JPS593542Y2 - boiling cooled electromagnet - Google Patents

boiling cooled electromagnet

Info

Publication number
JPS593542Y2
JPS593542Y2 JP1978104991U JP10499178U JPS593542Y2 JP S593542 Y2 JPS593542 Y2 JP S593542Y2 JP 1978104991 U JP1978104991 U JP 1978104991U JP 10499178 U JP10499178 U JP 10499178U JP S593542 Y2 JPS593542 Y2 JP S593542Y2
Authority
JP
Japan
Prior art keywords
cooling
tank body
cooling tank
annular
boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978104991U
Other languages
Japanese (ja)
Other versions
JPS5522166U (en
Inventor
卓弥 鴨志田
伸 熊沢
粛 梅森
Original Assignee
日本国有鉄道
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本国有鉄道 filed Critical 日本国有鉄道
Priority to JP1978104991U priority Critical patent/JPS593542Y2/en
Publication of JPS5522166U publication Critical patent/JPS5522166U/ja
Application granted granted Critical
Publication of JPS593542Y2 publication Critical patent/JPS593542Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Synchronous Machinery (AREA)

Description

【考案の詳細な説明】 この考案は、同期式リニアモータにおける移動体界磁と
して用いられる電磁石に関し、特に、電磁石のコイルを
構成する素線の全てを効率良く冷却するよう改良した沸
騰冷却式電磁石に関する。
[Detailed description of the invention] This invention relates to an electromagnet used as a moving object field in a synchronous linear motor, and in particular to a boiling-cooled electromagnet that has been improved to efficiently cool all of the wires that make up the electromagnet's coil. Regarding.

先に本願考案者等が提案した特願昭52−109441
号に係る沸騰冷却式電磁石は、環状コイル外表面と冷却
槽体の内壁面との間に冷却媒体流路を形成するように環
状の騰冷却槽体で取囲み、これに鉄心を嵌装して成り、
液化された冷却媒体が気化するときの気化潜熱によって
コイルで発生した熱を除去する。
Patent application No. 52-109441 previously proposed by the inventors of the present application
The boiling cooling type electromagnet according to the above issue is surrounded by an annular boiling cooling tank body so as to form a cooling medium flow path between the outer surface of the annular coil and the inner wall surface of the cooling tank body, and an iron core is fitted into this. It consists of
Heat generated in the coil is removed by latent heat of vaporization when the liquefied cooling medium vaporizes.

このため冷却槽体の下方から上方に向って気泡が上昇し
、上部空間に気体領域を生じ、この気体領域内にコイル
上部の素線が露呈すると、冷却効果が低下し、コイル全
体としての冷却効率が低下するという構造上の問題があ
ることが判った。
For this reason, bubbles rise from the bottom of the cooling tank upwards, creating a gas region in the upper space. If the strands at the top of the coil are exposed in this gas region, the cooling effect decreases, and the cooling of the coil as a whole decreases. It was found that there was a structural problem that reduced efficiency.

このため環状冷却槽体の上部と下部を連通して気泡の集
中を防ぐ構造を採用して見たが、気体領域が上部冷却槽
体内に形成されやすく、コイルの一部が気体領域に露呈
して冷却効果が異なるという問題は完全に解決できなか
った。
For this reason, we adopted a structure that communicates the upper and lower parts of the annular cooling tank to prevent the concentration of air bubbles, but a gas region tends to form inside the upper cooling tank, and a part of the coil is exposed to the gas region. The problem of different cooling effects could not be completely resolved.

この考案の目的は、液化された冷却媒体の気化で生ずる
気泡を冷却槽体内からすみやかに排除せしめる構造によ
って、気泡の集中で形成される気泡領域を冷却槽体内に
形成せしめない構造により、環状コイル全体を常時、液
化された冷却媒体に浸漬させて安定した冷却効率を維持
することのできるように改良した沸騰冷却式電磁石を提
供するものである。
The purpose of this invention is to use a structure that quickly eliminates air bubbles generated by the vaporization of the liquefied cooling medium from the cooling tank, and a structure that prevents the formation of bubble regions formed by the concentration of air bubbles within the cooling tank. An object of the present invention is to provide an improved boiling-cooled electromagnet that can maintain stable cooling efficiency by constantly immersing the entire body in a liquefied cooling medium.

即ち、この考案は、環状コイル外表面と冷却槽体の内壁
面との間に冷却媒体流路が形成されるように環状の沸騰
冷却槽体によって取囲むと共に鉄心を嵌装してなる沸騰
冷却式電磁石において、環状コイルを収納した環状冷却
槽体を嵌挿された鉄心を貫通して上部及び下部に位置す
る冷却槽体部を上方に開放して連通ずる1又は複数の気
泡集取通路を所定間隔に冷却槽体に備えた“ことを特徴
とするものである。
That is, this invention is a boiling cooling system in which an annular coil is surrounded by an annular boiling cooling tank body and an iron core is fitted therein so that a cooling medium flow path is formed between the outer surface of the annular coil and the inner wall surface of the cooling tank body. In the type electromagnet, one or more air bubble collecting passages are provided which pass through the iron core into which the annular cooling tank body housing the annular coil is inserted and communicate with the cooling tank body parts located at the upper and lower parts by opening upward. It is characterized by being provided in the cooling tank body at predetermined intervals.

以下に図面を参照して、この考案の望ましい実施例を説
明する。
Preferred embodiments of this invention will be described below with reference to the drawings.

第1図は、この考案の一実施例を断面で示したもので、
第2図に第1図のA−A’からみた断面斜視図を示す。
Figure 1 shows a cross section of one embodiment of this invention.
FIG. 2 shows a cross-sectional perspective view taken along line AA' in FIG. 1.

第1,2図を参照して、環状コイル1,1′は冷却槽体
2,2′内に収納され、各々一部開口形の断面形状を有
する鉄心3に嵌装され、鉄心3の磁極端部9間に平行磁
束を生ずるようになされている。
Referring to FIGS. 1 and 2, annular coils 1 and 1' are housed in cooling tank bodies 2 and 2', each of which is fitted into an iron core 3 having a partially open cross-sectional shape. A parallel magnetic flux is generated between the extreme parts 9.

環状コイル1,1′のそれぞれは、断面形状が偏平な素
線を重合巻回してなり、素巻の外周面には適当な電気絶
縁が施されている。
Each of the annular coils 1, 1' is formed by overlappingly winding strands of wire having a flat cross-sectional shape, and the outer peripheral surface of the unwound wire is appropriately electrically insulated.

また、素線断面の長辺面はコイルに巻回されたとき互い
に重ね合わされ、各巻き毎に必ず両短辺面が両側に露呈
され、そのため冷却槽体2に収納されたとき、冷却媒体
と素線の両短辺面が接触することになる。
In addition, the long side surfaces of the strand cross section are overlapped with each other when wound into a coil, and both short side surfaces are always exposed on both sides for each winding, so that when stored in the cooling tank body 2, the cooling medium Both short sides of the wire will come into contact.

冷却槽体2は、その上槽部4と下槽部5との間が複数の
鉄心3を貫通する連通孔6で連結され、上槽部4と下槽
部5の冷却媒体流路を形成する空隙8が相互に連通され
、更に、上槽部4の上部には連通孔6に続く連通孔7が
鉄心3を貫通して設けられ、この連通孔6,7によって
冷却槽体2の気泡収集通路が形威される。
In the cooling tank body 2, an upper tank part 4 and a lower tank part 5 are connected by a communication hole 6 passing through a plurality of iron cores 3, and a cooling medium flow path between the upper tank part 4 and the lower tank part 5 is formed. Furthermore, a communication hole 7 following the communication hole 6 is provided in the upper part of the upper tank part 4 and penetrates through the iron core 3. The collection aisle is now in full form.

また、冷却槽体2に対しては液化された売却媒体を供給
するための導管10、及び気化された冷却媒体を集取し
て凝縮装置(図示せず)へ送り出す導管11が接続され
る。
Also connected to the cooling tank body 2 are a conduit 10 for supplying the liquefied selling medium and a conduit 11 for collecting the vaporized cooling medium and sending it to a condensing device (not shown).

このように冷却槽体2の下槽部5と上槽部4を連通孔6
で結び、更に上槽部4を連通孔7によって導管11に連
通させたことにより、下槽部5で気化された冷却媒体の
気泡は連通孔6を経て上槽部4に至り、ここで上槽部4
で発生した気泡と共に連通孔7を通って導管11から凝
縮装置へ戻されることとなり、気泡の集中による気体領
域を冷却槽体2内に生ずることはなく、環状コイル1は
常に液化された冷却媒体中に浸漬されることとなり、安
定した冷却効率が維持できる。
In this way, the lower tank part 5 and the upper tank part 4 of the cooling tank body 2 are connected to the communication hole 6.
Since the upper tank part 4 is connected to the conduit 11 through the communication hole 7, the bubbles of the cooling medium vaporized in the lower tank part 5 reach the upper tank part 4 through the communication hole 6, where they are connected to the upper tank part 4. Tank part 4
The generated air bubbles are returned to the condensing device from the conduit 11 through the communication hole 7, so that a gas region due to concentration of air bubbles does not occur in the cooling tank body 2, and the annular coil 1 is always filled with liquefied cooling medium. This allows stable cooling efficiency to be maintained.

尚、連通孔7は連通孔6に対し通過する冷却媒体の気体
量が略2倍になることから、上槽部4における気体領域
の発生を防ぐために充分な大きさとすることが望ましい 第3図は、この考案の他の実施例を示したもので、冷却
槽体2の上槽部4及び下槽部5を連通孔6.7に導くた
め、上下槽部4,5の上部槽壁を連通孔6,7に向って
それぞれ斜設せしめたものである。
Note that, since the amount of gas of the cooling medium passing through the communication hole 7 is approximately twice that of the communication hole 6, it is desirable to make the communication hole 7 sufficiently large to prevent the generation of a gas region in the upper tank portion 4, as shown in FIG. 1 shows another embodiment of this invention, in which the upper tank walls of the upper and lower tank parts 4 and 5 are connected in order to guide the upper tank part 4 and the lower tank part 5 of the cooling tank body 2 to the communication hole 6.7. They are provided obliquely toward the communication holes 6 and 7, respectively.

これにより、発生した気泡は上下槽部4,5の上部に滞
留することなく、速やかに連通孔6,7を通って冷却槽
体2内より排除される。
As a result, the generated air bubbles are quickly removed from the inside of the cooling tank body 2 through the communication holes 6 and 7 without staying in the upper parts of the upper and lower tank parts 4 and 5.

次に、上述の実施例において、連通孔6,7で成る気泡
集取通路をいかなる間隔で設けたら良いかについて説明
する。
Next, in the above-mentioned embodiment, it will be explained at what intervals the bubble collecting passages made up of the communicating holes 6 and 7 should be provided.

まず本願考案者等は、第4,5図に略示する実験装置を
使用して、冷却媒体から発生した気泡が集合し、気体領
域を形威しこの気体領域によって発熱体表面が覆われる
時の熱流束即ちバーンアウト熱流束q(Kcal/hr
m2)を第6図に示すグラフの如く得た。
First, the inventors of the present invention used the experimental apparatus schematically shown in Figures 4 and 5 to find out that when bubbles generated from the cooling medium gather to form a gas region, and the surface of the heating element is covered by this gas region. The heat flux of burnout heat flux q (Kcal/hr
m2) was obtained as shown in the graph shown in FIG.

第4,5図を参照するに、実験装置はタンク12内に電
熱コイルを内蔵した発熱体13を配置し、発熱体13の
上部に邪魔板14を配置し、発熱体13及び邪魔板14
で仕切られた領域を発熱体13の両側のスペーサ15に
て更に仕切り、スペーサ15の移動により長さiを変更
できるようにする。
Referring to FIGS. 4 and 5, the experimental apparatus includes a heating element 13 having a built-in electric heating coil placed inside a tank 12, a baffle plate 14 placed above the heating element 13,
The area partitioned by is further partitioned by spacers 15 on both sides of the heating element 13, so that the length i can be changed by moving the spacers 15.

また第5図から明らかなように、発熱体13の両側には
間隔△Rをもって発熱体13の両側を仕切るスペーサ1
6を配置し、スペーサ16の移動で間隔△Rを変更でき
るようにする。
Further, as is clear from FIG. 5, there are spacers 1 on both sides of the heating element 13 that partition the heating element 13 with a gap ΔR.
6 is arranged so that the distance ΔR can be changed by moving the spacer 16.

またタンク12の上部には凝縮器17を設け、ここに冷
却水を流通させタンク12内に入れられた冷却媒体より
の熱を吸収する。
Further, a condenser 17 is provided in the upper part of the tank 12, and cooling water is passed through the condenser 17 to absorb heat from the cooling medium put in the tank 12.

冷却媒体としては、分子量約400のフッソ油(以下冷
媒■という)と、分子量約600のフッソ油(以下冷媒
IIという)を用いた。
As the cooling medium, fluorinated oil with a molecular weight of about 400 (hereinafter referred to as Refrigerant II) and fluorinated oil with a molecular weight of approximately 600 (hereinafter referred to as Refrigerant II) were used.

まず、発熱体13とスペーサ16との間隔△Rを、△R
=5mmにセットし、スペーサ15を移動して長さlを
変えたとき、冷媒工は直線18で示すようにバーンアウ
ト熱流束が変化することがわかった。
First, the distance △R between the heating element 13 and the spacer 16 is determined by △R
= 5 mm, and when the length l was changed by moving the spacer 15, the refrigerant engineer found that the burnout heat flux changed as shown by the straight line 18.

又、冷媒IIは点線19で示すようにバーンアウト熱流
束が変化することがわかった。
It was also found that the burnout heat flux of refrigerant II changes as shown by dotted line 19.

また△R=lQmmで冷媒■を用いると直線20、△R
−20mmで冷媒■を用いると直線21のそれぞれに示
す結果が得られた。
Also, when △R=lQmm and refrigerant ■ is used, the straight line is 20, △R
When refrigerant (2) was used at -20 mm, the results shown in each of the straight lines 21 were obtained.

そこで、第6図のグラフを考察するに、例えば直線18
を例にとれば、スペーサ15の位置を与える長さlで仕
切られた領域の媒体Iが気体領域を形成し始める臨界値
となるバーンアウト熱流束qを知ることができる。
Therefore, when considering the graph in Figure 6, for example, the straight line 18
For example, it is possible to know the burnout heat flux q that is the critical value at which the medium I in the region partitioned by the length l that gives the position of the spacer 15 starts to form a gas region.

今仮りに、第1図の実施例における環状コイル1が発生
する単位面積当りの熱量が8×104(KCal/hr
m2)テあッタトすルト、第6図の直線18から、l=
50cmのとき気体領域を形成するバーンアウト現象が
始まる。
Assuming now that the amount of heat per unit area generated by the annular coil 1 in the embodiment shown in FIG. 1 is 8×104 (KCal/hr
m2) From straight line 18 in Figure 6, l=
At 50 cm, the burnout phenomenon begins to form a gas region.

従って、第1図の実施例において設けるべき連通孔6,
7の間隔は50cmおきと定められる。
Therefore, the communication holes 6, which should be provided in the embodiment of FIG.
7 is determined to be every 50 cm.

実際の装置では安全率を見込むことになるので、連通孔
6,7の間隔は安全率に応じた50 cm以下、例えば
安全率S=1.2として30cmの間隔に定められる。
In an actual device, a safety factor is taken into consideration, so the interval between the communicating holes 6 and 7 is determined to be 50 cm or less depending on the safety factor, for example, 30 cm with the safety factor S=1.2.

この考案の沸騰冷却式電磁石装置は以上説明したように
、使用する冷却媒体に応じたバーンアウト熱流束臨界値
から設けるべき間隔が定められる1又は複数の気泡集取
通路を冷却槽体の下槽部から上槽部へ、更に気体を収集
する導管まで鉄心を貫通して設けたことにより、液化さ
れた冷却媒体の気化で気泡が冷却槽体内に気体領域を生
ずることなく速やかに抜き出すことが可能となり、この
ため冷却槽体に収納された環状コイルを常に液化された
冷却媒体中に浸漬できることとなり、環状コイルに対す
る冷却効果の片寄りを起すことなく安定した冷却効果を
持続維持することが可能となつたものである。
As explained above, the boiling cooling type electromagnet device of this invention has one or more air bubble collecting passages in the lower part of the cooling tank body, the interval of which is determined based on the burnout heat flux critical value depending on the cooling medium used. By providing a pipe that passes through the iron core from the upper tank to the upper tank, and then to the conduit that collects the gas, it is possible to quickly extract air bubbles from the vaporization of the liquefied cooling medium without creating a gas region inside the cooling tank. Therefore, the annular coil housed in the cooling tank body can be immersed in the liquefied cooling medium at all times, making it possible to maintain a stable cooling effect without causing any imbalance in the cooling effect on the annular coil. It is something that has become familiar.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この考案の一実施例を示す断面図、第2図は
第1図をA−A’力方向らみた断面斜視図、第3図は、
この考案の他の実施例を示す断面図、第4.5図はバー
ンアウト熱流束の臨界値を得るため用いた実験装置を示
す略示説明図、第6図は第4゜5図の実験装置で得られ
た長さlとバーンアウト熱流束の関係を示すグラフ図で
ある。 1.1′・・・・・・環状コイル、2,2′・・・・・
・冷却槽体、3・・・・・・鉄心、4・・・・・・上槽
部、5・・・・・・下槽部、6,7・・・・・・連通孔
、8・・・・・・空隙、9・・・・・・磁極部、10.
11・・・・・・導管、12・・・・・・タンク、13
・・・・・・発熱体、14・・・・・・邪魔板、15.
16・・・・・・スペーサ、17・・・・・・凝縮器。
FIG. 1 is a cross-sectional view showing an embodiment of this invention, FIG. 2 is a cross-sectional perspective view of FIG. 1 taken along line AA' force direction, and FIG.
A sectional view showing another embodiment of this invention, Fig. 4.5 is a schematic illustration showing the experimental apparatus used to obtain the critical value of burnout heat flux, and Fig. 6 shows the experiment of Fig. 4-5. FIG. 3 is a graph showing the relationship between the length l obtained by the device and the burnout heat flux. 1.1'... circular coil, 2,2'...
・Cooling tank body, 3... Iron core, 4... Upper tank part, 5... Lower tank part, 6, 7... Communication hole, 8... ... air gap, 9 ... magnetic pole part, 10.
11... Conduit, 12... Tank, 13
... Heating element, 14 ... Baffle plate, 15.
16...Spacer, 17...Condenser.

Claims (1)

【実用新案登録請求の範囲】 環状コイル外表面と冷却槽体の内壁面との間に冷却媒体
流路が形成されるように環状コイルを環状の沸騰冷却槽
体によって取囲むと共に鉄心を嵌挿してなる沸騰冷却式
電磁石において、 環状コイルを収納した環状冷却槽体に嵌挿された鉄心を
貫通して上部及び下部に位置する冷却槽体部を上方に開
放して連通ずる1又は複数の気泡集取通路を所定間隔を
もって冷却槽体に備えたことを特徴とする沸騰冷却式電
磁石。
[Claims for Utility Model Registration] An annular coil is surrounded by an annular boiling cooling tank body and an iron core is inserted therein so that a cooling medium flow path is formed between the outer surface of the annular coil and the inner wall surface of the cooling tank body. In a boiling-cooled electromagnet, one or more air bubbles pass through an iron core inserted into an annular cooling tank body housing an annular coil and open upwardly to communicate with the cooling tank bodies located at the upper and lower parts. A boiling cooling type electromagnet characterized in that a cooling tank body is provided with collecting passages at predetermined intervals.
JP1978104991U 1978-08-01 1978-08-01 boiling cooled electromagnet Expired JPS593542Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978104991U JPS593542Y2 (en) 1978-08-01 1978-08-01 boiling cooled electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978104991U JPS593542Y2 (en) 1978-08-01 1978-08-01 boiling cooled electromagnet

Publications (2)

Publication Number Publication Date
JPS5522166U JPS5522166U (en) 1980-02-13
JPS593542Y2 true JPS593542Y2 (en) 1984-01-31

Family

ID=29046835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978104991U Expired JPS593542Y2 (en) 1978-08-01 1978-08-01 boiling cooled electromagnet

Country Status (1)

Country Link
JP (1) JPS593542Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3509197A1 (en) * 2018-01-05 2019-07-10 Rolls-Royce plc Electrical machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3509197A1 (en) * 2018-01-05 2019-07-10 Rolls-Royce plc Electrical machine

Also Published As

Publication number Publication date
JPS5522166U (en) 1980-02-13

Similar Documents

Publication Publication Date Title
US3906261A (en) Linear acceleration apparatus with cooling system
JPS593542Y2 (en) boiling cooled electromagnet
US3416110A (en) Fluid cooled transformer having casing supported coils and core
JPH0110915Y2 (en)
JPS605554Y2 (en) Outside iron transformer coil cooling system
JPS607447Y2 (en) Boiling cooling electromagnet coil
JPS5826505Y2 (en) transformer
JP2564354B2 (en) Iron core type reactor with gear gap
JPS5915458Y2 (en) boiling cooled electromagnet
JPH0453165Y2 (en)
JPH0512995Y2 (en)
JPH04117161A (en) Superconducting rotor
JPS624115U (en)
JPS5932117A (en) Winding of induction electric apparatus
JPH0132338Y2 (en)
JPH03101112A (en) Gas insulated transformer
JPS6317222Y2 (en)
JPS59159512A (en) Foil-wound transformer
JPS5814702Y2 (en) electromagnetic pump
JPH0158643B2 (en)
JPS59159513A (en) Foil-wound transformer
JPS6325004Y2 (en)
JPH10116737A (en) Gas insulated transformer
JPS624114U (en)
PT1251624E (en) Cooling of air gap winding of electrical machines