wire for electrogas arc welding in which a cavity surrounded by a mild steel tubular sheath is filled with flux, C: C in the mild steel sheath: 0.06 cracks (meaning weight attack, the same applies hereinafter) or less (b) Mn in the total wire: 1.5 to 3.5%, and (c) Rare earth element metal: 0.02 to 0.2%) metal in the filling flux based on the total weight of the wire. M
g: 0.09 to 0.4, and (e) rare earth metal in flux/C in total wire.
Composite wire for electrogas arc welding characterized by having a sensitivity of 1 or more.
(2)軟鋼製管状外皮で囲まれる腔部にフラックスを充
填してなるエレクトロガスアーク溶接用複合ワイヤを用
いて行なうエレクトロガスアーク溶接方法であって、 (イ)軟鋼製外皮中のC:0.06%以下(ロ)全ワイ
ヤ中のMn : 1.5〜3.5 %とすると共に、充
填フラックス中にはワイヤ全重量に対して (ハ)希土類元素金属:0.02〜0.2条に)金属M
g:0.09〜0,4チ を夫々含有さぜ、且つ (ホ)(フラックス中の希土類元素金JfA/全ワイヤ
中のC量)=1以上 に調整してなるエレクトロガスアーク溶接用複合ワイヤ
を用いて、(溶接電流/軟鋼製外皮断面積)で表わされ
る電流密度を290〜500A/mrrP。 〔(ワイヤエクステンション)/(ワイヤ直径)2〕を
12〜25に夫々設定して溶接を行なうことを特徴とす
るエレクトロガスアーク溶接方法。
(2) An electrogas arc welding method using a composite wire for electrogas arc welding in which a cavity surrounded by a tubular outer skin made of mild steel is filled with flux, wherein (a) C in the outer skin made of mild steel: 0.06 % or less (b) Mn in the total wire: 1.5 to 3.5%, and (c) Rare earth element metal: 0.02 to 0.2 strips based on the total wire weight in the filling flux. ) Metal M
Composite wire for electrogas arc welding, containing g:0.09 to 0.4H, and (e) (rare earth element gold JfA in flux/C amount in total wire) = 1 or more. using a current density of 290 to 500 A/mrrP expressed as (welding current/cross-sectional area of mild steel outer skin). An electrogas arc welding method characterized in that welding is performed by setting [(wire extension)/(wire diameter) 2] to 12 to 25, respectively.
JP933784A 1984-01-20 1984-01-20 Composite wire for electrogas arc welding and electrogas arc welding method Granted JPS60152393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP933784A JPS60152393A (en) 1984-01-20 1984-01-20 Composite wire for electrogas arc welding and electrogas arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP933784A JPS60152393A (en) 1984-01-20 1984-01-20 Composite wire for electrogas arc welding and electrogas arc welding method

Publications (2)

Publication Number Publication Date
JPS60152393A true JPS60152393A (en) 1985-08-10
JPS6252679B2 JPS6252679B2 (en) 1987-11-06

Family

ID=11717655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP933784A Granted JPS60152393A (en) 1984-01-20 1984-01-20 Composite wire for electrogas arc welding and electrogas arc welding method

Country Status (1)

Country Link
JP (1) JPS60152393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252694A (en) * 1986-04-23 1987-11-04 Nippon Steel Corp Flux cored wire for gas shielded arc welding
JP2016515942A (en) * 2013-03-11 2016-06-02 ザ・エサブ・グループ・インク Self-shielding alloy composition having low diffusible hydrogen and high Charpy V-notch impact toughness

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268658U (en) * 1988-11-10 1990-05-24

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252694A (en) * 1986-04-23 1987-11-04 Nippon Steel Corp Flux cored wire for gas shielded arc welding
JPH0565277B2 (en) * 1986-04-23 1993-09-17 Nippon Steel Corp
JP2016515942A (en) * 2013-03-11 2016-06-02 ザ・エサブ・グループ・インク Self-shielding alloy composition having low diffusible hydrogen and high Charpy V-notch impact toughness
US10421160B2 (en) 2013-03-11 2019-09-24 The Esab Group, Inc. Alloying composition for self-shielded FCAW wires with low diffusible hydrogen and high Charpy V-notch impact toughness
US11648630B2 (en) 2013-03-11 2023-05-16 The Esab Group, Inc. Alloying composition for self-shielded FCAW wires

Also Published As

Publication number Publication date
JPS6252679B2 (en) 1987-11-06

Similar Documents

Publication Publication Date Title
JP3476125B2 (en) Flux-cored wire for duplex stainless steel welding
KR880002508B1 (en) Flux cored wire for gas shielded arc welding
US4282420A (en) Welding electrode
JPH0741435B2 (en) Consumable welding rod
JP7188646B1 (en) submerged arc welded fittings
US10532435B2 (en) Filler composition for high yield strength base metals
CN109128573B (en) Large-heat-input electro-gas welding gas-shielded flux-cored wire based on grain refinement mechanism
KR20130075687A (en) Flux-cored welding wire for carbon steel and process for arc welding
KR20190019020A (en) Electrodes for forming austenitic and duplex steel weld metal
US4726854A (en) Cast iron welding electrodes
CN116568841A (en) Welding wire for submerged arc welding and method for manufacturing welding joint using same
JPS60152393A (en) Composite wire for electrogas arc welding and electrogas arc welding method
KR100265097B1 (en) Flux-cored wire for arc welding
KR20220002564A (en) Flux Cored Wire and Welding Method
JPH09277087A (en) Flux cored wire for arc welding
EP0067494B1 (en) Welding electrode
WO2021177106A1 (en) Flux for electroslag welding and electroslag welding method
JP2524774B2 (en) Submerged arc welding method for stainless steel
JP2009018337A (en) Flux cored wire for gas-shielded arc welding
WO2022186097A1 (en) Tig welding joint
US4719330A (en) Welding electrode
JPH0131996B2 (en)
JPS58148095A (en) Wire for self-shielded arc welding
JP2756088B2 (en) Flux-cored wire for gas shielded arc welding
PT96373A (en) METAL WELD OF APPROPRIATE WELD FOR HIGH RESISTANCE TO DEFORMATION AND PROCESS FOR ITS DEPOSIT