JPH03101112A - Gas insulated transformer - Google Patents

Gas insulated transformer

Info

Publication number
JPH03101112A
JPH03101112A JP23746689A JP23746689A JPH03101112A JP H03101112 A JPH03101112 A JP H03101112A JP 23746689 A JP23746689 A JP 23746689A JP 23746689 A JP23746689 A JP 23746689A JP H03101112 A JPH03101112 A JP H03101112A
Authority
JP
Japan
Prior art keywords
gas
tank
radiator
iron core
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23746689A
Other languages
Japanese (ja)
Inventor
Masumi Nakatate
真澄 中楯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23746689A priority Critical patent/JPH03101112A/en
Publication of JPH03101112A publication Critical patent/JPH03101112A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance balance of gas flow rate by a method wherein a first partition sheet is installed between the lower part of an iron core and the inner wall of a tank, a second partition sheet is installed between the lower part and the inner wall of the tank, the inside of the tank is divided into a lower chamber, a middle chamber and an upper chamber and a plurality of radiators for insulating-gas cooling are divided and connected to the individual divided chambers. CONSTITUTION:When an insulating gas 1a is made to flow to a gas insulated transformer, a gas cooled by means of a radiator 4a is made to flow into the lower chamber A of a tank 1 through a lower-part radiator pipe 6a. While the gas is cooling a gas route formed inside an iron core 2, temperature thereof is raised and the gas is returned to the radiator 4a through an upper-part radiator pipe 5a. The gas cooled by means of a radiator 4b is made to flow into a middle chamber B through a lower-part radiator pipe 6b. While the gas is cooling a gas route formed inside a winding 3, temperature thereof is raised and the gas is returned to the radiator 4b through an upper-part radiator pipe 5b. That is to say, the flow route which cools the iron core 2 and the flow route which cools the winding 3 are separated by using a first partition sheet 7 and a second partition sheet 8 thus making the cooling operation effective.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はSF6ガス等の絶縁ガスによシ機器の絶縁およ
び冷却を行うガス絶縁変圧器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a gas insulated transformer that insulates and cools equipment using an insulating gas such as SF6 gas.

(従来の技術) 従来、ガス絶縁変圧器は第3図に示すように構成されて
いる。即ち、タンク1内にけい素鋼板を積層した鉄心2
を設け、この鉄心2の主脚部分に巻線3を巻回し、タン
ク1内にSF6ガス等の絶縁ガス1aを西てんしている
。そして、タンク1外部に前記絶縁ガス1aを冷却する
ための複数のラジェータ4を設け、タンク1およびラジ
ェータ4を上、下ラジェータ配管5,6によシ連通する
(Prior Art) Conventionally, a gas insulated transformer is configured as shown in FIG. That is, an iron core 2 made of laminated silicon steel plates is placed inside a tank 1.
A winding 3 is wound around the main leg portion of the iron core 2, and an insulating gas 1a such as SF6 gas is injected into the tank 1. A plurality of radiators 4 for cooling the insulating gas 1a are provided outside the tank 1, and the tank 1 and the radiators 4 are communicated through upper and lower radiator pipes 5 and 6.

ラジェータ4により冷却された絶縁ガス1aFi、下部
ラジェータ配管6を通9、タンク1の下部に流入した後
鉄心2及び巻線3の内部に設けられたガス道にそれぞれ
分流し、鉄心2及び巻線3を冷却しながら上昇し、タン
ク1の上部及び上部ラジェータ配管5を通シラジエータ
4に戻ることになる。
The insulating gas 1aFi cooled by the radiator 4 passes through the lower radiator piping 6 9 and flows into the lower part of the tank 1, and then is divided into gas passages provided inside the iron core 2 and the winding 3, and then flows through the iron core 2 and the winding 3. 3 and returns to the radiator 4 through the upper part of the tank 1 and the upper radiator pipe 5.

(発明が解決しようとする課題) しかしながら、上記構造のガス絶縁変圧器において、鉄
心2の内部に設けられたガス道は巻線の占積率を高める
ために幅を小さくする必要がおり、巻線3a内部に設け
られたガス道は絶縁の関係から幅を広げる必要がある。
(Problem to be Solved by the Invention) However, in the gas insulated transformer having the above structure, the width of the gas passage provided inside the core 2 must be made small in order to increase the space factor of the winding. The gas path provided inside the line 3a needs to be widened for insulation reasons.

さらに、鉄心2の主脚の回りに巻線3が巻回されている
ことがら、1本のガス道に対する水平方向の長さは巻+
iIs内のガス道の方が長くなっておシ、ガス道の本数
も巻線3の方が一般に多くなっている。従って(水平方
向の長さ)×(幅)×(本数)で表わされるガス道断面
積は鉄心2よシも巻線3の方が5〜10倍大きいのが通
常であシ、ラジェータ4よりタンク下部に流入した絶縁
ガス1&も大部分が巻線3内のガス道を流れてしまうこ
とになる。また、ガス道内の摩擦抵抗Δhは次式で表わ
きれる。
Furthermore, since the winding 3 is wound around the main leg of the iron core 2, the horizontal length for one gas path is the winding +
The gas path in the iIs is longer, and the number of gas paths in winding 3 is generally larger. Therefore, the cross-sectional area of the gas passage, expressed as (horizontal length) x (width) x (number of pipes), is usually 5 to 10 times larger for winding 3 than for iron core 2, and for the tank than for radiator 4. Most of the insulating gas 1& that has flowed into the lower part also flows through the gas path inside the winding 3. Further, the frictional resistance Δh in the gas path can be expressed by the following equation.

ここで、dは流体直径であゃほぼガス値の幅に比例する
。また、tは高き、Vは流速である。鉄心2内のガス道
は巻線3内のガス道に比べ高さtが太きくガス道の幅は
前記のように小さい。つまυdが小であるため同じ流速
とした場合にガス道内の摩擦抵抗は鉄心2の方が大にな
ってしまう。
Here, d is the fluid diameter and is approximately proportional to the width of the gas value. Also, t is high and V is the flow velocity. The height t of the gas passage in the iron core 2 is larger than that in the winding 3, and the width of the gas passage is smaller as described above. Since the knob υd is small, the frictional resistance in the gas path will be greater in the iron core 2 when the flow velocity is the same.

従って鉄心2内のガス道は絶縁ガス1aが流れにくいこ
とがわかる。
Therefore, it can be seen that the insulating gas 1a does not easily flow through the gas path inside the iron core 2.

以上のガス道断面積および摩擦抵抗の点から鉄心2に絶
縁ガス1aが流れにくくなって2す、巻線3に比べ鉄心
2の温度上昇がかなり大きくなってし甘い、鉄心2の絶
縁物を劣化させ変圧器の寿命を短絡してしまう欠点があ
る。このような量販点の対策として鉄心2を大きくして
磁束密度を下げること、あるいは鉄心2内のガス通断面
att太きくすることが考えられるが、いず牡の場合も
変圧器を大形にしてしまう欠点がある。また、鉄心2内
のガス道と巻線3内のガス道への分流バランスを均一に
するため巻線3内のガス道の断面積を小さくすることも
考えられるが、今度は巻線3の温度上昇が大きくなるこ
と、絶縁的に問題が生じることなどの欠点がろる。
Due to the above gas path cross-sectional area and frictional resistance, it becomes difficult for the insulating gas 1a to flow into the iron core 2, and the temperature rise of the iron core 2 becomes considerably larger than that of the winding 3, which deteriorates the insulation of the iron core 2. This has the disadvantage of shorting the life of the transformer. As a countermeasure for such a mass-market product, it is possible to make the iron core 2 larger to lower the magnetic flux density, or to make the gas passage section att in the iron core 2 thicker. There are drawbacks to this. Another possibility is to reduce the cross-sectional area of the gas passage inside the winding 3 in order to equalize the balance of branched flow between the gas passage inside the iron core 2 and the gas passage inside the winding 3. Disadvantages include increased temperature rise and insulation problems.

本発明は以上の欠点を除去し、大形化することなく、鉄
心及び巻線にそれぞれ冷却に必要最小限の絶縁ガス流量
を確保し、流量・ぐランスの良い、効果的かつ均一な冷
却が行えるガス絶縁変圧器を得ることを目的とする。
The present invention eliminates the above-mentioned drawbacks, secures the minimum necessary insulating gas flow rate for cooling each of the core and windings without increasing the size, and provides effective and uniform cooling with good flow rate and grance. The purpose is to obtain a gas insulated transformer that can be used.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は以上の目的を達成するために、タンク内部に鉄
心及び巻線を収納し、タンク外部にラジェータ及びラジ
ェータ配管を備えたガス絶縁変圧器において、鉄心下部
とタンク内壁との間に第1の仕切板を、鉄心上部とタン
ク内壁との間に第2の仕切板をそれぞれ設置し、タンク
内を下室、中室、上室とに分割し、さらに絶縁ガス冷却
用の前記複数のラジェータを2分割し、一方のラジェー
タに連通した下部ラジェータ配管を前記タンクの下室へ
、上部ラジェータ配管を前記タンクの上室へそれぞれ接
続し、他方のう・ゾエータに連通し5 た上部、下部ラジェータ配管を前記タンクの中室にそれ
ぞれ接続したことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above objects, the present invention provides a gas insulated transformer in which an iron core and a winding are housed inside a tank, and a radiator and radiator piping are provided outside the tank. A first partition plate is installed between the upper part of the iron core and the tank inner wall, and a second partition plate is installed between the upper part of the iron core and the tank inner wall to divide the inside of the tank into a lower chamber, a middle chamber, and an upper chamber. The plurality of radiators for cooling insulating gas are divided into two, and the lower radiator piping connected to one radiator is connected to the lower chamber of the tank, the upper radiator piping is connected to the upper chamber of the tank, and the other radiator is connected to the lower chamber of the tank. The tank is characterized in that upper and lower radiator pipes communicating with the tank are respectively connected to the middle chamber of the tank.

(作用) これにより、鉄心及び巻線の冷却に必要な最小限のガス
流量をそれぞれ独自に確保し、流量バランスの良い効果
的な冷却を行うことが可能となる。
(Function) This makes it possible to independently secure the minimum gas flow rates necessary for cooling the core and the windings, and to perform effective cooling with a well-balanced flow rate.

(実施例) 以下、本発明の一実施例を第1図を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to FIG.

図中第3図と同一部分は同一符号で示す。本発明のガス
絶縁変圧器はタンク1内に鉄心2及び巻線3を絶縁ガス
1aと共に収納し、タンク1外部に絶縁ガス1aを冷却
するための複数のラジェータ4m、4b及び上、下のラ
ジェータ配管51L。
In the figure, the same parts as in FIG. 3 are designated by the same reference numerals. The gas insulated transformer of the present invention stores an iron core 2 and a winding 3 together with an insulating gas 1a in a tank 1, and has a plurality of radiators 4m, 4b and upper and lower radiators outside the tank 1 for cooling the insulating gas 1a. Piping 51L.

5bs6m、6bを備えたものである。前記鉄心2の下
部とタンク1の内壁の間には第1の仕切板7を、また前
記鉄心2の上部とタンクlの内壁の間には第2の仕切板
8をそれぞれ設置し、タンク1内を下室A、中室B、上
室C二分割している。
It is equipped with 5bs6m and 6b. A first partition plate 7 is installed between the lower part of the iron core 2 and the inner wall of the tank 1, and a second partition plate 8 is installed between the upper part of the iron core 2 and the inner wall of the tank 1. The interior is divided into lower chamber A, middle chamber B, and upper chamber C.

一 ここで、2分割された絶縁ガス冷却用の複数のラジェー
タの内一方のラジェータ4aに連通した下部ラジェータ
配管6aを前記タンク1の下室Aに、上部ラジェータ配
管5a’t−前記タンク1の上室Cにそれぞれ接続し、
もう一方のラジェータ4bに連通した上部、下部ラジェ
ータ配管6*j6bを前記タンク1の中室Bにそれぞれ
接続する。
Here, the lower radiator piping 6a communicating with one of the radiators 4a of the plurality of radiators for cooling insulating gas divided into two is connected to the lower chamber A of the tank 1, and the upper radiator piping 5a't--the upper radiator piping 5a't of the tank 1. connected to the upper chamber C,
The upper and lower radiator pipes 6*j6b communicating with the other radiator 4b are connected to the middle chamber B of the tank 1, respectively.

このように構成されたガス絶縁変圧器において、絶縁ガ
スIILが流れた場合ラジェータ4aによp冷却された
絶縁ガスは下部ラジェータ配管6aを通りタンク1の下
室A内に流入し、鉄心2内に設けられたガス道を冷却し
ながら上昇し、上部ラジェータ配管5aを通りラジェー
タ4aにもどることになる。また、ラジェータ4bによ
り冷却された絶縁ガスは下部ラジェータ配管6bを通υ
タンク1の中室B内に流入し、巻線3内に設けられたガ
ス道を冷却しながら上昇し、上部ラジェータ配管5bを
通り、ラジェータ4bにもどることになる。つまシ、第
1及び第2の仕切板7,8により鉄心2を冷却するガス
の流路と、巻線3を冷却す2及び巻線3に流れるガスの
量をそれぞれ独自に確保することができ、流量バランス
の良い効果的な冷却を行うことができる。これにより鉄
心を小さくして磁束密度を上げることが可能になり、冷
却効果向上と、小形、軽量化を計れる。
In the gas insulated transformer configured in this way, when the insulating gas IIL flows, the insulating gas cooled by the radiator 4a flows into the lower chamber A of the tank 1 through the lower radiator piping 6a, and flows into the iron core 2. The gas rises while being cooled through the gas path provided in the upper radiator pipe 5a and returns to the radiator 4a. In addition, the insulating gas cooled by the radiator 4b passes through the lower radiator pipe 6b.
It flows into the middle chamber B of the tank 1, rises while being cooled through the gas path provided in the winding 3, passes through the upper radiator piping 5b, and returns to the radiator 4b. It is possible to independently secure a gas flow path for cooling the iron core 2 and an amount of gas flowing to the winding 2 and the winding 3 for cooling the winding 3 by the picks and the first and second partition plates 7 and 8. This allows for effective cooling with a well-balanced flow rate. This makes it possible to make the iron core smaller and increase the magnetic flux density, improving the cooling effect and making it smaller and lighter.

ところで、鉄心2内のガス道と巻線3内のガス道とでは
前者の方が摩擦抵抗が大きく、ガスが流れにくいことは
前述したとおシである。つまp5同じ条件で設計をすれ
ば鉄心の方が冷却が悪くなることになる。そこで、鉄心
冷却用のラジェータ4aの表面積S1が放熱する熱量w
co□の割合(wcoag/ sl)を巻線冷却用のラ
ジェータ4bの表面積S2が放熱する熱量W。OILの
割合(WCOIL/”2 )よシ小さくすることが考え
られる。つまりS t / 82≧Wc o m w 
/We o r Lの関係が成り立つようにすればよい
By the way, as mentioned above, the gas path in the iron core 2 and the gas path in the winding 3 have a larger frictional resistance, making it difficult for gas to flow. Tip p5: If the design is done under the same conditions, the cooling of the iron core will be worse. Therefore, the amount of heat w radiated by the surface area S1 of the radiator 4a for cooling the iron core
The amount of heat W radiated by the surface area S2 of the radiator 4b for cooling the windings is the ratio of co□ (wcoag/sl). It is conceivable to make the ratio of OIL smaller than the ratio of OIL (WCOIL/”2). In other words, S t / 82≧Wco m w
/We or L may be established.

また、一般にラジェータの設置位置を高くするとよシ高
い位置で絶縁ガスが重くなるために絶縁ガスの循環量が
増し、流量も多くなる。従って、摩擦抵抗の大きい鉄心
2内のガス道をより多く絶縁ガスを流すために鉄心冷却
用のラジェータ4・aの設置位置を巻線冷却用のラジェ
ータ4bと同じか、それ以上高く上げることが望ましい
Additionally, in general, when the radiator is installed at a higher location, the insulating gas becomes heavier at the higher location, which increases the amount of insulating gas circulated and the flow rate. Therefore, in order to allow more insulating gas to flow through the gas path in the core 2, which has a large frictional resistance, it is possible to raise the installation position of the radiator 4a for cooling the core to the same level or higher than the radiator 4b for cooling the windings. desirable.

また、前記第2の仕切板8によシ区切られた2つのガス
空間の両方に温度針等の監視装置を設置することによシ
鉄心と巻線の温度等を独自に監視することが可能にな9
、不具合等の発生及びその場所を未然に知ることが可能
となる。
Furthermore, by installing monitoring devices such as temperature needles in both of the two gas spaces separated by the second partition plate 8, it is possible to independently monitor the temperature of the iron core and winding. Nana 9
, it becomes possible to know the occurrence and location of defects, etc. before they occur.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、タンク内にけい素鋼板を
積層した鉄心を設け、この鉄心の主脚部分が巻線を巻回
し、タンク内に絶縁ガスを収納し、タンク外部に前記絶
縁ガスを冷却するための複数のラジェータと前記タンク
とラジェータとを連通ずるラジェータ配管とを備えたガ
ス絶縁変圧器に2いて、前記鉄心の下部とタンク内壁と
の間に第1の仕切板を、鉄心の上部とタンク内壁との間
に第2の仕切板をそれぞれ設置してタンク内を下室、中
室、上室に分割し、さらに絶縁ガス冷却9− 用の前記複数のラジェータを2分割し、一方のラジェー
タに連通した下部ラジェータ配管をタンクの下室に、上
部ラジェータ配管をタンクの上室へそれぞれ接続し、他
方のラジェータに連通した上部、下部ラジェータ配管を
タンクの中室へそれぞれ接続したので、鉄心及び巻線の
それぞれに必要最小限のガス流量を確保し、小形で、流
量バランスの良い、効果的かつ均一な冷却が行えるガス
絶縁変圧器を得ることができる。
As described above, according to the present invention, an iron core made of laminated silicon steel plates is provided in a tank, the main leg portion of this iron core winds a winding, an insulating gas is stored in the tank, and the insulating gas is placed outside the tank. In a gas insulated transformer equipped with a plurality of radiators for cooling gas and radiator piping communicating the tank and the radiators, a first partition plate is provided between the lower part of the iron core and the inner wall of the tank, A second partition plate is installed between the upper part of the iron core and the inner wall of the tank to divide the inside of the tank into a lower chamber, a middle chamber, and an upper chamber, and further divide the plurality of radiators for insulating gas cooling into two. Then, connect the lower radiator piping that communicates with one radiator to the lower chamber of the tank, the upper radiator piping to the upper chamber of the tank, and connect the upper and lower radiator piping that communicates with the other radiator to the middle chamber of the tank. Therefore, it is possible to obtain a gas insulated transformer that is small, has a well-balanced flow rate, and can perform effective and uniform cooling by ensuring the minimum required gas flow rate for each of the core and windings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は第1
図のタンク本体を示す側面図、第3図は従来のガス絶縁
変圧器を示す断面図である。 1・・・タンク、1a・・・絶縁ガス、2・・・鉄心、
3・・・巻線、4a、4b・・・ラジェータ、5hj5
b・・・上部ラジェータ配管、7,8・・・仕切板、A
・・・下室、B・・・中室、C・・・上室。
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG.
FIG. 3 is a side view showing the tank body, and FIG. 3 is a sectional view showing a conventional gas insulated transformer. 1...tank, 1a...insulating gas, 2...iron core,
3...Winding, 4a, 4b...Radiator, 5hj5
b... Upper radiator piping, 7, 8... Partition plate, A
...lower chamber, B...middle chamber, C...upper chamber.

Claims (1)

【特許請求の範囲】[Claims]  タンク内にけい素鋼板を積層した鉄心を設け、この鉄
心の主脚部分に巻線を巻回し、タンク内に絶縁ガスを収
納し、タンク外部に前記絶縁ガスを冷却するため。複数
のラジエータを設け、このラジエータと前記タンクとを
連通するラジエータ配管とを備えたガス絶縁変圧器にお
いて、前記鉄心の下部とタンク内壁との間に第1の仕切
板を、鉄心の上部とタンク内壁との間に第2の仕切板を
それぞれ設置してタンク内を下室、中室、上室に分割し
、さらに、絶縁ガス冷却用の前記複数のラジエータを2
分割し、一方のラジエータに連通した下部ラジエータ配
管をタンクの下室に、上部ラジエータ配管をタンクの上
室へ接続し、他方のラジエータに連通した上部、下部ラ
ジエータ配管をタンクの中室へそれぞれ接続したことを
特徴とするガス絶縁変圧器。
An iron core made of laminated silicon steel plates is provided inside a tank, a winding is wound around the main leg portion of this iron core, an insulating gas is stored inside the tank, and the insulating gas is cooled outside the tank. In a gas insulated transformer including a plurality of radiators and radiator piping communicating the radiators and the tank, a first partition plate is provided between the lower part of the iron core and the inner wall of the tank, and a first partition plate is provided between the lower part of the iron core and the inner wall of the tank. A second partition plate is installed between each inner wall to divide the inside of the tank into a lower chamber, a middle chamber, and an upper chamber, and the plurality of radiators for cooling insulated gas are
Split the lower radiator piping that communicates with one radiator to the lower chamber of the tank, connect the upper radiator piping to the upper chamber of the tank, and connect the upper and lower radiator piping that communicates with the other radiator to the middle chamber of the tank. A gas insulated transformer characterized by:
JP23746689A 1989-09-13 1989-09-13 Gas insulated transformer Pending JPH03101112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23746689A JPH03101112A (en) 1989-09-13 1989-09-13 Gas insulated transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23746689A JPH03101112A (en) 1989-09-13 1989-09-13 Gas insulated transformer

Publications (1)

Publication Number Publication Date
JPH03101112A true JPH03101112A (en) 1991-04-25

Family

ID=17015752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23746689A Pending JPH03101112A (en) 1989-09-13 1989-09-13 Gas insulated transformer

Country Status (1)

Country Link
JP (1) JPH03101112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105078A1 (en) * 2018-11-19 2020-05-28 三菱電機株式会社 Stationary induction device
US11631533B2 (en) 2017-12-30 2023-04-18 Hitachi Energy Switzerland Ag System for sensor utilization in a transformer cooling circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11631533B2 (en) 2017-12-30 2023-04-18 Hitachi Energy Switzerland Ag System for sensor utilization in a transformer cooling circuit
WO2020105078A1 (en) * 2018-11-19 2020-05-28 三菱電機株式会社 Stationary induction device
US11967447B2 (en) 2018-11-19 2024-04-23 Mitsubishi Electric Corporation Stationary induction apparatus

Similar Documents

Publication Publication Date Title
JP2853505B2 (en) Stationary guidance equipment
JP4450868B1 (en) Transformer
JPS624945B2 (en)
US4317952A (en) Liquid cooled terminal boxes
JPH03101112A (en) Gas insulated transformer
JP2007173685A (en) Stationary induction electric apparatus
JP3516412B2 (en) Gas insulated stationary induction device
JPH0110915Y2 (en)
JPH03112109A (en) Gas-filled transformer
JPS5826500Y2 (en) liquid cooled wound core
JPS5826647B2 (en) Transformer winding cooling system
JPH02288313A (en) Gas insulation transformer
JP3148044B2 (en) Gas cooled stationary electrical equipment
JPS605554Y2 (en) Outside iron transformer coil cooling system
JP2002217041A (en) Cooling structure of static induction apparatus
JPH11176651A (en) Static induction electric apparatus
JPH1184082A (en) Ventilating structure for intake port and exhaust port of concrete cask
JPH05190345A (en) Gapped-core type reactor
JPS593542Y2 (en) boiling cooled electromagnet
JPH06275444A (en) Gas insulated transformer
JPS58151009A (en) Winding of stationary induction electric apparatus
JP2554696B2 (en) Gas insulated transformer
JP2001135527A (en) Stationary induction equipment
JPS60944B2 (en) transformer
JPH0342809A (en) Stationary induction electrical device