JPS6252545B2 - - Google Patents

Info

Publication number
JPS6252545B2
JPS6252545B2 JP53004267A JP426778A JPS6252545B2 JP S6252545 B2 JPS6252545 B2 JP S6252545B2 JP 53004267 A JP53004267 A JP 53004267A JP 426778 A JP426778 A JP 426778A JP S6252545 B2 JPS6252545 B2 JP S6252545B2
Authority
JP
Japan
Prior art keywords
groove
rotor core
rotor
grooves
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53004267A
Other languages
Japanese (ja)
Other versions
JPS5497718A (en
Inventor
Masashi Kawamoto
Hachiro Furuichi
Kazuo Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP426778A priority Critical patent/JPS5497718A/en
Publication of JPS5497718A publication Critical patent/JPS5497718A/en
Publication of JPS6252545B2 publication Critical patent/JPS6252545B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)

Description

【発明の詳細な説明】 本発明は、誘導電動機の二重篭形アルミニウム
鋳造回転子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a double cage cast aluminum rotor for an induction motor.

従来の二重篭形誘導電動機は、その起動電流に
対する起動トルクの比、即ち、起動効率を上げる
ために次の様な方法がある。例えば第1図に示す
全閉溝二重篭形回転子鉄心の抜板の要部拡大正面
図の様に、上溝1に形成される上導体の断面積を
小さくして起動時の2次側抵抗を大きくしたり、
或いは上溝1と下溝3を連絡するスリツト幅Hを
狭くしたりスリツト2高さを延ばしたりして透磁
率を大きく選定する。特に2極や4極で中、大容
量誘導電動機の機種では、起動特性上から上溝1
断面積が数乃至十数mm2で、スリツト幅Hが1mm程
度が必要である。ところが、このような二重篭形
回転子鉄心の溝に溶湯アルミニウムを鋳込んで
も、第2図の鋳込回転子鉄心上半分側面図の切り
欠いた斜線で示す、回転子鉄心の積層中央部近傍
のスリツト2部分には、溶湯アルミニウムが鋳込
み難い傾向がある。
For conventional double cage induction motors, the following methods are available to increase the ratio of starting torque to starting current, that is, starting efficiency. For example, as shown in Fig. 1, which is an enlarged front view of the main part of the punched fully closed groove double cage rotor core, the cross-sectional area of the upper conductor formed in the upper groove 1 is made smaller so that the secondary side at startup Increase the resistance or
Alternatively, the magnetic permeability is selected to be large by narrowing the width H of the slit connecting the upper groove 1 and the lower groove 3 or by increasing the height of the slit 2. Especially for models with 2-pole or 4-pole medium or large-capacity induction motors, the upper groove 1 is
It is necessary to have a cross-sectional area of several to more than ten mm 2 and a slit width H of about 1 mm. However, even if molten aluminum is poured into the grooves of such a double-cage rotor core, the laminated central part of the rotor core, as shown by the cutout diagonal lines in the side view of the upper half of the cast rotor core in FIG. There is a tendency for molten aluminum to be difficult to be poured into the slit 2 portion in the vicinity.

このスリツト2にアルミニウムがない場合次の
様な支障が生じる。即ちスリツト2内のアルミニ
ウムが導体として上導体の一部を構成しており、
誘導電動機の起動時には起動電流が当然このスリ
ツト2内の導体にも流れる。このためスリツト2
内のアルミニウム(導体)が欠損しているとそれ
だけ上導体が高負荷となつて熱容量が不足し、起
動頻度回数が増加すると上導体のアルミニウムが
溶損する虞れが出て来るからである。
If there is no aluminum in this slit 2, the following problems will occur. That is, the aluminum in the slit 2 constitutes a part of the upper conductor as a conductor,
When the induction motor is started, a starting current naturally flows through the conductor within this slit 2. For this reason, slit 2
This is because if the aluminum (conductor) inside is missing, the upper conductor will be subjected to a higher load and the heat capacity will be insufficient, and if the number of activations increases, there is a risk that the aluminum of the upper conductor will melt and wear away.

一方鋳込い難い理由は、鋳造時の溶湯アルミニ
ウムの流れを矢印で示す如く、湯口4から流動抵
抗の一番小さい端絡環5,5a部、次いで下溝3
に鋳造して下導体が形成され、溶湯アルミニウム
は回転子鉄心の両端から鉄心の中央に向つて流
れ、上溝1、スリツト2を充填する。ところが、
2極や4極の中、大容量誘導電動機の機種では回
転子鉄心長さLが大きいので、下溝3及び上溝1
を通過中に溶湯アルミニウムは回転子鉄心に熱を
奪われて凝固する。特に反湯口側の短絡環5a経
由の溶湯アルミニウムは湯道となる下溝3、上溝
1、スリツト2等の壁とのぬれ縁(流体が接して
いる壁の長さ)が大のため、流動抵抗が大きく圧
力も低下し且つ温度の低下が激しく、回転子鉄心
中央部付近のスリツト2に溶湯アルミニウムが鋳
込み難くなる。
On the other hand, the reason why it is difficult to cast is that the flow of molten aluminum during casting is as shown by the arrow from the sprue 4 to the end ring 5, 5a where the flow resistance is lowest, and then to the lower groove 3.
The lower conductor is formed by casting, and the molten aluminum flows from both ends of the rotor core toward the center of the core, filling the upper grooves 1 and slits 2. However,
Among 2-pole and 4-pole, high-capacity induction motor models have a large rotor core length L, so the lower groove 3 and upper groove 1
While passing through the rotor core, the molten aluminum is absorbed by the rotor core and solidifies. In particular, the molten aluminum passing through the short-circuit ring 5a on the opposite side of the sprue has a large wetted edge (the length of the wall in contact with the fluid) with the walls of the lower groove 3, upper groove 1, slit 2, etc., which are the runners, so the flow resistance is The pressure decreases greatly, and the temperature also decreases sharply, making it difficult to pour molten aluminum into the slit 2 near the center of the rotor core.

この回転子鉄心のスリツト2に溶湯アルミニウ
ムの鋳造可能範囲をスリツト幅Hと鉄心長さLと
の関係で或る鋳造機で調査すると第3図のように
なる。図に於いて鋳造可能領域をO、鋳造不可能
領域をNで示し境界領域線をRで示す調査によれ
ば、スリツト幅Hが狭くて鉄心長さLが大きい程
鋳造不可能領域が増すと云う実験結果であり、今
回の鋳込回転子鉄心がそれに該当する。
The range in which molten aluminum can be cast into the slits 2 of the rotor core is investigated using a certain casting machine in terms of the relationship between the slit width H and the core length L, as shown in FIG. In the figure, the castable area is indicated by O, the uncastable area is indicated by N, and the boundary area line is indicated by R.According to research, the narrower the slit width H and the larger the core length L, the greater the uncastable area. These are the experimental results, and the cast-in rotor core that we developed this time corresponds to that.

本発明は前記事情に鑑みて成されたもので、二
重篭形アルミニウム鋳込回転子の狭幅で縦長のス
リツトへの溶湯アルミニウムを鋳造可能とした鋳
込回転子を製作する事を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to manufacture a casting rotor that is capable of casting molten aluminum into the narrow and vertically long slits of a double cage aluminum casting rotor. do.

以下本発明の一実施例を第1図、第4図、第5
図A,Bを参照して説明する。第1図は全閉溝二
重篭形回転子鉄板の要部拡大正面図で、第4図は
本発明の一実施例を示す回転子鉄心の上半分側面
図で、第5図Aは頭部が三角形状で全体が略ひし
形状の全閉深溝形の溝拡大断面図で、第5図Bは
頭部が三角形状の略矩形状の溝拡大断面図であ
る。尚、従来と同一部分は同一符号を使用して説
明する。図に於いて、第1図に示す全閉溝二重篭
形回転子鉄板10(以下鉄板10という)を規定
枚数積層する。続いてこの積層間に第5図a,b
に示す全閉深溝形の溝11を有する鉄板12を規
定枚数積層した積層体13を1箇所又は複数箇所
挿入し回転子鉄心14を形成する。(第4図では
略中央部で1箇所)続いてこの回転子鉄心14を
鋳造型(図示せず)に嵌め込んで溶湯アルミニウ
ム鋳造を行なう。
An embodiment of the present invention will be described below with reference to FIGS. 1, 4, and 5.
This will be explained with reference to Figures A and B. Fig. 1 is an enlarged front view of the essential parts of a fully closed groove double cage type rotor iron plate, Fig. 4 is a side view of the upper half of the rotor core showing an embodiment of the present invention, and Fig. 5A is a top view of the rotor iron plate. FIG. 5B is an enlarged cross-sectional view of a fully closed deep groove having triangular parts and a generally rhombic shape as a whole, and FIG. 5B is an enlarged cross-sectional view of a substantially rectangular groove having a triangular head. Note that parts that are the same as those in the prior art will be explained using the same reference numerals. In the figure, a prescribed number of completely closed groove double cage rotor iron plates 10 (hereinafter referred to as iron plates 10) shown in FIG. 1 are laminated. Then, between these laminated layers, Figure 5 a, b
A rotor core 14 is formed by inserting a laminated body 13 in which a specified number of iron plates 12 having fully closed deep groove grooves 11 shown in FIG. Subsequently, this rotor core 14 is fitted into a casting mold (not shown) to cast molten aluminum (at one location approximately in the center in FIG. 4).

次に本発明による作用効果について説明する。
湯口15から鋳込んだ溶湯アルミニウムは矢印方
向aに進み湯口側の短絡環5を形成しながら上溝
1と下溝3に分流し、(大半は下溝3に行く)途
中で積層体13の溝11にも鋳込まれながら反湯
口側の短絡環5aと下導体を形成する。そしてこ
の過程で回転子鉄心14の両端近くの上溝1及び
スリツト2にも溶湯アルミニウムは鋳込まれる。
一方、積層体13の溝11は下溝3や上溝1に比
べて面積が大きいので流動抵抗が小さく、下溝3
から溝11に分流した溶湯アルミニウムは矢印C
で示す様に回転子鉄心14の両端に向つて上溝1
内を流れ、両端からの流れと合流しスリツト2内
にも充填する。
Next, the effects of the present invention will be explained.
The molten aluminum poured from the sprue 15 advances in the direction of the arrow a, forming a short-circuit ring 5 on the sprue side while being divided into the upper groove 1 and the lower groove 3 (most of it goes to the lower groove 3), and on the way it flows into the groove 11 of the laminate 13. While also being cast, the short circuit ring 5a on the side opposite to the sprue and the lower conductor are formed. During this process, molten aluminum is also cast into the upper grooves 1 and slits 2 near both ends of the rotor core 14.
On the other hand, since the grooves 11 of the laminate 13 have a larger area than the lower grooves 3 and the upper grooves 1, the flow resistance is smaller.
The molten aluminum separated from the groove 11 is indicated by the arrow C.
As shown in FIG.
The liquid flows inside the slit 2, joins the flow from both ends, and fills the slit 2 as well.

この溝11を有する積層体13を配設したこと
により、下溝3から分流した溶湯アルミニウムは
反湯口経由の溶湯アルミニウムよりぬれ縁が少な
くなり、且つ溝11は下溝3や上溝1に比べ面積
が大きいことから圧力低下及び温度低下が少な
く、回転子鉄心14中央部付近スリツト2内にも
完全に充填することが出来る。このためスリツト
2内のアルミニウムが導体としての働きをするた
め上導体の熱容量が増加し、誘導電動機の起動頻
度回数が増加しても上導体の溶損する虞れはな
く、導体の信頼性により回転子延いては誘導電動
機の信頼性が向上する。
By arranging the laminated body 13 having this groove 11, the molten aluminum diverted from the lower groove 3 has fewer wetted edges than the molten aluminum flowing through the counter sprue, and the groove 11 has a larger area than the lower groove 3 and the upper groove 1. Therefore, the pressure drop and temperature drop are small, and the slit 2 near the center of the rotor core 14 can be completely filled. For this reason, the aluminum in the slit 2 acts as a conductor, increasing the heat capacity of the upper conductor, and even if the induction motor is started more frequently, there is no risk of the upper conductor being melted, and the reliability of the conductor allows it to rotate. As a result, the reliability of the induction motor improves.

尚、本実施例による誘導電動機の特性の変化は
下記の通りである。即ち、本実施例は中間短絡環
と異なり複数個の各々の二重篭形溝の回転子導体
は、互いに各々独立していて、溝11の面積が大
きく且つ積層体13の長さが短いことから回転子
導体の抵抗及びリアクタンスを小さくなり、且つ
回転子鉄心14長さの大きなものに使用している
本実施例はその影響は小さい。
The changes in the characteristics of the induction motor according to this example are as follows. That is, in this embodiment, unlike the intermediate short-circuit ring, the rotor conductors of each of the plurality of double cage grooves are independent from each other, the area of the groove 11 is large, and the length of the laminate 13 is short. Therefore, in this embodiment, the resistance and reactance of the rotor conductor are reduced, and the rotor core 14 is made long, so the influence thereof is small.

尚、上記実施例は回転子鉄心14の中央部に1
個の積層体13を挟持した例について述べたが、
回転子鉄心14長さが大の場合は抜板10の積層
長さが150乃至200mmの間隔で積層体13を配設し
て行く。
In addition, in the above embodiment, there is 1 in the center of the rotor core 14.
Although the example in which two laminates 13 are sandwiched has been described,
When the length of the rotor core 14 is large, the laminated bodies 13 are arranged at intervals such that the laminated length of the punched plates 10 is 150 to 200 mm.

以上記述した如く本発明によれば、全閉溝二重
篭形回転子鉄心間に、全閉深溝形の溝を有する打
抜き鉄板の積層体を介在させたので、溶湯アルミ
ニウムを前記溝から上溝内を回転子鉄心両端へ鋳
込流入させる事によつて、スリツト及び回転子鉄
心全体の二重篭形の溝に溶湯アルミニウムが円滑
に鋳造充填する顕著な特徴を有する。
As described above, according to the present invention, a laminate of punched iron plates having fully closed deep groove grooves is interposed between the fully closed groove double cage rotor cores, so that molten aluminum is transferred from the grooves into the upper groove. By casting and flowing the molten aluminum into both ends of the rotor core, the molten aluminum is smoothly cast and filled into the slits and the double basket-shaped grooves of the entire rotor core.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は全閉溝二重篭形回転子鉄心の要部拡大
正面図、第2図は従来のアルミニウム鋳込方法を
示す鋳造回転子鉄心の上半分断側面図、第3図は
スリツトに鋳造可能及び鋳造不可能領域の各々を
示す境界領域線図、第4図は本発明の一実施例を
示すアルミニウム鋳込方法を示す鋳込回転子鉄心
の上半分断側面図、第5図A,Bは全閉深溝形の
溝要部拡大正面図である。 1……上溝、2……スリツト、3……下溝、1
0……全閉溝二重篭形回転子鉄板、11……溝、
12……鉄板、13……積層体、14……回転子
鉄心。
Figure 1 is an enlarged front view of the main parts of a fully closed groove double cage rotor core, Figure 2 is a cross-sectional side view of the upper half of a cast rotor core showing the conventional aluminum casting method, and Figure 3 is a slit-shaped rotor core. Boundary area diagram showing each of the castable and uncastable areas, FIG. 4 is an upper half cross-sectional side view of a cast rotor core showing an aluminum casting method showing an embodiment of the present invention, and FIG. 5A , B is an enlarged front view of the main part of the groove of the fully closed deep groove type. 1...Top groove, 2...Slit, 3...Bottom groove, 1
0...Fully closed groove double cage rotor iron plate, 11...Groove,
12... Iron plate, 13... Laminated body, 14... Rotor core.

Claims (1)

【特許請求の範囲】[Claims] 1 誘導電動機の二重篭形鋳込回転子に於いて、
上溝と下溝を連絡する挟幅で縦長のスリツトを有
する全閉溝二重篭形回転子鉄板を積層した回転子
鉄心間に、全閉深溝形の溝を有する鉄板を積層し
た積層体を1個又は複数個挿入し、前記夫々の溝
とスリツトに溶湯アルミニウムを鋳込んで形成さ
れた事を特徴とする誘導電動機の回転子。
1 In the double cage cast rotor of an induction motor,
One laminate in which iron plates with fully closed deep groove grooves are laminated between the rotor cores, which are laminated with fully closed groove double cage rotor iron plates having narrow width and vertical slits connecting the upper and lower grooves. Or a rotor for an induction motor, characterized in that a plurality of rotors are inserted and molten aluminum is cast into each of the grooves and slits.
JP426778A 1978-01-20 1978-01-20 Rotor for induction motor Granted JPS5497718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP426778A JPS5497718A (en) 1978-01-20 1978-01-20 Rotor for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP426778A JPS5497718A (en) 1978-01-20 1978-01-20 Rotor for induction motor

Publications (2)

Publication Number Publication Date
JPS5497718A JPS5497718A (en) 1979-08-02
JPS6252545B2 true JPS6252545B2 (en) 1987-11-05

Family

ID=11579756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP426778A Granted JPS5497718A (en) 1978-01-20 1978-01-20 Rotor for induction motor

Country Status (1)

Country Link
JP (1) JPS5497718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054415Y2 (en) * 1987-07-23 1993-02-03

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051881A (en) * 2012-12-12 2013-03-14 Mitsubishi Electric Corp Induction motor, compressor, and refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054415Y2 (en) * 1987-07-23 1993-02-03

Also Published As

Publication number Publication date
JPS5497718A (en) 1979-08-02

Similar Documents

Publication Publication Date Title
JPS6225464B2 (en)
US2711492A (en) Stator for electric motors
CN107845485A (en) A kind of device body cooling structure for being used for transformer or reactor
JPS6252545B2 (en)
JP3212208B2 (en) Low pressure casting machine for cage rotor
CN102570653B (en) Induction rotor having improved conductor bar profiles and method for forming the same
JPH08140319A (en) Rotor of induction motor
CN207474219U (en) A kind of device body cooling structure of for transformer or reactor
JP3079853B2 (en) Low pressure casting method for cage rotor
JPH01252144A (en) Rotor for squirrel-cage induction motor and manufacture thereof
US2291788A (en) Combined gate and riser
US4341256A (en) Method and apparatus for forming battery straps and intercell connections
GB1571737A (en) Electromagnetic mould for the continuous casting of metals
CN207398945U (en) Rotor and motor
TWM565441U (en) Rapid conductive copper sheet melting structure of short circuit ring
JPS5942170A (en) Production of cast rotor
JPS63278651A (en) Mold agitator
JP2795841B2 (en) Electromagnetic overflow prevention weir for continuous strip casting machine
JPS6041542B2 (en) cast rotor
CN115313710A (en) Cast aluminum rotor of high-speed asynchronous motor and manufacturing method thereof
JP4264964B2 (en) Method and apparatus for manufacturing a cage rotor
JPS5812548A (en) Coil conductor for shortcircuit coil for rotary electric machine
JPS5895961A (en) Manufacture of squirrel-cage rotor
JPS593542Y2 (en) boiling cooled electromagnet
JPS6027263B2 (en) squirrel cage induction motor