JPS625239B2 - - Google Patents

Info

Publication number
JPS625239B2
JPS625239B2 JP58251457A JP25145783A JPS625239B2 JP S625239 B2 JPS625239 B2 JP S625239B2 JP 58251457 A JP58251457 A JP 58251457A JP 25145783 A JP25145783 A JP 25145783A JP S625239 B2 JPS625239 B2 JP S625239B2
Authority
JP
Japan
Prior art keywords
layer
alloy
plating
concentration
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58251457A
Other languages
Japanese (ja)
Other versions
JPS60141894A (en
Inventor
Shigeru Naito
Minoru Kitayama
Yasuhiko Mitsuyoshi
Mitsuji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25145783A priority Critical patent/JPS60141894A/en
Publication of JPS60141894A publication Critical patent/JPS60141894A/en
Publication of JPS625239B2 publication Critical patent/JPS625239B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は加工性に優れたZn―Ni合金めつき鋼
板に関するものである。 (従来技術及び問題点) 近年、自動車や家電製品の耐食性向上の要求に
対し、種々の亜鉛めつき鋼板の開発が行なわれて
いる。 たとえば、鉄と鋼Vol.66(1980)No.7,771
頁、或いは特開昭58―6955号公報などに見られる
如きZn―Ni合金めつき鋼板はその一例であり、
Niが共析することにより、めつき層の電位は貴
の方に移動し、純Znのめつきに比べて高い耐食
性を示すことから、従来より自動車等の分野に多
く使用されている。 しかし、Zn―Ni合金めつき鋼板は、そのめつ
き層が硬いため、次のような問題点があつた。 (イ) 成形や加工において表面めつき層のはく離が
生じたり、パウダリンダが生じる場合がある。 (ロ) パウダリンダを生じてめつき層がはく離すれ
ば、充分な耐食性が得られなくなる恐れがあ
る。 以上の問題点を解決のため、たとえば特開昭58
―130299号公報などに見られるように、従来種々
の改良が提案されているがいずれも充分なものと
は言えなかつた。 本発明者らは、上記問題を解決すべく種々検討
を重ねた結果、下層のめつき層中のNi含有率に
対し上層のめつき層中のNi含有率がさらに過剰
な二層化めつきを施すことにより、加工時におけ
るめつき層のはくり、パウダリングの少ない加工
性に優れた鋼板が得られることを見出した。 (発明の構成) すなわち、本発明は、鋼板表面の少なくとも片
面に、下層としてNi濃度10超から30重量%のZn
―Ni合金めつき層を片面当りの目付量として5
〜60g/m2有し、さらに上層として前記下層中の
Ni濃度に対してさらに2〜60重量%過剰のNiを
含有するZn〜Ni合金めつき層を片面当りの目付
量として0.2〜20g/m2有することを特徴とする
加工性に優れたZn―Ni合金二層めつき鋼板であ
る。 以下さらに詳細に説明する。本発明は、Zn―
Ni合金の二層めつき層を有するものであるが、
まずその下層について述べると、下層のNi濃度
を10超〜30重量%としたのは、濃度10%以下では
Niの共析による耐食性の向上効果が大きくはな
いためであり、濃度30%超では、Ni共析による
耐食性の向上効果がそれ以下の場合とほとんど変
わらないことによるものである。 下層の目付量については、5g/m2未満では、
Zn―Ni合金めつきを施したことによる耐食性の
向上効果が少なく、また60g/m2超では加工を加
えた場合、めつき層が厚いため上層のみならず下
層のめつき層のパウダリングが生じる場合があつ
て(詳細は後述する)、充分に良好な加工性を得
られなくなることから、目付量5〜60g/m2とし
た。 本発明の最大の骨子とする所は、Zn―Ni合金
二層めつきの上層のNi濃度を下層のNi濃度より
過剰に添加することにあるが、このような構成と
する理由は次の通りである。即ち前述の如くZn
―Ni合金めつき層は比較的硬いため、引張り加
工や曲げ加工時に、めつき層がはく離しパウダリ
ングが発生しやすくなり、耐食性が低下してしま
うが、Zn―Niめつき層上にさらにNi濃度の高い
Zn―Niめつき層をめつきせしめることにより、
加工時に上層のめつき層がはく離してパウダリン
グが発生した際、その粉末が潤滑作用を及ぼすた
め、下層ははく離を生ぜず、従つて問題となる程
度の耐食性の低下を防止することができるからで
ある。 すなわち、本発明はより加工性の悪い上層を積
極的に存在せしめることによつて下層のはく離を
防止するものである。 上層のNi濃度が下層のNi濃度より2%未満過
剰の場合には、上層と下層との硬さの差が少ない
ため、上述したように上層のめつき層のみのはく
離化による潤滑の効果が不充分となり、良好な加
工性が得られない。一方上層のNi濃度が下層の
Ni濃度より60%を超えて過剰の場合は、下層と
上層の電位差が大きすぎるため耐食性に問題を生
じる可能性がある。従つて、Ni濃度を下層の濃
度に対し、2〜60重量%の範囲で過剰とした。 上層のZn―Ni合金めつきの目付量を0.2〜20
g/m2としたのは、0.2g/m2未満では、上層の
パウダリングの潤滑効果が認められなかつたから
であり、また目付量20g/m2超に上げた場合は目
付量の増加による潤滑の効果がほとんど向上しな
いからである。 なお、本発明めつき鋼板のめつき層はZn―Ni
合金を主体とするものであることはいうまでもな
いが、その他耐食性の一層の向上を目的として、
上層又は下層の一方又は双方を構成する合金中
に、Co,Fe,Cr,W,Ph,Ti,Cu,Mn,Al,
Ru,Ir,Vの1種又は2種以上を合計で10%未
満含有することは、本発明の趣旨を些かも逸脱す
るものではない。 また本発明めつき鋼板のめつき層は少なくとも
鋼板の片面に設ければ、その良加工性の効果を示
すことができる。従つて、片面が鋼の裸材のZn
―Ni二層めつき鋼板や、両面同一のZn―Ni二層
めつき鋼板や、又、Zn―Ni二層めつきのNi濃
度、目付量が上述した範囲内で両面が異なる組
成、目付量をもつ二層めつき鋼板、さらに両面異
種めつき鋼板としてたとえば片面にZnめつき
層、Fe―Zn合金めつき層、Zn―Al合金めつき
層、或いはZn―Ni単層めつきなどの金属或いは
合金めつき層を有し、片面にZn―Ni二層めつき
を有する鋼板であつても、本発明の趣旨を些かも
逸脱するものではない。 さらに耐食性の向上、塗膜密着性の向上のた
め、リン酸塩処理、クロメート処理などの化成処
理を施してもよい。 なお、本発明のめつき鋼板は、浴中のZn/Ni
の重量比0.1〜0.8で両金属の硫酸塩濃度が100
g/以上で溶解限以内、PH0.8〜2.0の硫酸塩の
浴組成をもつ2タンクにおいて、1タンクの
Zn/Niに対し2タンクめのZn/Niを過少にする
ことにより電流密度5〜150A/dm2、浴温40〜
80℃で製造することができる。 また両面異種めつき鋼板は、片面が溶融めつき
の場合、あらかじめ片面溶融めつき鋼板を製造の
後、上述の製造法により鉄面側のみめつきを施す
ことにより、また片面が異種の電気めつきの場
合、上述の製造法により片面Zn―Ni二層めつき
を製造後、さらに1タンクにおいてその鉄面側に
目的のめつき層を作成することにより夫々製造す
ることができる。 〔実施例〕 次に実施例により本発明の効果をさらに具体的
に説明する。 実施例 1 板厚0.8mmの冷延鋼板を用いZnSO4・7H2O 30
〜280g/、NiSO4・6H2O 70〜320g/,
(NH22SO4 100g/を含むめつき液中で5〜
150A/dm2の電流密度で電解して第1表に示す
Zn―Ni合金めつき鋼板を製造し、潤滑性の測定
手段として第1図に示す装置により摺動抵抗Rf
を押付荷重100〜400Kgの範囲で測定しその潤滑性
を評価した。なお、第1表において、 No.1〜3及びNo.28〜30は片面Zn―Ni合金二層
めつき、他面は鉄裸面、 No.4〜12は両面同一Zn―Ni合金二層めつき、 No.13〜16は片面Zn―Ni合金二層、他面はZnめ
つき(目付量45g/m2)、 No.17〜20は片面Zn―Ni合金二層、他面はFe―
Zn合金めつき(Zn濃度90%,目付量45g/m2)、 No.21〜24は片面Zn―Ni合金二層、他面はAl―
Zn合金めつき(Al濃度50%、目付量45g/m2)、 No.25〜27は片面Zn―Ni合金単層めつき、他面
は鉄裸面 であつて、同表においてZn―Ni合金めつき層
の目付量及びNi濃度を示した。又、他面のZn及
びZn合金めつき層はいずれも溶融めつき法によ
り施した。 前記第1図aにおいて1は試料であり、寸法と
しては、25mm×300mm×0.8mmtのものを使用し
た。試料1はスライドテーブル3上に載置され、
工具2の先端が試料1の表面に図示しない荷重に
より押付けられ、油圧シリンダー4によりスライ
ドテーブル3が摺動すると、工具支持台8に装着
された工具2の先端と試料1の間の動摩擦が生じ
ることにより摺動抵抗が測定される。即ち、5,
6はロードセルであつて、5は引張荷重用、また
6は押付荷重用である。また試料1はクランプ7
によりスライドテーブル3に固定されている。な
お、工具2の先端部の寸法形状は第1図bにおい
てW=10mm、t=5mm、R=25mmである。 ここで摺動抵抗Rfは Rf=引張荷重(Pd)/押付荷重(Pp) =摩擦係数(μ)×Pp+F/Pp で表わされるものであり、Fは材料がマクロ的
に変形するのに要する力であり、押付け荷重が小
さい範囲では摺動抵抗Rfは摩擦係数μに近い値
となる。 結果を第1表の潤滑性の欄に示す。 この結果から、Zn―Ni合金めつきを二層化
し、さらに二層めつきの上層の片面当りの目付量
0.2〜20g/m2でNi濃度を下層の濃度に対し2〜
60%過剰とした本発明のZn―Ni合金二層めつき
鋼板は、潤滑性に関して確実な効果を生むことが
明らかである。 実施例 2 実施例1において製造した各合金めつき鋼板の
加工後における耐食性を調べるためポンチとダイ
スを用い、第2図に示す形状のプレス加工をした
試験片をSST試験により赤錆の発生状況を測定し
た。なお、試験片の寸法形状はD=80mm、h=40
mmとした。その結果を第1表の耐食性の欄に示
す。 この結果、Zn―Ni合金めつきを二層化するこ
とにより潤滑性が良好となつた場合、加工部の耐
食性においても充分な効果を生じることが明らか
となつた。
(Field of Industrial Application) The present invention relates to a Zn--Ni alloy coated steel sheet with excellent workability. (Prior Art and Problems) In recent years, various galvanized steel sheets have been developed in response to demands for improved corrosion resistance of automobiles and home appliances. For example, Tetsu to Hagane Vol.66 (1980) No.7, 771
An example of this is the Zn-Ni alloy plated steel plate as seen in Japanese Patent Application Laid-Open No. 58-6955.
Due to the eutectoid formation of Ni, the potential of the plating layer moves upwards, and it exhibits higher corrosion resistance than pure Zn plating, so it has been widely used in fields such as automobiles. However, the Zn--Ni alloy plated steel sheet has the following problems because its plated layer is hard. (a) During molding and processing, peeling of the surface plating layer or powder cylinder may occur. (b) If powder linda occurs and the plating layer peels off, there is a risk that sufficient corrosion resistance will not be obtained. In order to solve the above problems, for example,
Although various improvements have been proposed in the past, as seen in Publication No. 130299, none of them could be said to be sufficient. As a result of various studies to solve the above-mentioned problems, the present inventors found that the Ni content in the upper plating layer is even higher than that in the lower plating layer. It has been found that by applying this, it is possible to obtain a steel plate with excellent workability and less peeling of the plated layer and less powdering during processing. (Structure of the Invention) That is, the present invention provides Zn with a Ni concentration of more than 10 to 30% by weight as a lower layer on at least one side of the steel plate surface.
-Ni alloy plating layer as the basis weight per one side 5
~60g/ m2 , and further contains as an upper layer in the lower layer
A Zn-Ni alloy plated layer with excellent workability characterized by a Zn-Ni alloy plating layer containing 2 to 60% more Ni by weight than the Ni concentration, with a basis weight of 0.2 to 20 g/m 2 per side. This is a Ni alloy double-layer plated steel plate. This will be explained in more detail below. The present invention provides Zn-
It has two plating layers of Ni alloy,
First of all, regarding the lower layer, the Ni concentration in the lower layer was set to over 10 to 30% by weight because if the concentration is below 10%,
This is because the effect of improving corrosion resistance due to Ni eutectoid is not large, and at a concentration of more than 30%, the effect of improving corrosion resistance due to Ni eutectoid is almost the same as when it is lower than that. Regarding the basis weight of the lower layer, if it is less than 5g/ m2 ,
The effect of Zn-Ni alloy plating on improving corrosion resistance is small, and if processing is applied at a thickness exceeding 60 g/ m2 , the plating layer is thick, so powdering of not only the upper layer but also the lower layer may occur. Since this may occur (details will be described later) and sufficiently good workability cannot be obtained, the basis weight is set to 5 to 60 g/m 2 . The main point of the present invention is that the Ni concentration in the upper layer of the Zn--Ni alloy double-layer plating is added in excess of the Ni concentration in the lower layer, and the reason for such a structure is as follows. be. That is, as mentioned above, Zn
- Since the Ni alloy plating layer is relatively hard, the plating layer is likely to peel off and powdering occurs during tensioning or bending, reducing corrosion resistance. High Ni concentration
By plating the Zn-Ni plating layer,
When the upper plating layer peels off during processing and powdering occurs, the powder exerts a lubricating effect, so the lower layer does not peel off, thus preventing the deterioration of corrosion resistance to the extent that it becomes a problem. It is from. That is, the present invention prevents the peeling of the lower layer by positively making the upper layer, which is less workable, exist. When the Ni concentration in the upper layer is less than 2% more than the Ni concentration in the lower layer, the difference in hardness between the upper layer and the lower layer is small, so the lubrication effect due to exfoliation of only the upper plating layer is reduced as described above. It becomes insufficient and good workability cannot be obtained. On the other hand, the Ni concentration in the upper layer is higher than that in the lower layer.
If it exceeds the Ni concentration by more than 60%, the potential difference between the lower layer and the upper layer is too large, which may cause problems in corrosion resistance. Therefore, the Ni concentration was set to be in excess of 2 to 60% by weight relative to the concentration of the lower layer. The basis weight of the upper layer Zn-Ni alloy plating is 0.2 to 20.
g/m 2 was chosen because the lubricating effect of the upper layer powdering was not observed when it was less than 0.2 g/m 2 , and when the basis weight was increased to more than 20 g/m 2 , it was due to the increase in the basis weight. This is because the lubrication effect is hardly improved. Note that the plating layer of the plated steel sheet of the present invention is Zn-Ni.
Needless to say, it is mainly made of alloys, but with the aim of further improving corrosion resistance,
Co, Fe, Cr, W, Ph, Ti, Cu, Mn, Al,
Containing less than 10% of one or more of Ru, Ir, and V in total does not deviate from the spirit of the present invention in the slightest. Further, if the plating layer of the plated steel sheet of the present invention is provided on at least one side of the steel sheet, the effect of good workability can be exhibited. Therefore, Zn with bare steel on one side
-Ni double-layer plated steel sheet, Zn-Ni double-layer plated steel plate with the same double-sided Zn-Ni layer plating, and Zn-Ni double-layer plated Ni concentration and area weight within the ranges mentioned above, but with different compositions and area weights on both sides. A double-layer plated steel plate, and a steel plate plated with different types on both sides, such as a Zn plated layer, a Fe-Zn alloy plated layer, a Zn-Al alloy plated layer, or a Zn-Ni single layer plated on one side. A steel plate having an alloy plating layer and a Zn--Ni double layer plating on one side does not deviate from the spirit of the present invention in the slightest. Further, in order to improve corrosion resistance and coating film adhesion, chemical conversion treatments such as phosphate treatment and chromate treatment may be performed. Note that the plated steel sheet of the present invention has Zn/Ni in the bath.
The sulfate concentration of both metals is 100 at a weight ratio of 0.1 to 0.8.
In two tanks with a bath composition of sulfate with a pH of 0.8 to 2.0 and within the solubility limit at
By making the Zn/Ni in the second tank too small compared to Zn/Ni, the current density is 5~150A/ dm2 , and the bath temperature is 40~
Can be manufactured at 80℃. In addition, double-sided dissimilar galvanized steel plates can be produced by producing a single-sided melt galvanized steel plate in advance, and then applying glazing on the iron side using the above-mentioned manufacturing method. In this case, after producing a single-sided Zn--Ni double-layer plating using the above-mentioned production method, the desired plating layer can be further produced on the iron side in one tank. [Example] Next, the effects of the present invention will be explained in more detail with reference to Examples. Example 1 ZnSO 4 7H 2 O 30 using a cold-rolled steel plate with a thickness of 0.8 mm
~280g/, NiSO46H2O 70~320g/,
(NH 2 ) 2 SO 4 in a plating solution containing 100g/5~
Electrolyzed at a current density of 150A/dm 2 and shown in Table 1.
A Zn--Ni alloy plated steel plate was manufactured, and the sliding resistance Rf was measured using the device shown in Figure 1 as a means of measuring lubricity.
was measured under a pressing load of 100 to 400 kg to evaluate its lubricity. In Table 1, Nos. 1 to 3 and Nos. 28 to 30 have two layers of Zn-Ni alloy on one side, bare iron on the other side, and Nos. 4 to 12 have two layers of Zn-Ni alloy on both sides. Plating: No. 13 to 16 have two layers of Zn-Ni alloy on one side, Zn plating on the other side (area weight 45 g/m 2 ), No. 17 to 20 have two layers of Zn-Ni alloy on one side, and Fe on the other side. ―
Zn alloy plating (Zn concentration 90%, area weight 45g/m 2 ), No. 21 to 24 have two layers of Zn--Ni alloy on one side, and Al-- on the other side.
Zn alloy plating (Al concentration 50%, area weight 45g/m 2 ), No. 25 to 27 have a single layer of Zn-Ni alloy plating on one side, and the other side is bare iron. The basis weight and Ni concentration of the alloy plating layer are shown. Further, the Zn and Zn alloy plating layers on the other side were both applied by a hot-dip plating method. In FIG. 1a, 1 is a sample, and the dimensions used are 25 mm x 300 mm x 0.8 mm. Sample 1 is placed on slide table 3,
When the tip of the tool 2 is pressed against the surface of the sample 1 by a load (not shown) and the slide table 3 slides by the hydraulic cylinder 4, dynamic friction occurs between the tip of the tool 2 mounted on the tool support 8 and the sample 1. The sliding resistance is thereby measured. That is, 5,
6 is a load cell, 5 is for tensile load, and 6 is for pressing load. Also, sample 1 has clamp 7
It is fixed to the slide table 3 by. Note that the dimensions and shape of the tip of the tool 2 are W=10 mm, t=5 mm, and R=25 mm in FIG. 1b. Here, the sliding resistance Rf is expressed as Rf = tensile load (Pd) / pressing load (Pp) = coefficient of friction (μ) × Pp + F / Pp, where F is the force required for macroscopic deformation of the material. In a range where the pressing load is small, the sliding resistance Rf has a value close to the friction coefficient μ. The results are shown in the lubricity column of Table 1. Based on this result, the Zn-Ni alloy plating was made into two layers, and the area weight per one side of the upper layer of the two-layer plating was
0.2 to 20g/m 2 with Ni concentration of 2 to 20% compared to the lower layer concentration.
It is clear that the Zn--Ni alloy double-layer plated steel sheet of the present invention with an excess of 60% produces a certain effect on lubricity. Example 2 In order to examine the corrosion resistance after processing of each alloy-plated steel sheet produced in Example 1, a punch and die were used to press a test piece in the shape shown in Figure 2, and the occurrence of red rust was examined using an SST test. It was measured. The dimensions and shape of the test piece are D = 80 mm, h = 40
mm. The results are shown in the corrosion resistance column of Table 1. As a result, it has become clear that when the lubricity is improved by using two layers of Zn--Ni alloy plating, a sufficient effect is produced on the corrosion resistance of the machined part.

【表】【table】

【表】 (発明の効果) 以上詳述したごとく、本発明は上層のNi濃度
を下層よりも高く保つことにより耐食性、加工性
の共にすぐれたZn―Ni二層めつき鋼板を提供す
ることを可能としたものであり、その実用的価値
は誠に大きい。
[Table] (Effects of the invention) As detailed above, the present invention provides a Zn-Ni double-layer plated steel sheet with excellent corrosion resistance and workability by keeping the Ni concentration in the upper layer higher than that in the lower layer. This has made it possible, and its practical value is truly great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合金めつき鋼板の潤滑性測定装置を示
す模式図、第2図は実施例に用いられた試験片の
寸法形状を示す斜視図である。 1…試料、2…工具、3…スライドテーブル、
4…油圧シリンダ、5,6…ロードセル、7…ク
ランプ、8…工具支持台。
FIG. 1 is a schematic diagram showing an apparatus for measuring lubricity of an alloy-plated steel plate, and FIG. 2 is a perspective view showing the dimensions and shape of a test piece used in an example. 1...sample, 2...tool, 3...slide table,
4... Hydraulic cylinder, 5, 6... Load cell, 7... Clamp, 8... Tool support stand.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板表面の少なくとも片面に、下層として
Ni濃度10超から30重量%のZn―Ni合金めつき層
を片面当たりの目付量として5〜60g/m2有し、
さらに上層として前記下層中のNi濃度に対して
さらに2〜60重量%過剰のNiを含有するZn―Ni
合金めつき層を片面当たりの目付量として0.2〜
20g/m2有することを特徴とする加工性に優れた
Zn―Ni合金二層めつき鋼板。
1 On at least one side of the steel plate surface, as a lower layer
It has a Zn-Ni alloy plating layer with a Ni concentration of over 10 to 30% by weight, with a basis weight of 5 to 60 g/m 2 per side,
Further, as an upper layer, Zn-Ni containing 2 to 60% by weight excess Ni with respect to the Ni concentration in the lower layer.
The basis weight of the alloy plating layer per side is 0.2~
Excellent workability characterized by 20g/ m2
Zn-Ni alloy double layer plated steel plate.
JP25145783A 1983-12-29 1983-12-29 Zn-ni alloy double-plated steel sheet having superior workability Granted JPS60141894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25145783A JPS60141894A (en) 1983-12-29 1983-12-29 Zn-ni alloy double-plated steel sheet having superior workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25145783A JPS60141894A (en) 1983-12-29 1983-12-29 Zn-ni alloy double-plated steel sheet having superior workability

Publications (2)

Publication Number Publication Date
JPS60141894A JPS60141894A (en) 1985-07-26
JPS625239B2 true JPS625239B2 (en) 1987-02-03

Family

ID=17223102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25145783A Granted JPS60141894A (en) 1983-12-29 1983-12-29 Zn-ni alloy double-plated steel sheet having superior workability

Country Status (1)

Country Link
JP (1) JPS60141894A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191391A (en) * 1984-10-08 1986-05-09 Sumitomo Metal Ind Ltd Surface treated steel sheet having superior corrosion resistance after coating
JPS61170593A (en) * 1985-01-24 1986-08-01 Sumitomo Metal Ind Ltd Zinc surface treated steel sheet having excellent corrosion resistance after painting
JP2564524B2 (en) * 1986-10-06 1996-12-18 日本鋼管株式会社 Method for producing electric zinc-nickel alloy plated steel sheet excellent in electrodeposition paintability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162292A (en) * 1983-03-05 1984-09-13 Sumitomo Metal Ind Ltd Steel sheet having multilayered plating provided with superior corrosion resistance after coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162292A (en) * 1983-03-05 1984-09-13 Sumitomo Metal Ind Ltd Steel sheet having multilayered plating provided with superior corrosion resistance after coating

Also Published As

Publication number Publication date
JPS60141894A (en) 1985-07-26

Similar Documents

Publication Publication Date Title
AU2011286715B2 (en) Steel sheet for hot pressing and method of manufacturing hot-pressed part using steel sheet for hot pressing
JPH02190483A (en) Galvanized steel sheet having superior press formability
US5049453A (en) Galvannealed steel sheet with distinguished anti-powdering and anti-flaking properties and process for producing the same
US5336567A (en) Nickel alloy electroplated cold-rolled steel sheet excellent in press-formability and phosphating-treatability
US4487663A (en) Steel sheets for preparing welded and coated cans and method for manufacturing the same
KR100234452B1 (en) Zinciferous plated steel sheet and method for manufacturing same
JP3879266B2 (en) Alloyed hot-dip galvanized steel sheet excellent in formability and manufacturing method thereof
JPS625239B2 (en)
JPH0266148A (en) Multi-layer played steel sheet excellent in flaking resistance
JPS63186860A (en) Manufacture of surface-treated steel sheet excellent in rust resistance and weldability
JP2695259B2 (en) Alloyed hot-dip galvanized steel sheet with excellent press formability
JP3191688B2 (en) Manufacturing method of galvanized steel sheet
JP3191687B2 (en) Galvanized steel sheet
JP2938449B1 (en) Hot-dip Sn-Zn plated steel sheet
JP3111904B2 (en) Manufacturing method of galvanized steel sheet
JPH03126888A (en) Surface-treated steel sheet excellent in workability and weldability
JPH05214558A (en) Galvanized steel sheet excellent in press formability and spot weldability
JP2527086B2 (en) Ni-Sn plated steel sheet for bright welding cans
JPH0536516B2 (en)
JPH09143792A (en) Production of galvanized steel sheet
JP3191646B2 (en) Manufacturing method of galvanized steel sheet
JPS62192597A (en) Plated steel sheet having superior powdering resistance
JPH0544006A (en) Production of alloyed hot dip galvanized steel sheet having excellent workability and corrosion resistance
JPH03150340A (en) Surface treated steel sheet excellent in workability and weldability
JPH02263962A (en) Surface treated steel sheet excellent in workability and coating suitability