JPH02288313A - Gas insulation transformer - Google Patents

Gas insulation transformer

Info

Publication number
JPH02288313A
JPH02288313A JP11052689A JP11052689A JPH02288313A JP H02288313 A JPH02288313 A JP H02288313A JP 11052689 A JP11052689 A JP 11052689A JP 11052689 A JP11052689 A JP 11052689A JP H02288313 A JPH02288313 A JP H02288313A
Authority
JP
Japan
Prior art keywords
tank
gas
winding
cooling
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11052689A
Other languages
Japanese (ja)
Inventor
Masumi Nakatate
真澄 中楯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11052689A priority Critical patent/JPH02288313A/en
Publication of JPH02288313A publication Critical patent/JPH02288313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable well-flow-balanced, effective cooling by dividing a radiator into one for cooling an iron-core and one for cooling a winding, and securing each minimum gas flow necessary for the cooling of the iron-core and winding individually. CONSTITUTION:An iron-core 2, a winding 3 wound on to the main leg of the iron-core 2, and an insulating gas 4 are kept in a tank 1, and a radiator 5 for cooling the insulating gas 4 and radiator piping 6 are provided outside the tank 1. And, partition plates 7, 8 are fitted between the winding 3 and the tank wall and between the iron-core 2 and the tank wall respectively, to gas-divide the inside of the tank 1. Besides, the radiator 5 is linked to the inside of the tank 1 being gas-divided. Accordingly, each minimum gas flow necessary for the iron-core 2 and winding 3 is secured without making them larger. This makes it possible to perform well-flow-balanced, effective, and uniform cooling.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は絶縁ガスにより機器本体の絶縁および冷却を行
うようにしたガス絶縁変圧器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a gas insulated transformer that insulates and cools a device body using an insulating gas.

(従来の技術) 従来、ガス絶縁変圧器は第3図に示すように構成されて
いる。即ちタンク1内にけい素鋼板を積層した鉄心2と
、この鉄心2の主脚に巻回された巻@3から成る機器本
体がSF6等の絶縁ガス4と共に収納されている。そし
て、タンク外部に前記絶縁ガスを冷却するための複数の
ラジェータ5を設蓋し、前記タンク1とラジェータ5と
を上、下ラジェータ配管6a、6bとによシ連通す゛る
ようにしている。ラジェータ5により冷却された絶縁ガ
ス4に矢印で示すように下部ラジェータ配管6aを通)
タンク1の下部に流入した後、鉄心2および巻線3の内
部に設けられたガス道にそれぞれ分流し、鉄心2および
巻線3を冷却しながら上昇し、タンク1の上部から上部
ラジェータ配管6aを通シラジエータ4に戻ることにな
る。これによシ鉄心2巻a3から成る機器本体は絶縁が
ス4によシ冷却されると共に絶縁されている。
(Prior Art) Conventionally, a gas insulated transformer is configured as shown in FIG. That is, a device body consisting of an iron core 2 made of laminated silicon steel plates and a winding @3 wound around the main leg of this iron core 2 is housed in a tank 1 together with an insulating gas 4 such as SF6. A plurality of radiators 5 for cooling the insulating gas are installed outside the tank, and the tank 1 and the radiators 5 are communicated through upper and lower radiator pipes 6a and 6b. Pass the lower radiator pipe 6a through the insulating gas 4 cooled by the radiator 5 as shown by the arrow)
After flowing into the lower part of the tank 1, it is divided into the gas paths provided inside the iron core 2 and the winding 3, rises while cooling the iron core 2 and the winding 3, and flows from the upper part of the tank 1 to the upper radiator piping 6a. The air is then returned to the radiator 4. As a result, the main body of the device, which consists of two turns of the iron core a3, is cooled and insulated by the steel 4.

(発明が解決しようとする課題) しかしながら、上記構造のガス絶縁変圧器において、一
般に鉄心2の内部に設けられ九ガス道は巻線の占積率を
高めるために幅を小さく形成されておシ、一方巻線3の
内部に設けられたガス道は絶縁の関係から幅が広く形成
されている。さらK、鉄心2の主脚の回シに巻線3が巻
回されていることから、1本のガス道に対する水平方向
の長さは巻線内ガス道の方が長くなっており、ガス道の
本数も巻線の方が一般に多くなっている。従って、(水
平方向の長さ)×(幅)×(本数)で表わされるガス道
断面積は鉄心2よりも巻線3の方が5〜lO倍大きいの
が通常であシ、ラジェータ5よりタンク1下部に流入し
た絶縁ガス4も大部分が巻線内のガス道を流れてしまう
ことになる。
(Problem to be Solved by the Invention) However, in the gas insulated transformer having the above structure, the nine gas paths provided inside the core 2 are generally formed with a small width to increase the space factor of the winding. On the other hand, the gas passage provided inside the winding 3 is formed wide for insulation purposes. Furthermore, since the winding 3 is wound around the main leg turn of the iron core 2, the horizontal length of the gas passage within the winding is longer than that of one gas passage. The number of roads is generally higher in windings. Therefore, the cross-sectional area of the gas passage, expressed as (horizontal length) x (width) x (number of pipes), is usually 5 to 10 times larger for the winding 3 than for the iron core 2, and for the tank than for the radiator 5. Most of the insulating gas 4 that has flowed into the lower part of the coil ends up flowing through the gas path inside the winding.

また、ガス道内の摩擦抵抗Δhは次式で表わされる。Further, the frictional resistance Δh in the gas path is expressed by the following equation.

ここで、dはガス道内の流体直径であシ、はぼガス道の
幅に比例する。また、tはガス道の高さ、νは流速であ
る。鉄心内ガス道は巻線内ガス道に比べ高さLが大きく
、ガス道の幅は上述のように小さい。つまシ、dが小で
あるため同じ流速τとした場合にガス道内の摩擦抵抗Δ
hは鉄心内ガス道の方が大きくなってしまう。従りて、
鉄心内ガス道は絶縁ガス4が巻線内ガス道に比べて流れ
にくいことがわかる。以上のガス道断面積および摩擦抵
抗の関係よ勺鉄心2に絶縁ガスが流れにくくなっておシ
、巻線3に比べ鉄心2の温度上昇がかなシ大きくなりて
しまい、鉄心絶縁物を劣化させ、変圧器の寿命を短縮し
てしまう欠点がある。
Here, d is the diameter of the fluid in the gas path, and is proportional to the width of the gas path. Further, t is the height of the gas path, and ν is the flow velocity. The height L of the gas passage within the core is larger than that of the gas passage within the winding, and the width of the gas passage is smaller as described above. Since the tabs and d are small, the frictional resistance Δ in the gas path when the flow velocity τ is the same.
h will be larger for the gas path inside the iron core. Therefore,
It can be seen that the insulating gas 4 is less likely to flow through the gas path within the iron core than through the gas path within the winding. Due to the above relationship between the gas passage cross-sectional area and frictional resistance, it becomes difficult for the insulating gas to flow into the core 2, and the temperature rise in the core 2 becomes larger than that in the winding 3, which causes the core insulation to deteriorate. This has the disadvantage of shortening the life of the transformer.

このような問題を解決する手段として鉄心2を大きくし
て磁束密度を下げること、あるいは鉄心内のガス道断面
積を大きくすることが考えられるが、いずれの場合も変
圧器を大形にさせてしまう欠点がある。また、鉄心内ガ
ス道と巻線内ガス道へ絶縁ガスの分流バランスを均一に
する丸め、巻線内ガス道の断面積を小さくすることも考
えられるが、今度は巻線3の温度上昇が大きくなること
、絶縁的に問題が生じることなどの欠点がある。
Possible solutions to this problem include enlarging the iron core 2 to lower the magnetic flux density, or increasing the cross-sectional area of the gas passage in the iron core, but in either case, the transformer becomes larger. There are drawbacks. In addition, it is possible to round the insulating gas to evenly divide the balance between the gas path in the core and the gas path in the winding, and to reduce the cross-sectional area of the gas path in the winding. It has drawbacks such as being large and causing problems with insulation.

本発明は、上記欠点を取シ除き大形化することなく、鉄
心および巻線にそれぞれ冷却に必要最小限のガス流量を
確保し、流量バランスの良い、効果的かつ均一な冷却が
行なえるガス絶縁変圧器を得ることを目的とするもので
ある。
The present invention eliminates the above-mentioned drawbacks, secures the minimum gas flow rate necessary for cooling each of the core and the windings without increasing the size, and provides gas that has a well-balanced flow rate and can perform effective and uniform cooling. The purpose is to obtain an isolation transformer.

[発明の構成コ (111題を屏決するための手段) 本発明は以上の目的を達成するために、タンク内部に絶
縁ガスと共に鉄心および巻線を収納し、タンク外部に複
数のラジェータおよびラジェータ配管を備えたガス絶縁
変圧器において、前記巻線とタンク内壁との間及び鉄心
とタンク内壁との間に夫々仕切板を設置してタンク内を
ガス区分し、さらに前記複数のラジェータを前記ガス区
分されたタンク内と連通させるようKし九ことを′特徴
゛とするものである。
[Configuration of the Invention (Means for Determining 111 Issues)] In order to achieve the above object, the present invention stores an iron core and a winding together with an insulating gas inside a tank, and a plurality of radiators and radiator piping outside the tank. In the gas insulated transformer, partition plates are installed between the winding and the inner wall of the tank and between the iron core and the inner wall of the tank to separate the gas inside the tank, and the plurality of radiators are separated into the gas partitions. The main feature is that it communicates with the inside of the tank.

(作用) これにより、ラジェータを鉄心冷却用と巻線冷却用に分
け、鉄心および巻線の冷却に必要な最小限のガス流量を
それぞれ独自に確保し、流量バランスの良い効果的な冷
却を行なうことができる。
(Function) As a result, the radiator is divided into core cooling and winding cooling, each independently securing the minimum gas flow rate necessary for cooling the core and windings, and performing effective cooling with well-balanced flow rates. be able to.

(実施例) 以下、本発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

図中、第3図と同一部分は同一符号で示す。本発明のガ
ス絶縁変圧器は、タンク1内に絶縁ガスと共に鉄心2お
よび巻線3を収納し、タンクJ外部に絶縁ガスを冷却す
るための複数のラジェータ5m、5bおよび上、下のラ
ジェータ配管6a。
In the figure, the same parts as in FIG. 3 are indicated by the same reference numerals. The gas insulated transformer of the present invention stores an iron core 2 and a winding 3 together with an insulating gas in a tank 1, and has a plurality of radiators 5m and 5b and upper and lower radiator piping outside a tank J for cooling the insulating gas. 6a.

t; b、l 6 b2を備えている。そして、前記巻
線3の最外側と前記タンク1の内壁との間に第1の水平
仕切板7を、また前記鉄心2の下部と前記タンク1の内
壁との間に第2の水平仕切板8を夫々設置してタンク内
をガス区分している。
t; b, l 6 b2. A first horizontal partition plate 7 is provided between the outermost side of the winding 3 and the inner wall of the tank 1, and a second horizontal partition plate is provided between the lower part of the iron core 2 and the inner wall of the tank 1. 8 are installed respectively to separate the gas inside the tank.

ここで、絶縁ガス冷却用の複数のラジェータを2分割し
、一方のラジェータ5aに連通した下部のラジェータ配
管6b1を前記第1の仕切板7と第2の仕切板80間に
タンク壁に接続し、もう一方のラジェータjbK連通し
た下部のラジェータ配管6b2を前記第2の仕切板8よ
シ下のタンク壁に接続する。そして、両ラジェータ5a
は共通の上部ラジェータ配管6轟によυタンク1の上部
に接続されている。
Here, a plurality of radiators for cooling insulating gas are divided into two, and a lower radiator pipe 6b1 communicating with one radiator 5a is connected to the tank wall between the first partition plate 7 and the second partition plate 80. , the lower radiator piping 6b2 communicating with the other radiator jbK is connected to the tank wall below the second partition plate 8. And both radiators 5a
is connected to the upper part of the υ tank 1 by a common upper radiator pipe 6.

このように構成されたガス絶縁変圧器において、絶縁が
ス4がタンク1内に循環する場合、ラジェータ5aによ
り冷却された絶縁ガスは下部のラジェータ配’1f6b
、を通シ、タンクJ内に流入し、巻線3内に設けられた
ガス道を冷却しながら上昇する。また、ラジェータ5b
によシ冷却された絶縁ガスは下部のラジェータ配管6b
2を通プタンク1内に流入し鉄心2内に設けられたガス
道を冷却しながら上昇する。つまり、ラジェータを鉄心
冷却用と巻線冷却用に発熱ロスの比に応じて分け、鉄心
2及び巻線3に流れる流量を夫々独自に確保することに
なり、流量バランスのよい効果的な冷却を行うことがで
きる。これにより鉄心を小さくして磁束密度を上げるこ
とが可能にな9、冷却効果向上と小形、軽量化を図るこ
とができる。
In the gas insulated transformer configured in this way, when the insulation gas 4 circulates in the tank 1, the insulation gas cooled by the radiator 5a flows through the lower radiator arrangement '1f6b.
, flows into the tank J, and rises while cooling the gas passage provided in the winding 3. Also, radiator 5b
The cooled insulating gas flows through the lower radiator pipe 6b.
2 flows into the pump tank 1 and rises while cooling the gas passage provided in the iron core 2. In other words, the radiator is divided into core cooling and winding cooling according to the ratio of heat loss, and the flow rate flowing to the iron core 2 and winding 3 is secured independently, allowing effective cooling with a well-balanced flow rate. It can be carried out. This makes it possible to make the iron core smaller and increase the magnetic flux density 9, thereby making it possible to improve the cooling effect and reduce the size and weight.

ところで、第2図に示すように鉄心2とタンク1の内壁
との間に設ける仕切板8aを鉄心上部に設置し、さらに
2分割した一方のラジェータ5aの上部ラジェータ配管
6aを前記仕切板8aよシ下のタンク壁に接続し、もう
一方のラジェータ5bの上部ラジェータ配管6a2を前
記仕切板8aよシ上のタンク壁に接続しても、やはp鉄
心2及び巻線3に流れる絶縁ガス4の流量を夫々独自に
確保することができ、効果は同じである。また、この場
合の特徴として上部ラジェータ配管6 a、+ 6a 
2の温度を測定することで鉄心2及び巻線3の温度上昇
を間接的に監視することができる。
By the way, as shown in FIG. 2, a partition plate 8a provided between the iron core 2 and the inner wall of the tank 1 is installed above the iron core, and the upper radiator piping 6a of one of the radiators 5a divided into two is connected to the partition plate 8a. Even if the upper radiator piping 6a2 of the other radiator 5b is connected to the tank wall above the partition plate 8a, the insulating gas 4 still flows to the P iron core 2 and the winding 3. The flow rate of each can be independently secured, and the effect is the same. Also, as a feature of this case, upper radiator piping 6a, +6a
By measuring the temperature of the iron core 2 and the winding 3, the temperature rise of the iron core 2 and the winding 3 can be indirectly monitored.

さらに、上部及び下部ラジェータ配管を共に2本にして
、鉄心および巻線に流れる絶縁ガスの循環系を完全に分
けることも考えられる。
Furthermore, it is also conceivable to use two upper and lower radiator pipes to completely separate the circulation system for the insulating gas flowing through the iron core and windings.

[発明の効果] 以上のように本発明によれば、タンク内に鉄心と、この
鉄心の主脚に巻回された巻線と、絶縁ガスとを収納し、
タンク外部に前記絶縁ガスを冷却するための複数のラジ
ェータと、前記タンクとラジェータとを連通するラジェ
ータ配管とを備えたガス絶縁変圧器において、前記巻線
とタンク内壁との間及び前記鉄心とタンク内壁との間に
夫々仕切板を設置してタンク内をガス区分し、さらに前
記複数台のラジェータを前記ガス区分したタンク内と連
通させるようにしたので、大形化することなく、鉄心及
び巻線に夫々必要最小限のガス流量を確保し、流量バラ
ンスのよい、効果的、かつ均一な冷却が行えるガス絶縁
変圧器を得ることができる。
[Effects of the Invention] As described above, according to the present invention, an iron core, a winding wound around the main legs of this iron core, and an insulating gas are stored in a tank,
In a gas insulated transformer that includes a plurality of radiators outside a tank for cooling the insulating gas, and radiator piping that communicates the tank and the radiators, there is a gap between the winding and the inner wall of the tank and between the iron core and the tank. A partition plate is installed between each tank and the inner wall to separate the gas inside the tank, and the plurality of radiators are communicated with the inside of the tank where the gas is separated. It is possible to obtain a gas insulated transformer that secures the minimum necessary gas flow rate for each line and performs effective and uniform cooling with a well-balanced flow rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は本発
明の他の実施例を示す断面図、第3図は従来のガス絶縁
変圧器を示す断面図である。 1・・・タンク、2・・・鉄心、3・・・巻線、4・・
・絶縁ガス、5*、5b・・・ラジェータ、6&、6b
、6b2°゛ラジエータ配管、7,8.8m・・・仕切
板。 第1図 出願人代理人  弁理士 鈴 江 武 彦b 忙2図
FIG. 1 is a sectional view showing one embodiment of the present invention, FIG. 2 is a sectional view showing another embodiment of the invention, and FIG. 3 is a sectional view showing a conventional gas insulated transformer. 1...tank, 2...iron core, 3...winding, 4...
・Insulating gas, 5*, 5b...Radiator, 6&, 6b
, 6b2° radiator piping, 7,8.8m...partition plate. Figure 1 Applicant's agent Patent attorney Takehiko Suzue b Busy Figure 2

Claims (1)

【特許請求の範囲】[Claims]  タンク内に鉄心と、この鉄心の主脚に巻回された巻線
と、絶縁ガスを収納し、タンク外部に前記絶縁ガスを冷
却するための複数のラジエータを設け、前記タンクとラ
ジエータとを連通するラジエータ配管とを備えたガス絶
縁変圧器において、前記巻線とタンク内壁との間及び鉄
心とタンク内壁との間に夫々仕切板を設置してタンク内
をガス区分し、さらに前記複数のラジエータを前記ガス
区分されたタンク内と連通させたことを特徴とするガス
絶縁変圧器。
An iron core, a winding wound around the main leg of the iron core, and an insulating gas are housed in a tank, and a plurality of radiators for cooling the insulating gas are provided outside the tank, and the tank and the radiator are communicated with each other. In a gas insulated transformer equipped with radiator piping, partition plates are installed between the winding and the inner wall of the tank and between the iron core and the inner wall of the tank to separate the gas inside the tank, and the plurality of radiators A gas insulated transformer, characterized in that the gas insulated transformer is connected to the inside of the gas-separated tank.
JP11052689A 1989-04-28 1989-04-28 Gas insulation transformer Pending JPH02288313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11052689A JPH02288313A (en) 1989-04-28 1989-04-28 Gas insulation transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11052689A JPH02288313A (en) 1989-04-28 1989-04-28 Gas insulation transformer

Publications (1)

Publication Number Publication Date
JPH02288313A true JPH02288313A (en) 1990-11-28

Family

ID=14538042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11052689A Pending JPH02288313A (en) 1989-04-28 1989-04-28 Gas insulation transformer

Country Status (1)

Country Link
JP (1) JPH02288313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989487A (en) * 2010-10-20 2011-03-23 江苏华鹏变压器有限公司 Novel transformer heat radiator fixing structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989487A (en) * 2010-10-20 2011-03-23 江苏华鹏变压器有限公司 Novel transformer heat radiator fixing structure

Similar Documents

Publication Publication Date Title
JPH02288313A (en) Gas insulation transformer
US20050030134A1 (en) Construction for cooled solenoid
JPH03101112A (en) Gas insulated transformer
JP2000068127A (en) Oil-immersed electric apparatus
JP2539534B2 (en) Cooling device for electromagnetic induction equipment
JPS60158342A (en) Graded coil device for epr-zeugmatographie
US2794625A (en) Fluid cooled apparatus with natural and forced cooling
US1677681A (en) Transformer
JPH0935945A (en) Gas insulated device guide
JPH06338422A (en) Gas-cooled stationary electric apparatus
JP2003347134A (en) Three-phase reactor
JP3671778B2 (en) Transformer
JPS618909A (en) Winding construction of stationary induction electric apparatus
JPH04323811A (en) Gas-insulated reactor with cap core
JPS58151009A (en) Winding of stationary induction electric apparatus
JPS605554Y2 (en) Outside iron transformer coil cooling system
JP2554696B2 (en) Gas insulated transformer
US726936A (en) Transformer.
JPH0864426A (en) Stationary induction device
JPH06275444A (en) Gas insulated transformer
JPH0311597Y2 (en)
JPH03205810A (en) Gas insulating reactor device
JP2001135527A (en) Stationary induction equipment
JPH0611325U (en) Electromagnetic induction equipment
JPS593545Y2 (en) Forced cooling windings for stationary equipment